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Abstract: Estimating the mean values of quantum observables is a fundamental task in quantum com-
puting. In particular, efficient estimation in a noisy environment requires us to develop a sophisticated
measurement strategy. Here, we propose a quantum-enhanced estimation method for the mean values,
that adaptively optimizes the measurement (POVM) for each circuit; as a result of optimization, the
estimation precision gets close to the quantum Cramér-Rao lower bound, that is, inverse of the quantum
Fisher information. We provide a rigorous analysis for the statistical properties of the proposed adaptive
estimation method such as consistency and asymptotic normality. Furthermore, several numerical sim-
ulations with large system dimension are provided to show that the estimator needs only a reasonable
number of measurements to almost saturate the quantum Cramér-Rao bound.

1. Introduction
The mean value estimation of quantum observables is

an important subroutine in many quantum algorithms
for both near-term noisy and future fault-tolerant quan-
tum devices. Especially, variational quantum algorithms,
which have been studied extensively in recent years [5],
require estimating mean values to train the variational
parameters on a parameterized quantum circuit. How-
ever, typically when the target observable is a molec-
ular Hamiltonian as in the variational quantum eigen-
solver [20, 25], the standard estimation method needs as-
tronomically many measurements [25, 29, 9, 16], and thus
any possible quantum advantage may be lost. In addi-
tion, real quantum devices suffer from noise induced by
the interaction of system and environment, and this noise
deteriorates the efficiency for reading out high-precision
calculation results. Therefore, developing efficient mean-
value estimation methods in a noisy environment is highly
important [28, 16].

For this purpose, the statistical estimation theory [6,
21, 14] should of course be useful. Actually its quan-
tum extension, the statistical quantum estimation theory,
has been developed [14, 11] and successfully applied in
many problems such as quantum sensing [7]. In partic-
ular, the seminal Cramér-Rao inequality and Fisher in-
formation, which can be used to characterize the limit
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of estimation precision, has been extended to quantum
settings [13, 12, 11, 2]. This result, known as the quan-
tum Cramér-Rao (QCR) inequality and quantum Fisher
information, plays a practically important role in many
applications and, further, reveals some fundamental lim-
itation on information extractable from quantum me-
chanical systems. Hence the statistical quantum estima-
tion theory could be effectively applied to improve es-
timation efficiency of subroutines in quantum comput-
ing. However, such exploration has just started. For in-
stance, some less-demanding implementation methods for
quantum-enhanced (i.e., less query complexity compared
to any classical means) amplitude estimation algorithm
have been proposed and their performance were investi-
gated in depth using statistical estimation theory, yet with-
out studying QCR bound [1, 10, 19, 4, 3, 8]. To our best
knowledge, only Ref. [26] provides a quantum-enhanced
amplitude estimation method that asymptotically achieves
the QCR bound when several conditions are satisfied in a
noisy environment.

Moreover, we recently find the quantum-enhanced mean
value estimation method [28] that utilizes techniques from
the quantum signal processing (QSP) [18]. This method
employs QSP-inspired parameterized quantum circuits
and executes the Bayesian inference for the target value
based on the result of a fixed measurement on the pa-
rameterized quantum circuits. The key point for efficient
estimation is that the variance of the posterior distribu-
tion can be rapidly decreased by adjusting the parameters
of the quantum circuit in each measurement. However,
this method does not consider optimizing the measurement
for better estimation and, as a nature of Bayes method,
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no statistical guarantee of the estimator to hit the true
mean value was provided. Importantly, Ref. [16] provided
a benchmark using the same Bayesian inference, which
clarifies the need for more efficient estimation method to
achieve quantum advantage. Hence it is of increasing at-
traction to develop an algorithm that possibly achieves the
QCR bound.

In this paper, we propose a new quantum-enhanced
mean-estimation method that asymptotically achieves
QCR bound with some provable statistical properties.
This method uses a modified maximum likelihood esti-
mation that incorporates an adaptive optimization based
on the Fisher information. More precisely, this scheme
adjusts the number of amplitude amplification operations
and the measurement (more precisely POVM), which as
a result enables the estimator to almost achieve the QCR
bound as the number of qubits increases. As in the previ-
ous study [28, 26, 23], we employ the depolarizing channel
as a noise model. As pointed out in the previous study,
the quantum mean value estimation under the depolarizing
noise may significantly deteriorate depending on the target
value to be estimated, but we will numerically demonstrate
that the proposed method can also get around the prob-
lem due to the optimization. In addition, we prove that
the estimator satisfies the following statistical properties.

