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Abstract: Generative model is an unsupervised machine learning framework, that exhibits strong performance in
imaging or anomaly detection in classical machine learning regime. Recently we find several quantum version of
generative model, some of which are even proven to have quantum advantage. However, those proposals have a strict
limitation; that is, the quantum state to be learned (i.e., the quantum state that the model produces) is limited to a single
quantum state, and thus those methods are not applicable to a set of quantum states. In this paper, we propose a quan-
tum generative model that can learn a set of quantum state, in an unsupervised machine learning framework. The key
idea is to introduce a loss function calculated based on optimal transport distance, i.e. Wasserstein distance. We then
apply the proposed method to an anomaly detection task, that cannot be handled via existing methods. The proposed
model paves the way for a wide application such as the health check of quantum devices and efficient initialization of
quantum computation.
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1. Introduction
In the recent great progress of quantum algorithms for both

noisy near-term and future fault-tolerant quantum devices, par-
ticularly the quantum machine learning (QML) attracts huge at-
tention. QML is largely categorised into two regimes in view of
the type of data, which can be roughly called classical data and
quantum data. The former has a conventional meaning used in the
classical case; for the supervised learning scenario, e.g., a quan-
tum system is trained to give a prediction for a given classical
data such as an image. As for the latter, on the other hand, the
task is to predict some property for a given quantum state drawn
from a set of states, e.g. the phase of a many-body quantum state,
again in the supervised learning scenario. Thanks to the obvious
difficulty to directly represent a huge quantum state classically,
some quantum advantage have been proven in QML for quantum
data [1–3].

In the above paragraph we used the supervised learning set-
ting to explain the difference of classical and quantum data. But
the success of unsupervised learning, particularly the generative
modeling, in classical machine learning is of course notable; ac-
tually a variety of algorithms have demonstrated strong perfor-
mance in several applications, such as image generation [4–6],
molecular design [7], and anomaly detection [8]. Hence, it is
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quite reasonable that several quantum unsupervised learning al-
gorithms have been actively developed, such as quantum cir-
cuit born machine (QCBM) [9,10], quantum generative adversar-
ial network (QGAN) [11, 12], and quantum autoencoder (QAE)
[13, 14]. Also, Refs. [15, 16] studied the generative modeling
problem for quantum data. That is, the task is to construct a
model quantum system producing a set of quantum states that ap-
proximates a given quantum dataset. The model quantum system
needs to contain latent variables, the change of which corresponds
to the change of output quantum state of the system. In classical
case, such generative model characterized by latent variables is
called the implicit model. Thus, training an implicit model is ex-
ecuted by minimizing a cost that measures a distance between
the model dataset and training dataset. The transportation dis-
tance, typically the Wasserstein distance, suffices this purpose for
measuring the distance of two ensembles; actually the quantum
version of Wasserstein distance was proposed in [17] and was ap-
plied to construct a generative model for quantum data in QGAN
framework [18].

Along this line of research, in this paper we also focus on the
generative modeling problem for quantum data. We are moti-
vated from the fact that the Wasserstein distance employed in the
above-mentioned existing works compresses each element of the
quantum dataset to make a single mixed state (density matrix),
and measure the distance between two mixed states correspond-
ing to the training and model dataset. This is clearly problematic,
because in general there may be a lot of information loss when
converting the dataset to a single mixed state; for instance, single
qubit pure states uniformly distributed on the equator of the Bloch
sphere are compressed to a maximally mixed state. It is obvious
that learning a single mixed state state does not mean learning the
original dataset. In this paper, hence, we propose a new quantum
Wasserstein distance, which directly measures the distance be-
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tween quantum datasets. The generative modeling problem can
then be executed by minimizing this distance.

