
A ZDD-Based Algorithm for Solving
Minimum Weighted Vertex Cover Problems and Its Evaluation

Xiang Liu† Shin-ichi Minato‡

Graduate School of Informatics, Kyoto University†

1. Introduction

Given an undirected weighted graph 𝐺 = (𝑉, 𝐸) consists of a
vertex set 𝑉 = {𝑣ଵ, 𝑣ଶ, … 𝑣௡}, an edge set 𝐸 = {𝑒ଵ, 𝑒ଶ, … 𝑒௠} and
a weight function 𝑤(𝑣௜) that assigns a positive integer to each
vertex, the minimum weighted vertex cover (MWVC) problem
is to find a vertex cover 𝑆 such that the total weight 𝑤(𝑆) is
minimum. A vertex cover 𝑆 is a subset of vertex set 𝑉, such that
𝑆 ⊆ 𝑉 contains at least one endpoint of each edges in 𝐸. In this
paper, we present a method of solving this classic NP-hard
problem based on Zero-Suppressed Binary Decision Diagram
(ZDD). Our experimental results for a series of benchmark
instances show that the proposed algorithm is competitive and in
some cases much more efficient than other solvers, including
SBMS [1] and Cliquer [2].

2. Related Works

In 2016, Xu proposed a solver named SBMS based on the
reformulation of the MWVC problem into a series of SAT
instances. Due to the equivalence of the MWVC problem and the
maximum weighted clique (MWC) problem, the existing clique
problem solver can also be used to solve this problem by finding
the maximum weighted clique in the complementary graph, one
of the most sophisticated solver is a branch-and-bound approach
proposed by Patric Östergård named Cliquer. On the other hand,
the method of enumerating all feasible solutions of the minimum
clique problem in ZDD has been known for a long time. As
Coudert has shown in 1997 [3], it is possible to solve graph
optimization problems effectively with ZDD, and he also
presented an algorithm for solving the unweighted minimum
clique problem, which can be reduced to the MVC problem in
polynomial time. Yet this method cannot be directly extended to
the weighted situation due to the internal intersection operation
involved. Moreover, the subsequent search for the optimal
solution after the construction of the ZDD that enumerates all
feasible solutions may consumes a large amount of extra running
time. Thus, we proposed an improvement of the Coudert's
method.

3. Extension of Coudert's Method to the Weighted Case

Compared with other existing methods, we propose a fast
method which is capable of outputting the minimum weighted
vertex cover on completion of the construction of the ZDD
enumerating all possible vertex covers. To begin with, we recall
the algorithm proposed by Coudert to enumerate all possible
cliques in a given graph 𝐺 = (𝑉, 𝐸), as shown in the pseudo code
in Fig. 1.

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏 𝐀𝐥𝐥𝐂𝐥𝐢𝐪𝐮𝐞𝐬
1: 𝐙𝐃𝐃 𝐀𝐥𝐥𝐂𝐨𝐯𝐞𝐫𝐬(𝐠𝐫𝐚𝐩𝐡 (𝑉, 𝐸))
2: 𝐫𝐞𝐭𝐮𝐫𝐧 𝐍𝐨𝐭𝐒𝐮𝐩𝐒𝐞𝐭൫2௏, 𝐸ഥ൯