• Consistency: As the number of measurements in-
creases, the estimation accuracy becomes better.
More precisely, the probability that the estimated
value is identical to the true value approaches 1, which
is clearly a desirable statistical property.

• Asymptotic normality: For the target value, the es-
timator regularized by its Fisher information follows
the standard normal distribution and as a result the
estimation error asymptotically achieves the Cramér-
Rao lower bound, as the number of measurements in-
creases. Note that this property corresponds to the
central limit theorem that holds for usual methods for
estimating the quantum mean value in quantum com-
puting.

These asymptotic properties guarantee the quality of our
estimates, and we will also demonstrate the properties hold
for practical number of measurements.

This article is organized as follows. In Section 2, we
review a maximum likelihood amplitude estimation algo-
rithm and show the estimation precision of this algorithm
deteriorates in the presence of depolarizing noise. In Sec-
tion 3, we propose a new quantum mean value estimation
method with adaptive measurements. We first introduce
two-type measurements (POVMs) and construct our algo-
rithm with optimization for efficient estimation. Next, we
show some Theorems for the statistical properties of our
method. Section 4 is devoted to show the results of nu-
merical simulations and discussion. Finally, we conclude
this paper in Section 5.

2. Preliminary
The (quantum-enhanced) amplitude estimation algo-

rithm of [22, 23, 26, 24], which does not use the hard-
to-implement phase estimation algorithm, consists of two
major steps. The first step is to perform amplitude ampli-
fication on the quantum state whose amplitude is to be es-
timated, and then make a measurement. The second step
is to estimate the amplitude by classical post-processing
for the measurement result, i.e., the maximum likelihood
estimation.

The problem is to estimate the amplitude sin(ϕ∗), with
unknown ϕ∗ ∈ [0, π/2], of the following (n+1)-qubit quan-
tum state A |0⟩n+1:

A |0⟩n+1 := cos
(
ϕ∗)

|ψ0⟩n |0⟩1 + sin
(
ϕ∗)

|ψ1⟩n |1⟩1 ,

(1)
where |0⟩n+1 is the computational basis of (n + 1)-qubit.
Here, A is a unitary operator whose action is defined as
Eq. (1), and |ψ0⟩n and |ψ1⟩n are normalized n-qubit quan-
tum states. The first step is to amplify the amplitude via
the operator Q defined as

Q := A
(
2 |0⟩n+1 ⟨0|n+1 − In+1

)
A† (In ⊗ Z) , (2)

where In is the identity operator on the n-qubit system,
and Z denotes the 2×2 Pauli Z matrix. When Q is applied
m times to the state (1), we obtain

QmA |0⟩n+1 = cos
[
(2m+ 1)ϕ∗]

|ψ0⟩n |0⟩1

+ sin
[
(2m+ 1)ϕ∗]

|ψ1⟩n |1⟩1 . (3)

We now measure the last qubit of Eq. (3) by the com-
putational basis |0⟩1 and |1⟩1. Then the probability of
obtaining "1" is given by

P̃
(
m;ϕ∗)

:= 1
2 − 1

2 cos
[
2(2m+ 1)ϕ∗]

. (4)

Note that this is equivalent to the Bernoulli trials with
success probability P̃ (m;ϕ∗).

In the second step we estimate the amplitude based on
the measurement results obtained in the first step by the
maximum likelihood estimation method. For each of pre-
defined odd numbers 2mk+1 (k = 1, 2, · · · ,M), we prepare
the state (3) and measure it N times with the computa-
tional basis independently. We write x(k) ∈ {0, 1, · · · , N}
as the number of hitting "1" for the state Qmk A |0⟩n+1.
The measurement results for M different states are put
together as xM := (x(1), x(2), · · · , x(M)). Then the likeli-
hood function to have xM is given by

L̃M (xM ;ϕ∗) :=
M∏

k=1

F̃k(x(k);mk, ϕ
∗), (5)

where F̃k(x(k);mk, ϕ
∗) is the probability of obtaining x(k).