Based on such concept, we propose the generative modeling
algorithm with parameterized quantum circuit (PQC). One of the
crucial problem of QML with PQC is the curse of dimensionality
due to the vanishing gradient problem, called barren plateau (BP),
under the training process. To avoid that problem, we introduce a
local cost into the ground cost of Wasserstein distance. We clar-
ify several key properties, and verify the model with theoretical
analysis and thorough numerical simulation. Finally, we demon-
strate an application for anomaly detection of quantum data by
numerical simulation.

2. Preliminaries
Here, we first describe the implicit generative model of clas-

sical machine learning in Sec. 2.1. Next, in Sec. 2.2, we intro-
duce the Optimal Transport Loss, which is one of the promising
candidates for the cost function of generative models. Finally,
in Sec. 2.3, we briefly describe the vanishing gradient problem of
variational quantum algorithms and one of the solutions proposed
in [19].

2.1 Implicit Generative Model
The goal of the generative model is to approximate the distri-

bution behind the training data. More concretely, with the proba-
bility distribution α(x) behind the training data {xi}

Nr
i=1 ∈ X

Nr and
the parameterized probability model βθ(x), the goal is to learn the
parameters θ that minimize the appropriate loss function based
on training data. In particular, implicit generative models usu-
ally assume that the distribution behind the training data resides
on a relatively low-dimensional manifold, i.e., implicit generative
models are expressed through maps of random latent variables
z = {zi}

Nz
i=1 onto the sample space X, where the latent variables

reside in a latent space Z whose dimension Nz is significantly
smaller than the that of sample space Nx. The latent variables
z are random variables which usually assumed to follow a well-
known distribution γ(z), such as a uniform distribution or Gaus-
sian distribution. The implicit generative models are trained so
that the samples generated from the model distribution are close
to the training data, by adjusting the parameters θ to minimize
some appropriate cost function L:

θ⋆ = arg min
θ
L(α̂Nr , β̂θ,Ng

), (2.1)

where β̂θ,Ng
= Gθ#γ̂Ng

is a probability distribution induced by the
push-forward operator# [20], which is intuitively a probability
distribution on X moved from the distribution γ̂Ng

on Z through
the map Gθ . α̂Nr (x) and γ̂Ng

(z) denote empirical distributions
defined by using sampled data {xi}

Nr
i=1 and {zi}

Ng

i=1, which follow
the probability distribution α(x) and γ(z), respectively:

α̂Nr (x) =
1
Nr

Nr∑
i=1

δ(x − xi),

γ̂Ng
(z) =

1
Ng

Ng∑
i=1

δ(z − zi),

(2.2)

2.2 Optimal Transport Loss
Optimal Transport Loss has recently attracted attention in var-

ious fields such as image analysis, natural language processing,
and finance [20–23]. In particular, Optimal Transport Loss is
widely used as a loss function of generative models, because it
can be applicable when the support of probability distributions
do not match and it can naturally incorporate the “distance” in
the sample space X [24–27].Optimal Transport Loss is defined
as the minimum cost of moving a probability distribution α to
another distribution β:
Definition 1 (Optimal Transport Loss [28]).

Lc(α, β) = min
π

∫
c(x,y)dπ(x,y),

subject to
∫

π(x,y)dx = β(y),
∫

π(x,y)dy = α(x),

π(x,y) ≥ 0,
(2.3)

where c(x,y) ≥ 0 is a non-negative function onX×X that rep-
resents the transport cost from x to y, and is called ground cost.
Also, we call the set of couplings π which minimizes Eq.(2.3) as
optimal transport plan. In general, Optimal Transport Loss does
not meet the axioms of metric between the probability distribu-
tions, but it is known to meet the axioms when the ground cost is
related to metric functions as follows:
Definition 2 (p-Wasserstein distance [29]). When the ground cost
c(x,y) is expressed as c(x,y) = d(x,y)p with a metric function
d(x,y), the p-Wasserstein distance is defined as

Wp(α, β) = Ldp (α, β)1/p. (2.4)

p-Wasserstein distance satisfies the properties of metric be-
tween probability distributions, i.e., for any probability distri-
butions α, β, γ, p-Wasserstein distance Wp satisfies positivity:
Wp(α, β) ≥ 0, symmetricity: Wp(α, β) = Wp(β, α), non-
degeneracy: Wp(α, β) = 0 ⇔ α = β, and triangle inequality:
Wp(α, γ) ≤ Wp(α, β) +Wp(β, γ).