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟐 𝐍𝐨𝐭𝐒𝐮𝐩𝐒𝐞𝐭
1: 𝐙𝐃𝐃 𝐍𝐨𝐭𝐒𝐮𝐩𝐒𝐞𝐭(𝐙𝐃𝐃 𝑓, 𝐙𝐃𝐃 𝑔)
2: /∗ 𝑓 consists of ൫𝑣௙ , 𝑓଴, 𝑓ଵ൯ ∗/
3: /∗ 𝑔 consists of ൫𝑣௚, 𝑔଴, 𝑔ଵ൯ ∗/
4: 𝐢𝐟 𝑓 = 0 𝐨𝐫 𝑓 = 𝑔 𝐨𝐫 1 ∈ 𝑔 𝐫𝐞𝐭𝐮𝐫𝐧 0
5: 𝐢𝐟 𝑓 = 1 𝐨𝐫 𝑔 = 0 𝐫𝐞𝐭𝐮𝐫𝐧 𝑓
6: ℎ ← cache[𝐍𝐨𝐭𝐒𝐮𝐩𝐒𝐞𝐭(𝑓, 𝑔)] 𝐢𝐟 ℎ exists 𝐫𝐞𝐭𝐮𝐫𝐧 ℎ
7: ℎଵ ← 𝐍𝐨𝐭𝐒𝐮𝐩𝐒𝐞𝐭(𝑓ଵ, 𝑔଴) ∩ 𝐍𝐨𝐭𝐒𝐮𝐩𝐒𝐞𝐭(𝑓ଵ, 𝑔ଵ)
8: ℎ଴ ← 𝐍𝐨𝐭𝐒𝐮𝐩𝐒𝐞𝐭(𝑓଴, 𝑔଴)
9: ℎ ← 𝐙𝐃𝐃൫𝑣௙ , ℎ଴, ℎଵ൯ /∗ Apply reduction rules ∗/
10: cache[𝐍𝐨𝐭𝐒𝐮𝐩𝐒𝐞𝐭(𝑓, 𝑔)] ← ℎ
11: 𝐫𝐞𝐭𝐮𝐫𝐧 ℎ

Figure 1: Coudert's algorithm for enumerating all cliques.

The algorithm of 𝐴𝑙𝑙𝐶𝑙𝑖𝑞𝑢𝑒𝑠 enumerates all possible cliques
for a given graph 𝐺 = (𝑉, 𝐸) using a divide-and-conquer
strategy by calling an internal recursive procedure of
𝑁𝑜𝑡𝑆𝑢𝑝𝑆𝑒𝑡(𝑓, 𝑔) that calculates the ZDD representing the set of
{𝜑 ∈ 𝑓 | ∀𝛾 ∈ 𝑔, 𝜑 ⊉ 𝛾} by handling the subgraphs of 𝑓 and 𝑔.
Here, the input arguments 𝑓 represents 2௏ and 𝑔 represents the
set of all edges in its complement graph 𝐸ത = ൛{𝑢, 𝑣} | 𝑢 ∈ 𝑉, 𝑣 ∈
𝑉, 𝑢 ≠ 𝑣, {𝑢, 𝑣} ∉ 𝐸ൟ. Due to the definition of a clique, which is
defined as a subset of the vertex set 𝑉 such that every two
vertices are adjacent, each set 𝐶 ⊆ 2௏ that is not the superset of
all edges in 𝐸ത is a clique, and vice versa. Note that
𝐙𝐃𝐃൫𝑣௙ , ℎ଴, ℎଵ൯ in the last line represents the internal procedure
to create a ZDD node with item number 𝑣௙, 0-branch child node
ℎ଴ and 1-branch child node ℎଵ. The internal processor returns a
pointer to the existing node instead of creating a new ZDD node.

On the other hand, if there exists a clique 𝐶 in 𝐺̿ = (𝑉, 𝐸ത),
then 𝑉\𝐶 is a vertex cover in 𝐺. In ZDD, we denote the path that
starts from the root node and arrives at the 1-terminal as a 1-path.
Each 1-path corresponds to a set of items. On a 1-path, for any
node, if the path points to its 1-branch child, then this means that
the item corresponding to the node is selected in the item set,
otherwise it is not selected. This means that for a ZDD 𝑓 that
represents the set of 𝐹 ⊆ 2ூ , where 𝐼 denotes all items, if we
swap the 0-destination and 1-destination of each node in 𝑓 to get
the ZDD of ℎ that represents the set of 𝐻 ⊆ 2ூ, for each set 𝜂 ∈
𝐻, there always exists a set 𝜑 ∈ 𝐹 such that 𝜂 = 𝐼\𝜑.