Given the measurements xM , the maximum likelihood
estimation assumes that the value of ϕ that maximizes
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L̃M (xM ;ϕ) is a plausible estimate of the true value ϕ∗. In
other words, the maximum likelihood estimate ϕ̂M for ϕ∗

from the M series of measurements is defined as

ϕ̂M := argmax
ϕ∈[0,π/2]

L̃M (xM ;ϕ). (6)

We now consider the n-qubit depolarizing channel:

D[ρ] := pρ+ 1 − p

d
In, d := 2n, (7)

where ρ is an arbitrary density operator and 1 − p is the
probability that depolarization occurs. In this paper, as in
[28, 26, 23], we consider a noise model in which depolar-
ization occurs with probability 1−ps for state preparation
and 1 − pq for each amplitude amplification. Then the
probability of obtaining "1" for the final state under this
noise model is given by

P̃D
(
m;ϕ∗)

:= 1
2 −

psp
m
q

2 cos
[
2(2m+ 1)ϕ∗]

. (8)

The subscript D means that the quantum state to be mea-
sured has passed through the above-defined depolarizing
channels. Then the classical Fisher information associated
with the probability (8) for ϕ∗ is calculated as

Ĩc(m;ϕ∗) :=
(2m+ 1)2(psp

m
q )2 sin2 [2(2m+ 1)ϕ∗]

P̃D(m;ϕ∗)
(
1 − P̃D(m;ϕ∗)

) .

(9)

Equation (9) indicates that the estimation may become in-
effective to ϕ∗ if m satisfies sin [2(2m+ 1)ϕ∗] ≃ 0. More
precisely, if m and ϕ∗ satisfy this condition, the Cramér-
Rao lower bound of the estimation error for ϕ∗ significantly
deteriorates [28, 23]. In addition, even if we use the above-
described maximum likelihood estimation based on the M
series of measurements for mk (k = 1, 2, · · · ,M), which
are predefined independently to ϕ∗, the same deterioration
may occur [23]. Importantly, this phenomena are also seen
in the quantum mean value estimation problem discussed
in the next section.

3. Quantum-enhanced mean value esti-
mation

3.1 Dual amplitude amplification
The amplitude estimation method described in the pre-

vious section can be applied to the problem of estimating
the mean value of a Hermitian operator O with eigen-
values ±1. Let us consider estimating the mean value
⟨O⟩ := ⟨A| O |A⟩, where |A⟩ := A |0⟩n is an n-qubit quan-
tum state with a unitary operator A. Suppose |A⟩ is not an
eigenstate of O, i.e., |⟨O⟩| ̸= 1 and that the two quantum
states |A⟩ and O |A⟩ are linearly independent and form the
following subspace [28, 17]

S := Span {|A⟩,O|A⟩} = Span
{

|A⟩, |A⊥⟩
}
, (10)

where |A⊥⟩ is an normalized state orthogonal to |A⟩ ob-
tained by Gram-Schmidt procedure to O |A⟩. For simplic-
ity, we write |A⟩ and |A⊥⟩ as |0̄⟩ and |1̄⟩, respectively, and

identify S with the 1-qubit Hilbert space. We then de-
fine an n-qubit operator Q on S, which corresponds to the
amplitude amplification operator in Eq. (2), as

Q := A
(
2 |0⟩n ⟨0|n − In

)
A†O. (11)

This operator keeps the subspace S invariant. Now the
representation of Q on S is expressed as Q|S = RȲ (−2θ∗),
where Ȳ is the Pauli Y matrix in the basis |0̄⟩ and |1̄⟩, and
θ∗ := arccos (⟨O⟩). Note that, for the target mean value
⟨O⟩ = cos θ∗, the domain of θ∗ is given by θ∗ ∈ (0, π),
which is twice as that of ϕ∗ in the previous section. Act-
ing Q on |A⟩ m times yields

Qm |A⟩ =
(
Q|S

)m |0̄⟩
= cos

(
mθ∗)

|0̄⟩ − sin
(
mθ∗)

|1̄⟩ . (12)

Here, as in the previous case, we assume that the state is
subjected to the depolarization noise through the ampli-
tude amplification process; that is, the output state after
m repetition of Q is given by

ρD(m; θ∗) := psp
m
q ρ(m; θ∗) +

1 − psp
m
q

d
In, (13)

where ρ(m; θ∗) := Qm |A⟩ ⟨A| (Qm)†. Here, 1 − pq (> 0)
denotes the probability of depolarization noise occurring
along the single query of the operator Q.