For the learning of generative models with Optimal Transport
Loss, it is usually hard to directly handle the probability distribu-
tion behind the training data α or that of the generative models
βθ . Instead, we can only use the sampled data from those distri-
butions, and usually approximate the Optimal Transport Loss by
using the empirical distribution Eq. (2.2):
Definition 3 (Empirical estimator for Optimal Transport Loss
[29]).

Lc(α, βθ) ≃ Lc

(
α̂n, β̂θ,Ng

)
= min
{πi, j}

Nr ,Ng
i, j=1

Nr ,Ng∑
i, j=1

c(xi,Gθ(z j))πi, j,

subject to
Nr∑
i=1

πi, j =
1

Ng
,

Ng∑
j=1

πi, j =
1
Nr
, πi, j ≥ 0.

(2.5)

This empirical estimator converges as Lc(α̂Nr , β̂θ,Nr ) →

Lc(α, βθ) in the limit Nr = Ng → ∞. In general, the speed of
convergence of the empirical optimal transport loss is very slow
(O(n−1/Nx ) with the dimension of the sample space Nx [30]), but
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p-Wasserstein distance have the following convergence law [31].
Theorem 4 (Convergence rate of p-Wasserstein distance). For
the upper Wasserstein dimension d∗p(α)(Definition 4 of [31]) of
the probability distribution α, the following expression holds
when s is larger than d∗p(α):

E
[
Wp(α, α̂Nr )

]
≲ O(Nr

−1/s), (2.6)

where the expectation E is taken with respect to the random
sample data within the empirical distribution α̂Nr . Intuitively, the
upper Wasserstein dimension d∗p(α) is the support dimension of
the probability distribution α, which corresponds to the dimen-
sion of the latent space Nz in the implicit generative model.

Exploiting the metric properties of the p-Wasserstein distance,
the following corollaries are immediately derived from Theo-
rem 4:
Corollary 5 (Convergence rate of p-Wasserstein distance be-
tween identical empirical distributions). Let α̂1,Nr and α̂2,Nr be
empirical distributions of α with different Nr random samples.
Then the following expression holds for s > d∗p(α).

E
[
Wp(α̂1,Nr , α̂2,Nr )

]
≲ O(Nr

−1/s). (2.7)

Corollary 6 (Convergence rate of p-Wasserstein distance be-
tween different empirical distributions). Suppose that the larger
of the upper Wasserstein dimension of the probability distribu-
tions α and βθ is d∗p, then the following expression holds for
s > d∗p.

E
[∣∣∣Wp(α, βθ) −Wp(α̂Nr , β̂θ,Nr )

∣∣∣] ≲ O(Nr
−1/s). (2.8)

These corollaries indicates that empirical estimator of Eq. (2.5)
is a good estimator if the intrinsic dimension of the training data
and the dimension of the latent space Nz are sufficiently small.
In Sec. 3.2.1, we numerically confirm that these convergence law
hold true even in the case of the proposed loss described below,
which is not the p-Wasserstein distance.

2.3 Vanishing Gradient Problem of Variational Quantum
Algorithms

For the quantum case, it is necessary to consider the transporta-
tion cost from a state |ψ⟩ to another state |ϕ⟩ in order to employ the
Optimal Transport Loss as the loss function of generative model.
One of the candidates for such a ground cost is the trace distance:
Definition 7 (Trace distance for pure states [32]).

ctr(|ψ⟩ , |ϕ⟩) =
√

1 − | ⟨ψ|ϕ⟩ |2. (2.9)

Since the trace distance satisfies the axioms of metric, it is pos-
sible to define the p-Wasserstein distances from this ground cost,
which allow us to use various useful properties, such as conver-
gence speed described in the previous subsection. Further, it is
relatively easy to obtain the trace distance with quantum com-
puter, such as by swap test [33] or inversion test [34].