As described above, in recursively constructing the ZDD that
enumerates all possible cliques in complement
graph 𝐺̿ = (𝑉, 𝐸ത), by swapping the 0-branch and
the 1-branch of each node, we can directly get
the ZDD that enumerates all possible vertex
covers in 𝐺 = (𝑉, 𝐸) . Meanwhile, since the
input argument 𝑓 in Fig. 1. represents 2௏, whose
subgraphs are always the power sets as shown in
Fig. 2., we may use this property to simplify the
algorithm by using only the top item number 𝑣𝑎𝑟
as the input argument during the recursion. On
the other hand, since 𝑓 ≠ 0 is always valid, and
if 𝑓 = 𝑔 then 1 ∈ 𝑔 is valid, these conditions
can be discounted. The pseudo code of the
proposed algorithm is shown as Fig. 3.

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟑 𝐀𝐥𝐥𝐕𝐂𝐨𝐯𝐞𝐫𝐬

1: 𝐙𝐃𝐃 𝐀𝐥𝐥𝐕𝐂𝐨𝐯𝐞𝐫𝐬(int 𝑡𝑜𝑝, 𝐙𝐃𝐃 𝑔)
2: /∗ 𝑔 consists of ൫𝑣௚, 𝑔଴, 𝑔ଵ൯ ∗/
3: 𝐢𝐟 1 ∈ 𝑔 𝐫𝐞𝐭𝐮𝐫𝐧 0
4: 𝐢𝐟 𝑡𝑜𝑝 = 0 𝐨𝐫 𝑔 = 0 𝐫𝐞𝐭𝐮𝐫𝐧 2௩೟೚೛
5: ℎ ← cache[𝐀𝐥𝐥𝐕𝐂𝐨𝐯𝐞𝐫𝐬(𝑡𝑜𝑝, 𝑔)] 𝐢𝐟 ℎ exists 𝐫𝐞𝐭𝐮𝐫𝐧 ℎ
6: ℎ଴ ← 𝐀𝐥𝐥𝐕𝐂𝐨𝐯𝐞𝐫𝐬(𝑡𝑜𝑝 − 1, 𝑔଴) ∩ 𝐀𝐥𝐥𝐕𝐂𝐨𝐯𝐞𝐫𝐬(𝑡𝑜𝑝 − 1, 𝑔ଵ)
7: ℎଵ ← 𝐀𝐥𝐥𝐕𝐂𝐨𝐯𝐞𝐫𝐬(𝑡𝑜𝑝 − 1, 𝑔଴)
8: ℎ ← 𝐙𝐃𝐃(𝑡𝑜𝑝, ℎ଴, ℎଵ)
9: cache[𝐀𝐥𝐥𝐕𝐂𝐨𝐯𝐞𝐫𝐬(𝑡𝑜𝑝, 𝑔)] ← ℎ
10: 𝐫𝐞𝐭𝐮𝐫𝐧 ℎ /∗ Apply reduction rules ∗/

Figure 3: Proposed method for directly generating the ZDD of
all possible vertex covers.

 For a given weighted graph 𝐺 = (𝑉, 𝐸, 𝑤), the initial input

argument 𝑡𝑜𝑝 represents |𝑉| and 𝑔 is the ZDD that represents
the edge set |𝐸|, respectively. When the function is called, if
there already exists such a ZDD node 𝑡 in cache, and its
corresponding input arguments are exactly same as the current
input arguments, we directly return 𝑡 and skip the following
calculation since it has already done before.