One strategy to efficiently read out quantum mean val-
ues from the amplitude-amplified quantum state Eq. (13)
is to use a sophisticated POVM whose classical Fisher in-
formation achievable to the quantum Fisher information
for the state. More details are provided in [27]. Although
we found a 3-valued POVM that satisfies the above feature
with respect to certain θ∗, it is difficult to implement be-
cause the 3-valued POVM includes the θ∗-dependent quan-
tum states [27]. Therefore, considering a marginalisation
of the POVM, we define the following 2-valued POVM

M
(even)
1 := In −M

(even)
0 ,

M
(even)
0 := O† |A⟩ ⟨A| O, (14)

where the meaning of even is explained later. Measuring
Eq. (13) with the POVM, we obtain the result correspond-
ing to M (even)

1 in the probability

P(even)
D (m; θ∗)

:= d− 1
d

+ psp
m+1/2
q

[
sin2 [

(m+ 1)θ∗]
− d− 1

d

]
,

(15)

where p1/2
q denotes the additional noise associated with the

implementation of A† in M
(even)
0 . This measurement has

powerful estimation capabilities in the sense of its Fisher
information. The classical Fisher information per shot
with Eq. (15) can be calculated as

I(even)
c (m; θ∗)

:=
(2m+ 2)2p2

sp
2m+1
q sin2 [(2m+ 2)θ∗]

4P(even)
D (m; θ∗)

(
1 − P(even)

D (m; θ∗)
) . (16)
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As for the quantum Fisher information, we can calculate
it as [15, 30]

I(even)
q (m) := (psp

m+1/2
q )2

2
d +

(
1 − 2

d

)
psp

m+1/2
q

(2m+ 2)2. (17)

When cos [(m+ 1)θ∗] ̸= 0, the classical Fisher information
asymptotically approaches the quantum Fisher informa-
tion, in the large dimension limit d = 2n → ∞:

I(even)
c (m; θ∗) → I(even)

q (m). (18)

This means that, to estimate a particular θ∗, the POVM
Eq. (14) becomes optimal with respect to the Fisher in-
formation, as the number of qubits increases; more precise
analysis is provided in [27]. In the next subsection, for es-
timating θ∗, i.e., ⟨O⟩, we introduce an new algorithm that
is sufficiently optimal for almost all θ∗ in the large system
dimension via the optimization of the number of query m.

Although the even POVM Eq. (14) can be optimal with
its Fisher information, it is important to evaluate the per-
formance of estimators in terms of not only the amount
of its Fisher information, but also whether it can cor-
rectly estimate the true target value. Since the probability
Eq. (15) is in fact an even function when θ = π/2 is the
center, the maximum likelihood estimation associated with
this measurements cannot distinguish the sign of quantum
mean values. We therefore introduce the following second
POVM broken this symmetry:

M
(odd)
1 := In −M

(odd)
0 ,

M
(odd)
0 := In + O

2 . (19)

This POVM corresponds to Eq. (8) in the standard am-
plitude estimation algorithm because the probability of
obtaining "1" by measureing the state Eq. (13) with the
POVM is given as

P(odd)
D (m; θ∗) = 1

2 −
psp

m
q

2 cos
[
(2m+ 1)θ∗]

. (20)

Note that the coefficient of θ∗ differs by 2 compared to
that of ϕ∗ in Eq. (8). This is because the presence of
sign for quantum mean values doubles the domain of the
target value. Since the probability is an odd function un-
like Eq. (15), the measurement can distinguish the sign
of the target mean value. Note that we add the super-
script even or odd for the POVM Eqs. (14), (19) based on
this symmetry. In contrast to the even POVM, the cor-
responding classical Fisher information I(odd)

c (m; θ∗) de-
viates from the quantum Fisher information even if the
number of qubits increases [27].

Combining Eqs. (15), (20), we summarize the probabili-
ties of obtaining a measurement corresponding to "1" with
the two POVMs as follows.