However, because the trace distance is a global observable,
learning with the trace distance is known to suffer from the curse
of dimensionality due to the vanishing gradient problem [35,36].
Namely, when learning the quantum state with a global cost func-
tion using a hardware efficient ansatz, the expected magnitude of

the gradient with respect to the parameters decreases exponen-
tially with the number of bits n. This indicates that the number
of measurements(shots) Ns required to estimate the gradient in-
creases exponentially with respect to the number of bits n. The
numerical simulation of Sec. 3.2.3 shows that this situation is also
carried over to the Wasserstein distance when using the trace dis-
tance as ground cost.

One possible solution to avoid such a vanishing gradient prob-
lem is to build the cost function only from local measurements
[35, 36]. The following cost function is proposed for the task
of learning the state |ϕθ⟩ = U(θ) |0⟩ with parameterized circuit
U(θ).
Definition 8 (Cost for quantum state only with local measure-
ments [19, 37]).

clocal(|ψ⟩ , ϕθ) =

√√
1
n

n∑
j=1

(1 − p(k)),

p(k) = Tr
[
Pk

0U†(θ) |ψ⟩ ⟨ψ|U(θ)
]
,

Pk
0 = I1 ⊗ I2 ⊗ · · · ⊗

k-th bit︷ ︸︸ ︷
|0⟩ ⟨0|k ⊗ · · · ⊗ In,

(2.10)

where n is the number of qubits, and Ii and |0⟩ ⟨0|i denote the
identity operator and the projection operator that act on i-th qubit,
respectively. p(k) denote the probability of getting 0 when observ-
ing the k-th qubit. The trace distance of Eq. (2.9) satisfies the
axiom of metric, but not the local cost Eq. (2.10) (not satisfies
symmetricity and triangle inequality). However, the following
proposition tells us that the Optimal Transport Loss Lclocal with
local cost clocal satisfies the properties of divergence.
Proposition 9. When the ground cost c(x,y) satisfies

c(x,y) ≥ 0,

c(x,y) = 0 iff x = y,
(2.11)

the Optimal Transport Loss Lc(α, β) with c(x,y) as ground cost
satisfies the following properties for any probability distributions
α and β.

Lc(α, β) ≥ 0,

Lc(α, β) = 0 iff α = β.
(2.12)

In the case of quantum generative model, random variables x
and y correspond to state vectors. Since the Optimal Transport
Loss with local ground cost Eq.(2.10) satisfies the properties of
divergence, it would be suitable for use in comparing the proba-
bility distributions. Further, the numerical simulation of Sec. 2.3
shows that the Optimal Transport Loss with local ground cost
may avoid the vanishing gradient problem. Therefore, we employ
the Optimal Transport Loss with local ground cost throughout this
paper. The next section shows the learning algorithm and perfor-
mance evaluation of this loss function, and then Sec. 4 shows the
demonstration.

3. Proposed Algorithm
Here, we first introduce the learning algorithm for the gen-

erative model which uses the Optimal Transport Loss with the
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ground cost Eq. (2.10) in Sec. 3.1. Then we analyze the per-
formance of the loss function in Sec. 3.2 from both numerical
simulations and analytical calculations.

Algorithm 1 Learning Algorithm with Quantum Optimal Trans-
port Loss Eq.(3.2)
Input: Quantum circuit model U(z,θ) with initial parameters θ, learning

rate ε, data samples {|ψi⟩}

Output: A Quantum circuit which represent the distribution of input data
1: repeat
2: Generate latent variables {z j}

Ng

j=1 from the latent distribution.