Although recording the minimum weight from each node to

Figure 2

Copyright 2022 Information Processing Society of Japan.
All Rights Reserved.1-225

5K-03

情報処理学会第84回全国大会

the 1-terminal during the bottom-up construction of the ZDD
will lead to a failure, since the intersection operation introduces
numerous new nodes that do not have the weights recorded for
their children, it is still possible to re-explore the minimum path
weight from that node to the 1-terminal after the intersection
operation is done. We rewrite the intersection operation [6] to
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛_𝐶𝑊 such that each time after the intersection
operation is done, we record the minimum value of the total
weight of the path from that node to the 1-terminal inside it.
Since a large number of nodes below it have had their minimum
weights recorded in the cache, it is not necessary for us to explore
all the paths to get the final result. Similarly, if the minimum total
weight of the 1-paths starts from the current visiting node to the
1-terminal is already recorded in cache, we directly return the
recorded minimum weight instead of repeating the search of its
subgraph again. By the time of backtracking, the child nodes
have already been handled, so the minimum total weight can be
calculated in constant time by using the calculation results of the
child nodes. The pseudo code of this method is shown as Fig. 4.

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟒 𝐀𝐥𝐥𝐕𝐂𝐨𝐯𝐞𝐫𝐬𝐂𝐖

1: 𝐙𝐃𝐃 𝐀𝐥𝐥𝐕𝐂𝐨𝐯𝐞𝐫𝐬𝐂𝐖(int 𝑡𝑜𝑝, 𝐙𝐃𝐃 𝑔)
2: /∗ 𝑔 consists of ൫𝑣௚, 𝑔଴, 𝑔ଵ൯ ∗/
3: 𝐢𝐟 1 ∈ 𝑔 𝐫𝐞𝐭𝐮𝐫𝐧 0
4: 𝐢𝐟 𝑡𝑜𝑝 = 0 𝐨𝐫 𝑔 = 0 𝐫𝐞𝐭𝐮𝐫𝐧 2௩೟೚೛
5: h← cache[𝐀𝐥𝐥𝐕𝐂𝐨𝐯𝐞𝐫𝐬𝐂𝐖(𝑡𝑜𝑝, 𝑔)] 𝐢𝐟 ℎ exists 𝐫𝐞𝐭𝐮𝐫𝐧 ℎ
6: ℎ଴ ← 𝐀𝐥𝐥𝐕𝐂𝐨𝐯𝐞𝐫𝐬𝐂𝐖(𝑡𝑜𝑝 − 1, 𝑔଴) ∩௖௪ 𝐀𝐥𝐥𝐕𝐂𝐨𝐯𝐞𝐫𝐬𝐂𝐖(𝑡𝑜𝑝 − 1, 𝑔ଵ)
7: ℎଵ ← 𝐀𝐥𝐥𝐕𝐂𝐨𝐯𝐞𝐫𝐬𝐂𝐖(𝑡𝑜𝑝 − 1, 𝑔଴)
8: ℎ ← 𝐙𝐃𝐃(𝑡𝑜𝑝, ℎ଴, ℎଵ) /∗ Apply reduction rules ∗/
9: ℎ. 𝑚𝑖𝑛𝑤 ← min൫ℎ଴. 𝑚𝑖𝑛𝑤 , ℎଵ. 𝑚𝑖𝑛𝑤 + 𝑤(𝑡𝑜𝑝)൯
10: cache[𝐀𝐥𝐥𝐕𝐂𝐨𝐯𝐞𝐫𝐬𝐂𝐖(𝑡𝑜𝑝, 𝑔)] ← ℎ
11: cache[ℎ. 𝑚𝑖𝑛𝑤] ← ℎ. 𝑚𝑖𝑛𝑤
12: 𝐫𝐞𝐭𝐮𝐫𝐧 ℎ