PD(α; θ∗)

:=


1
2 − ηα

2 cos
(
αθ∗)

, α is odd

d− 1
d

+ ηα

[
sin2

(
α

2 θ
∗
)

− d− 1
d

]
, α is even

,

(21)

where ηα denotes psp
α−1

2
q and α ∈ N corresponds to the

number of queries to the operator A or A†. We per-
form the measurement by Eq. (19) when α is odd and by
Eq. (14) when α is even. In the following, we call α ampli-
fied level. Also, the classical/quantum Fisher information
corresponding to each measurement is written as

Ic(α; θ∗) := α2η2
α sin2 (αθ∗)

4PD(α; θ∗)(1 − PD(α; θ∗)) , (22)

Iq(α) := α2η2
α

2
d +

(
1 − 2

d

)
ηα

. (23)

By combining the above measurements with the maxi-
mum likelihood estimation framework described in the pre-
vious section, we can estimate the quantum mean value
cos θ∗ as detailed in the next subsection. Note that there
are also ineffective points in the classical Fisher informa-
tion Eq. (22) in the presence of noise. Therefore, we are
motivated to avoid α that satisfies sin (αθ∗) ≃ 0 for both
Eqs. (14) and (19) as much as possible. In addition, we
would like to employ measurements whose classical Fisher
information approaches the quantum Fisher information
and enhance the estimation power. Thus, we propose a
new quantum mean value estimation method that satisfies
these requirements by adaptively adjusting amplified levels
α, that is, POVMs. Importantly, this method inherits the
good properties of the maximum likelihood estimation.

3.2 Our algorithm
The general framework of our algorithm is a maximum

likelihood estimation method using random variables fol-
lowing the statistics of Eq. (21). An overview is shown
in Fig. 1. In the following, we explain the procedures in
detail.
(i) First, before starting the estimation, determine the

probabilities of depolarization 1 − ps and 1 − pq based
on the quantum device to be used. For the first mea-
surements, we also set the amplified level α1 to 1.

(ii) We measure the quantum state (13) N times inde-
pendently with either POVM Eq. (14) or Eq. (19),
which is determined based on the amplified level
αk. We write the total number of hitting "1" as
x(k) ∈ {0, 1, · · · , N}. Here, x(k) can be considered
as the realization of the Binomial random variable
X(k) ∼ Bin(N,PD(αk; θ∗)).

(iii)Calculate the maximum likelihood estimate
θ̂k based on the total k measurement results
xk := (x(1), x(2), · · · , x(k)). Here, the estimate
maximizes the following likelihood function
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Fig. 1 Overview of our algorithm for estimating ⟨A|O|A⟩. Here, |A⟩ is a target state pre-
pared by an n-qubit quantum circuit A and the computational basis |0⟩n, and O is
a target Hermitian operator with eigenvalues ±1. The general framework is a modi-
fied maximum likelihood estimation method using the specific quantum circuits with
the amplitude amplification operator QA,O and the two POVMs M

(even)
A,O , M

(odd)
O .

Here, we assume the depolarization noise is induced by preparing |A⟩ and querying
QA,O. Even under this noisy condition, our algorithm can estimate the quantum
mean value ⟨A|O|A⟩ efficiently in the sense of its Fisher information via optimization
of the number of querying QA,O and the POVM. In particular, the optimization
every N measurements improves the classical Cramér-Rao lower bound, and besides
it gets close to the quantum Cramér-Rao lower bound sufficiently in large system
dimension d.

Lk(xk; θ) :=
k∏

m=1

Fm

(
x(m);αm(xm−1), θ

)
,

(24)

where Fm

(
x(m);αm(xm−1), θ

)
is the probability

function of random variable X(m).
Note that the measurements xk collect the already
obtained results via measurements with αm (m =
1, 2, · · · , k). Since the amplified level αk depends on the
previous results xk−1 as described below, the likelihood
function Lk(xk; θ) has a hierarchical structure, which does
not find in the conventional one Eq. (5).
(iv) To enhance the classical Fisher information, we de-

termine αk+1 for the next measurement based on the
current estimate θ̂k by numerically solving the follow-
ing optimization problem

αk+1 := argmax
α∈Dk

Ic(α; θ̂k)
∣∣sin (

αθ̂k

)∣∣δ
, (25)

where Dk ⊂ N is the range of αk+1 to be optimized.
Once (k + 1)-th amplified level αk+1 is determined,
return to (ii) and perform the measurement again.