3: Estimate the ground costs
{
c̃(Ns)

local,i, j

}Nr ,Ng

i, j=1
from {|ψi⟩}

Nr
i=1 and

{U(z j,θ)}Ng

j=1 with Ns shots as in Eq.(2.10).
4: Calculate the optimal transport plan πi, j by Eq.(3.2).

5: Calculate the gradients
{
∂
∂θk
Lclocal

}Np

k=1
from πi, j and

{
∂
∂θk

c̃(Ns)
local,i, j

}Nr ,Ng ,Np

i, j,k=1
with parameter shift rule [38, 39].

6: Update {θk}
Np

k=1 by using the gradients
{
∂W
∂θk

}Np

k=1
with learning rate ε

7: until convergence

3.1 Learning Algorithm
The target of this paper is to learn a generative model that

represents the underlying distribution from a quantum data set
{|ψi⟩}

Nr
i=1. Hereafter, we assume that we can prepare a finite num-

ber of copies for each quantum state, e.g., k copies {|ψi⟩
⊗k}

Nr
i=1.

Note that the learning problem with infinite number of copies be-
comes classical machine learning problem, because in such a case
we can determine all the components by performing full tomog-
raphy [40].

We employ the implicit generative model described in Sec. 2.1.
In the quantum case, one candidate for the implicit model will
take the following form:
Definition 10 (Implicit generative model with quantum circuit).
Using the initial state |0⟩ and the parameterized quantum circuit
U(z,θ), the implicit generative model with quantum circuit is de-
fined as

|ϕθ(z)⟩ = U(z,θ) |0⟩ , (3.1)

where θ are trainable parameters and z are latent variables that
follow a known probability distribution.

The similar circuit model is also found in meta-VQE [41],
which uses physical parameters instead of random latent variables
z. Note that the model putting the latent variables z into the ini-
tial state (|ϕθ(z)⟩ = U(θ) |z⟩) described in [16] does not match
the current purpose, because in such a model, states with different
latent variables are always orthogonal to each other, making it dif-
ficult to capture small changes in Hilbert space as small changes
of the latent variables. In addition, it may be advantageous for
the proposed implicit model that the analytical derivative can be
calculated by the parameter shift rule [38, 39] not only for the
parameters but also for the latent variables z. In fact, anomaly
detection in Sec. 4 exploits derivatives of the latent variables.

The empirical estimator of Optimal Transport Loss calculated
from training data {|ψi⟩}

Nr
i=1 and samples of the latent variables

{z j}
Ng

j=1 becomes,

Lc̃(Ns )
local

(
{|ψi⟩}

Nr
i=1, {|ϕθ(z j)⟩}

Ng

j=1

)
= min
{πi, j}

Nr ,Ng
i, j=1

Nr ,Ng∑
i, j=1

c̃(Ns)
local,i, jπi, j,

subject to
Nr∑
i=1

πi, j =
1

Ng
,

Ng∑
j=1

πi, j =
1
Nr
, πi, j ≥ 0.

(3.2)

Here, c̃(Ns)
local,i, j is the estimator of ground cost of Eq.(2.10) with Ns

shots, i.e., by using the random variables X(s)
i, j,k (s = 1, 2, . . . ,Ns),

which follows Bernoulli distribution with probability distribution
1− p(k)

i, j = 1−Tr
[
Pk

0U†(z j,θ) |ψi⟩ ⟨ψi|U(z j,θ)
]
, c̃(Ns)

local,i, j is defined
as

c̃(Ns)
local,i, j =

√√√
1
n

n∑
k=1

1
Ns

Ns∑
s=1

X(s)
i, j,k (3.3)

For the minimization of the loss function of Eq. (3.2), the pa-
rameters θ = {θk}

Np

k=1 are updated by the following two steps:
( 1 ) With Nr training data and Ng generated latent variables, esti-

mate the ground costs
{
c̃(Ns)

local,i, j

}Nr ,Ng

i, j=1
by Ns shots. Then solve

the linear programming of Eq.(3.2) to obtain the optimal
couplings {πi, j}

Nr ,Ng

i, j=1 .