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟓 𝐎𝐩𝐞𝐫𝐚𝐭𝐢𝐨𝐧 ∷ 𝑓 ∩௖௪ 𝑔

1: 𝐙𝐃𝐃 𝐎𝐩𝐞𝐫𝐚𝐭𝐢𝐨𝐧 ∷ 𝑓 ∩௖௪ 𝑔
2: 𝐢𝐟 𝑓 = 0 𝐨𝐫 𝑔 = 0 𝐭𝐡𝐞𝐧
3: ℎ. 𝑚𝑖𝑛𝑤 ← MAX_VALUE 𝐫𝐞𝐭𝐮𝐫𝐧 0
4: 𝐢𝐟 𝑓 = 𝑔 𝐭𝐡𝐞𝐧
5: 𝑔. 𝑚𝑖𝑛𝑤 ← cache[𝑔. 𝑚𝑖𝑛𝑤]
6: 𝐢𝐟 𝑔. 𝑚𝑖𝑛𝑤 exists 𝐫𝐞𝐭𝐮𝐫𝐧 𝑔
7: 𝐞𝐥𝐬𝐞 ℎ ← 𝑔
8: ℎ ← cache[𝑓 ∩௖௪ 𝑔] 𝐢𝐟 ℎ exists 𝐫𝐞𝐭𝐮𝐫𝐧 ℎ
9: 𝐢𝐟 𝑓. 𝑡𝑜𝑝 < 𝑔. 𝑡𝑜𝑝 ℎ ← 𝑓 ∩௖௪ 𝑔଴
10: 𝐢𝐟 𝑓. 𝑡𝑜𝑝 > 𝑔. 𝑡𝑜𝑝 ℎ ← 𝑓଴ ∩௖௪ 𝑔
11: 𝐢𝐟 𝑓. 𝑡𝑜𝑝 = 𝑔. 𝑡𝑜𝑝 𝐚𝐧𝐝 𝑓 ≠ 𝑔
12: ℎ ← (ℎ. 𝑡𝑜𝑝, 𝑓଴ ∩௖௪ 𝑔଴, 𝑓ଵ ∩௖௪ 𝑔ଵ)
13: cache[𝑓 ∩௖௪ 𝑔] ← ℎ
14: 𝐢𝐟 ℎ = 0 ℎ. 𝑚𝑖𝑛𝑤 ← MAX_VALUE
15: 𝐢𝐟 ℎ = 1 ℎ. 𝑚𝑖𝑛𝑤 ← 0
16: 𝐢𝐟 ℎ. 𝑚𝑖𝑛𝑤 exists in cache 𝐭𝐡𝐞𝐧 𝐫𝐞𝐭𝐮𝐫𝐧 ℎ
17: ℎ. 𝑚𝑖𝑛𝑤 ← min൫ℎ଴. 𝑚𝑖𝑛𝑤 , ℎଵ. 𝑚𝑖𝑛𝑤 + 𝑤(ℎ. 𝑡𝑜𝑝)൯
18: cache[ℎ. 𝑚𝑖𝑛𝑤] ← ℎ. 𝑚𝑖𝑛𝑤
19: 𝐫𝐞𝐭𝐮𝐫𝐧 ℎ

Figure 4: Proposed method for directly generating the ZDD of
all possible vertex covers and getting the optimal solution at the
same time. Note that ∩௖௪ represents the internal procedure of
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛_𝐶𝑊 to record the minimum weight of 1-paths that
start from the current node during the intersection operation.

Once the ZDD representing all possible vertex covers is

constructed, the minimum vertex cover weight of the input graph
has also been recorded in the top node of it. It means the final
solution can be obtained without performing an extra DFS on
this ZDD (which time complexity is related to the size of the
generated ZDD), which improves the efficiency of the algorithm.

Since the size of a ZDD has significantly depends on the order
of the variables, the naïve strategy may be not very effective for
some instances without optimization. It means that we would
like to find a "good" order of variables to keep the size of the
ZDD as close to the minimum as possible. In practice, we use a
beam search-based heuristic algorithm for the given graph to find
a good variable ordering, which traverses the given graph in a
breadth-first manner and for each level of search it gives 𝐾 states
with the highest evaluation value. It explores the graph by
pruning its search space with given evaluation function as
introduced in [4].