Here, | sin (αθ̂k)|δ is a regularization term to avoid insta-
bility of the numerical optimization, which comes from
the incontinuity of Ic(α; θ) [27]. In this paper, we used
δ = 0.10. Note that since the elements of Dk are integer,
the optimization problem can be solved fast. Importantly,
this optimization takes a role of not only selecting an op-
timal α for large Fisher information but also controlling
the following trade-off relation by setting the optimization
range of each αk+1. A large α is preferred to enhance the
Fisher information per 1 shot, but if we choose an α which

dramatically (e.g., super-exponentially) increases with re-
spect to m, the estimation will be failed in practical N
because the likelihood function Lk(xk; θ) has many peaks
around the true target value.

3.3 Statistical properties of our estimator
Although in our algorithm the random variables describ-

ing the measurement results are dependent each other and
have the hierarchical structure in Eq. (24), we can prove
the consistency of our estimator based on the convergence
of αk, which intuitively means that the random variables
become independent each other in large N .
Theorem 1. (Informal version) There exists an unique
maximum likelihood estimator θ̂M of LM (XM ; θ) such that

cos θ̂M → ⟨O⟩, (26)

as N → ∞. In addition, αk(Xk−1) converges to a con-
stant α∗

k in the sense of probability as follows

lim
N→∞

P
[
αk(Xk−1) = α∗

k

]
= 1, k = 2, · · · ,M (27)

We show the formal version of this theorem and proof
in [27]. This theorem shows that our estimator is reason-
able because more data gives more accurate estimation.

Furthermore, the asymptotic variance of our estimator
can achieve the Cramér-Rao lower bound when N is large.
To state it more precisely, we first introduce the following
total classical/quantum Fisher information of our estima-
tor:

Ic/q,tot
(
θ∗)

= N

M∑
m=1

EXm−1

[
Ic/q

(
αm (Xm−1) ; θ∗)]

,

(28)

5ⓒ 2022 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2022-QS-7 No.24
2022/10/28



where αm (xm−1) denotes the optimized amplified level
based on the measurement results xm−1. The derivation is
provided in [27]. Since Theorem 1 states that αm (Xm−1)
becomes a constant with high probability as N increases,
the total Fisher information also converges as follows

Ic/q,tot(θ∗)
N

→
I∗

c/q,tot(θ
∗)

N
, (29)

where I∗
c/q,tot(θ

∗) is the asymptotic value of the total clas-
sical/quantum Fisher information defined as

I∗
c/q,tot

(
θ∗)

:= N

M∑
m=1

Ic/q
(
α∗

m; θ∗)
. (30)

Here, we provide the convergence theorem for the distri-
bution of our estimator.
Theorem 2. (Informal version) If θ̂M is an maximum
likelihood estimator of LM (XM ; θ), then the following con-
vergence holds√

I∗
c,tot(θ∗)

(
cos θ̂M − ⟨O⟩

)
→ N (0, sin2 θ∗), (31)

where → means the convergence in distribution as N in-
creases.
The formal version of this theorem and proof are shown
in [27]. This theorem shows that the asymptotic variance
of our estimator is equivalent to inverse of the asymp-
totic value of the total classical Fisher information, and
thus, our estimator can asymptotically achieve the clas-
sical Cramér-Rao lower bound. In the next section, we
demonstrate that the asymptotic property holds in practi-
cal N .

Recalling the optimality of the even POVM (14), the
total classical Fisher information is likely to be sufficiently
close to the total quantum Fisher information as the num-
ber of qubits increases:

I∗
c,tot(θ∗) ≈ I∗

q,tot(θ∗). (32)

Since the optimization in Eq. (25) decreases this deviation,
it depends on the selection of {Dk}k. In result section, we
demonstrate that the deviation is sufficiently small for al-
most all θ∗, i.e., the total classical Fisher information of
our algorithm can be sufficiently close to its total quantum
Fisher information with use of a certain set {Dk}k.

4. Results and Discussion
In this section, we numerically verify the performance

of our algorithm with noisy quantum devices. First, in
practical N , we demonstrate that the asymptotic prop-
erties of our estimator hold. Next, evaluating the asymp-
totic value of the total Fisher information, we confirm that
our algorithm retains large Fisher information regardless
of the target value θ∗. We also show that the total classical
Fisher information of our algorithm are sufficiently close
to its quantum Fisher information in the large system di-
mension.