( 2 ) Calculate the gradient
{
∂
∂θk

c̃(Ns)
local,i, j

}Nr ,Ng ,Np

i, j,k=1
with Ns shots by

using parameter shift rule [38, 39] (In practice, only cal-
culate for about O(max(Nr,Ng)) components which satisfy

πi, j > 0). With obtained gradients
{
∂
∂θk
Lclocal

}Np

k=1
and optimal

couplings πi, j, update the parameters θ = {θk}
Np

k=1 by tech-
niques such as stochastic gradient.

The pseudo-code of this parameter update is shown in the Algo-
rithm 1. With this update method, the total number of training
quantum states |ψi⟩ required for each update is about O(NrNgNs)
in step 1 and O(max(Nr,Ng)NsNp) in step 2.

3.2 Performance Analysis
Here, we analyze the performance of the proposed empirical

loss of Eq. (3.2). First, we numerically show that the approxima-
tion error of the loss due to the finiteness of training data depends
on the intrinsic dimension of data, and does not depend on the
number of bits in Sec. 3.2.1. Then, in Sec. 3.2.2, we show the de-
pendence of the approximation error with respect to the number
of shots by analytical calculations and numerical simulations. Fi-
nally, in Sec.3.2.3, we numerically shows that the vanishing gra-
dient problem may be avoided by using the proposed loss func-
tion.

In the following, we employ the structure of the parameterized
unitary matrix U(z,θ) shown in Fig. 1, which is similar to [42]
except for the latent variables z, i.e, the structure with the follow-
ing NL repeated layers:

UNL ,ξ,η(z,θ) =
NL∏
ℓ=1

WVξℓ ,ηℓ
(z,θℓ), (3.4)

where θℓ = {θℓ, j}
n
j=1, ξℓ = {ξℓ, j}

n
j=1 and ηℓ = {ηℓ, j}

n
j=1 are n-

dimensional parameters in the ℓ-th layer, and θ = {θℓ}
NL
ℓ=1, ξ =

{ξℓ}
NL
ℓ=1 and η = {ηℓ}

NL
ℓ=1. θ are trainable parameters and z are

latent variables. W is an entangler of ladder controlled-Z gate
which acts controlled-Z gates on all adjacent bits:
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Rξ1,1(θ1,1zη1,1) • Rξ2,1(θ2,1zη2,1) • · · · RξNL,1
(θNL,1zηNL,1

) •

Rξ1,2(θ1,2zη1,2) • • Rξ2,2(θ2,2zη2,2) • • · · · RξNL,2
(θNL,2zηNL,2

) • •

Rξ1,3(θ1,3zη1,3) • • Rξ2,3(θ2,3zη2,3) • • · · · RξNL,3
(θNL,3zηNL,3

) • •
...

...
...

...
...

...

Rξ1,n(θ1,nzη1,n) • Rξ2,n(θ2,nzη2,n) • · · · RξNL,n
(θNL,nzηNL,n

) •

UNL,ξ,η(z, θ) =

Fig. 1 The structure of parameterized quantum circuit (ansatz) used in the performance analysis of this
section and the demonstration of Sec. 4. This ansatz consists of the repeated layers with a similar
structure. In the ℓ-th layer, single qubit Pauli rotations with angles {θℓ, j × zηℓ, j }

n
j=1 and directions

{ξℓ, j} j = 1n are applied to each qubit followed by a ladder controlled-Z gate. The rotation angles
ξ = {ξℓ, j}

NL ,n
ℓ, j=1 and the components of the latent variables η = {ηℓ, j}

NL ,n
ℓ, j=1 are randomly chosen at the

beginning of the analysis and never changed during the analysis.