4. Empirical Evaluations

We run our algorithm on a Windows environment with AMD
Ryzen 7 4800H (2.90 GHz) and 16GB RAM. The proposed
algorithm and Cliquer are implemented in C++. For SBMS [1],
we use Lingeling, the same SAT Solver as mentioned in Xu's
paper, while we use a faster, BDD-based method to transform
the pseudo Boolean constraint into CNF [5], due to the limited
efficiency of the original method, which is implemented in Java.
Since SBMS is highly sensitive to the weight assigned to vertices,
we used the same approach as in Xu's paper, setting the weight
of vertex 𝑖 as 𝑖 mod 3 + 1. Part of the results are shown in table
1. Note that SBMS is good at such a small range of weights. For
the larger range of weights, it would be harder for SBMS.

Although the proposed algorithm cannot efficiently handle
with the input graphs with vertices above 600 due to the
performance of ZDD operations, for input graphs of mild scale,
the proposed algorithm significantly outperforms SBMS in terms
of running time. Of the 23 selected DIMACS input instances,
SBMS solved 9 problems in total, while the proposed algorithm
solved 8 problems, with similar levels. Compared with Cliquer,
the proposed algorithm is slightly slower for some input
instances, and Cliquer solved 13 problems out of the 23 selected
DIMACS input instances in total. Still, for some input instances,
the proposed algorithm is capable of giving solutions faster than
Cliquer.

Table 1: Performances of SBMS, Cliquer and propsoed ZDD-
based algorithm on weighted instances, judging by running time.

Graph Running times (secs)
Instance Vertices Density SBMS Cliquer ZDD
brock200-4 200 0.658 16.58 0.46 0.92
brock400-2 400 0.749 188.66 362.13 7.51
brock800-2 800 0.651 >3600 >3600 >3600
keller4 171 0.649 10.98 0.03 0.51
MANN-a27 378 0.990 17.84 >3600 2.43
p-hat300-3 300 0.744 >3600 64.21 2.49
hamming8-4 256 0.639 109.26 1.03 6.02
p-hat700-3 700 0.748 >3600 >3600 >3600
p-hat1500-2 1500 0.506 >3600 >3600 >3600
p-hat1500-3 1500 0.754 >3600 >3600 >3600

5. Conclusion

In this paper we introduce a ZDD-based algorithm for solving
the weighted case of minimum vertex cover problem. With the
empirical evaluations, we are able to conclude that the proposed
method performs better than SAT-based solver and is capable to
be compared with the weighted clique solver for specific input
instances if the scale is not too large. Furthermore, compared to
SBMS or Cliquer, the proposed method solves the MWVC
problem directly, instead of reducing it to other problems first.
For the benchmark problems with less than 600 vertices, we
show that the proposed algorithm can provide a good alternative
to the existing solvers for the MWVC problem.

Acknowledgement
 The authors would like to thank all members of Minato Lab.
This research is partly supported by KAKENHI 20H00605.

References
[1] H. Xu, T.K.S. Kumar, S. Koenig, "A New Solver for the Minimum Weighted

Vertex Cover Problem”, Integration of AI and OR Techniques in Constraint
Programming, CPAIOR 2016, Lecture Notes in Computer Science, vol 9676,
pp. 392-405, 2016.

[2] S. Niskanen, P.R.J. Östergård, "Cliquer user’s guide, version 1.0", Technical
report T48, Communications Laboratory, Helsinki University of Technology,
Espoo, Finland, 2003.

[3] O. Coudert, "Solving graph optimization problems with ZBDDs," Proc of
European Design and Test Conference. ED & TC 97, 1997, pp. 224-228.

[4] Y. Inoue, S. Minato, "Acceleration of ZDD Construction for Subgraph
Enumeration via Path-width Optimization," Hokkaido University TCS
Technical Report, TCS-TR-A-16-80, 2016.

[5] O. Bailleux, "Boolvar/pb v1.0, a java library for translating pseudo-Boolean
constraints into CNF formulae”, CoRR abs/1103.3954, 2011.

[6] S. Minato, "Zero-Suppressed BDDs for Set Manipulation in Combinatorial
Problems", DAC, pp. 272-277, 1993.

Copyright 2022 Information Processing Society of Japan.
All Rights Reserved.1-226

情報処理学会第84回全国大会