4.1 Asymptotic properties in practical N

To demonstrate the properties of our algorithm, we nu-
merically evaluated the Root Mean Squared Error (RMSE)
of cos θ̂ defined as

RMSE
[
cos θ̂

]
:=

√
Eθ̂

[(
cos θ̂ − cos θ∗

)2
]

≃

√√√√ 1
#

#∑
i=1

(
cos θ̂[i] − cos θ∗

)2
, (33)

where # is the total number of trials, and θ̂[i] denotes the
estimate of ith trial. In the following, we used # = 200
samples to evaluate the RMSE. We assumed the depolar-
ization noise with the parameters ps = 1 and pq = 0.99.
The number of qubits was set to 20, which corresponds
to d = 220. We also set the number of measurements
N = 500 for each circuit. To obtain maximum likelihood
estimates based on the measurements, we used a modi-
fied brute force, in which the search domain is narrowed
as the measurement process proceeds. The amplified level
αk of the kth measurement process (k = 2, ...,M) was de-
termined from the maximum likelihood estimate θ̂k−1 and
the optimization range Dk−1. Here, the discrete set Dk−1

was set to

Dk−1 := {2k−1, 2k−1 + 1, · · · , 2k}. (34)

Note that the exponential increase of the number of ele-
ments was inspired by the fact: the previous research [22]
unveiled that when there is no noise, the exponential incre-
ment sequencemk = 2k−1 can achieve the Heisenberg limit
in the context of standard amplitude estimation method
introduced in Section 2.

Figure 2 shows the relationship between total query
complexity and estimation errors. Here, the total query
complexity is defined by N

∑M
k=1 αk, and the plots cor-

respond to M = 3, 4, · · · , 12 from left to right. Note
that since the total query complexity is a random vari-
able due to the randomness of αk, we plotted the RMSE
as a function of the arithmetic mean of the total query
complexity realized in # = 200 trials. We calculated the
classical/quantum Cramér-Rao lower bound: CCR bound
and QCR bound, respectively, based on the true value θ∗

and the asymptotic sequence {α∗
k}k as in Eq. (30). It is

worth noting that we confirmed that the difference be-
tween the asymptotic CCR/QCR bounds and the bounds
from the # = 200 average of the realized total Fisher in-
formation can be negligible. For the six target values, the
RMSE achieves the CCR bound sufficiently, and the ra-
tio of the RMSE to the bound is at most 1.25. Thus, we
consider N = 500 is sufficient for the asymptotic property
Eq. (31). Note that if we employ larger N such as the max-
imum number of shots available for real quantum devices,
Eq. (31) guarantees that the ratio get closer to one. On
the other hand, as the total query complexity increases, the
CCR/QCR bounds are saturated around M = 10. This is
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Fig. 2 The estimation error and the total query complexity for several target values. The
root mean squared error (RMSE) of the estimator cos θ̂ was evaluated by 200 trials.
Since the total query complexity is a random variable in our method, the RMSE
was plotted as a function of the averaged total query complexity. The blue solid line
and green dashed line represent the asymptotic values of CCR/QCR bounds ob-
tained from the corresponding classical/quantum Fisher information I∗

c/q,tot(θ∗),
respectively.

because the Fisher information from the circuit employed
in M > 10 is buried in depolarization noise.

In addition, it should be emphasized that the CCR
bound is nearly identical to the QCR bound. As seen in
the next subsetion, this holds for almost all θ∗.

4.2 Efficiency of our estimator
As described in Section 3, the classical Fisher informa-

tion associated with measurements Eqs. (14), (19) vanishes
at certain points. However, our algorithm can avoid the
points and retain large Fisher information due to the opti-
mization of amplified levels. To confirm that, we calculated
the asymptotic total Fisher information I∗

c/q,tot(θ
∗) for ev-

ery θ∗ ∈ (0, π). In the following, we considered the same
experimental setting in the previous subsection. The num-

ber of measurement processes M was set to nine, which
includes the maximum point of the quantum Fisher infor-
mation under the current noise level.

Figure 3 shows target value dependency of the ratio be-
tween the (asymptotic) total classical Fisher information
of our method and that of other methods. The classi-
cal Fisher information for the standard sampling method,
which is usually employed for VQE [20] calculations, is
defined by Eq. (30) with α∗

k = 1 ∀k, while that for the
non-adaptive method [22, 23, 26] is defined by Eq. (30)
with α∗

1 = 1, α∗
k = 2k ∀k ≥ 2. Since the classical Fisher

information for the standard sampling is a constant re-
gardless of the target value in the current setting, its plot
reflects the behavior of our classical Fisher information to
the target value. In contrast to our total classical Fisher
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Fig. 3 Comparison of the total classical Fisher information of our
method and that of other methods. Orange (bottom) and
blue (top) lines represent the ratio of the Fisher informa-
tion corresponding to standard sampling method α∗

k = 1
and non-adaptive method α∗

1 = 1, α∗
k = 2k (k ≥ 2), re-

spectively. As for the our classical Fisher information, we
used its asymptotic value to plot this figure.
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Fig. 4 Comparison of the asymptotic total classical and quan-
tum Fisher information of our method in twenty qubits.
The vertical dotted lines represent the target values cor-
responding to θ∗ = π/j, j = 2, 3, 4, 6 from left to right.

information, that for the non-adaptive method heavily de-
pends on the target value. In addition, there are some tar-
get values for which the estimation error bound deviates by
more than two order of magnitude from ours. Therefore,
when the amplified level {αk}k is chosen non-adaptively,
even if the asymptotic properties of maximum likelihood
estimators hold, the estimation efficiency is significantly
decreased. Comparing to the standard sampling method,
we see an improvement of about two order of magnitude for
all target values. The improvement depends on the noise
level of the quantum devices, and therefore the estimation
efficiency is further accelerated when there is less noise.
Consequently, we confirm that our total classical Fisher
information retains large Fisher information regardless of
the target value.

Figure 4 shows the ratio of the asymptotic total clas-
sical/quantum Fisher information. For almost all target

values, the difference between asymptotic values of CCR
bound and the QCR bound is sufficiently small, which is
in line with the results of the previous subsection. In gen-
eral, the QCR bound, which means the ultimate limit of
the estimation precision, can only be achieved when an
optimal measurement tailored for a given quantum state
performs. The results demonstrate that Eq. (32) holds,
that is, our estimation method can select the almost opti-
mal measurements (POVM) with respect to its Fisher in-
formation. For the target values θ∗ = π/2, π/3, π/4, π/6,
the difference of the QCR bound and the CCR bound is
slightly larger than that for other target values. This is
because values of (m + 1)θ∗ (mod 2π) obtained from the
amplitude amplification are limited at these points, and
therefore the classical Fisher information cannot get close
to the quantum Fisher information, i.e., (m+1)θ∗ does not
get sufficiently close to kπ/2, k ∈ Z (not identical to kπ/2,
see [27]). Fortunately, the peaks at these points in Fig. 4
are very sharp, and it may be neglected in usual. This
is because when the target values shift slightly from these
points the values of (m+1)θ∗ (mod 2π) will fill the domain
[0, 2π) exponentially in the optimization of amplified levels
on the current {Dk}k.

5. Conclusions
We have proposed a quantum mean value estimation

method in a noisy environment for the ultimate precision
based on the quantum Cramér-Rao lower bound. This
method employs a modified maximum likelihood estima-
tion with the adaptive measurements consisting of multi-
ple POVMs and the amplitude amplifications, which are
assumed to induce a depolarization noise. The key element
in our method is an optimization of the POVMs and the
number of querying the amplitude amplification operators
in order to enhance the Fisher information. Importantly,
employing the 2-type POVMs our method has not only
large Fisher information but also the provable statistical
properties such as consistency and asymptotic normality.

To demonstrate the asymptotic properties, we evaluated
the root mean squared error (RMSE) of our method for
several target values and confirmed that the RMSE satu-
rated the asymptotic classical (also quantum) Cramér-Rao
lower bound sufficiently in practical number of measure-
ments. In addition, we clarified the dependance of our to-
tal Fisher information on the target value by evaluating the
asymptotic classical/quantum Cramér-Rao lower bounds.
Although the previous research [28, 23] implies that the
classical Fisher information deteriorates significantly for
the certain target values under depolarization noise, our
method has confirmed to retain large Fisher information
regardless of the target value due to the adaptive opti-
mization. Moreover, we also confirmed that the asymp-
totic classical Cramér-Rao lower bound of our method al-
most saturate the ultimate bound in large system dimen-
sion d = 220, i.e., twenty-qubit system.
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