W =
n−1∏
i=1

CZi,i+1, (3.5)

where CZi,i+1 is a controlled-Z gate acting on i-th and (i+1)-th bit.
The operator Vξℓ ,ηℓ

(z,θℓ) consists of the random Pauli rotations
applied to each qubits:

Vξℓ ,ηℓ
(z,θℓ) =

n∏
i=1

Rξℓ,i (θℓ,izηℓ,i ), (3.6)

where Rξℓ,i (θℓ,izηℓ,i ) is a Pauli ratation with angle θℓ,izηℓ,i and direc-
tion ξℓ,i. The direction ξℓ,i ∈ {X,Y,Z}, and the component of the
latent variables ηℓ,i ∈ {0, 1, 2, . . . ,Nz} are randomly chosen at the
beginning of learning and never changed during learning. Here,
for convenience, we have added a cosntant bias term z0 to the
latent variable z.

We use Qiskit [43] for analyzing quantum circuits throughout
this paper.
3.2.1 Approximation error due to the finiteness of training

data
As explained in Sec. 2.2, it is known for the p-Wasserstein dis-

tance that the convergence rate of the approximation error of the
loss function depends mainly on the intrinsic dimension of data
and the dimension Nz of the latent space Z, and not on the di-
mension of the sample space X. On the other hand, it is not clear
for the proposed loss function of Eq.(3.2) whether similar error
dependence on the dimension holds, because the ground cost of
the proposed loss does not satisfy the axioms of metric and the
loss does not meet the definition of p-Wasserstein distance. Here,
we numerically confirm that this error dependence also holds for
the proposed loss Eq.(3.2).

We present the following two types of numerical simulations;
The first one (Experiment A) is about Eq.(2.7), which describes
the behavior of the approximation error of the loss between two
identical distributions, which corresponds to the situation near
the end of learning. The second one (Experiment B) is about
Eq.(2.8), which describes the behavior of the approximation error
among two different distributions. In the case of p-Wasserstein
distance, Eq. (2.7) and Eq. (2.8) can be easily derived from
Eq.(2.6) due to the properties of metric, but in the case of pro-
posed loss, this derivation does not hold. Hence, we here individ-
ually confirm each of them by numerical simulations.

In this subsection, we use the statevector simulator [43], i.e.,

the result with infinite number of shots is presented here. The
influence from the finiteness of the number of shots is shown in
Sec. 3.2.2.
3.2.1.1 Experiment A

In this experiment, we confirm that the similar dependence as
Eq.(2.7) also holds for the proposed loss. Specifically, we numer-
ically show the dependence of the following expected value on
the number of training data M.

Ez̃,z∼U(0,1)Nz

[
Jclocal
ξ,η;ξ,η(z̃,θ : z,θ; M)

]
, (3.7)

where, for convenience, the empirical loss is denoted as

Jclocal

ξ̃,η̃;ξ,η
(z̃, θ̃ : z,θ; M) =

Lclocal

(
{UNL ,ξ̃,η̃

(z̃i,θ̃) |0⟩}Mi=1, {UNL ,ξ,η(z j,θ) |0⟩}Mj=1
)
,

(3.8)

where Lclocal is the empirical loss function defined in Eq.(3.2). In
Eq.(3.7), we set common fixed parameters for the two unitary
operators that appear in the argument of Lclocal in Eq.(3.8). This
indicates that Jclocal

ξ,η;ξ,η(z̃,θ : z,θ; M) in Eq.(3.7) would vanish in
the limit of infinite number of training data (M → ∞). The ex-
pectation in the equation is taken with respect to latent variables
z̃i, z j with Nz-dimensional uniform distribution U(0, 1)Nz , but we
numerically approximate it by NMonte Monte Carlo samplings.

The typical result of the numerical simulation is shown in
Fig. 2. In the figures, the points represent the numerical results
and the dotted lines represent the scaling curve M−1/Nz . Each fig-
ure shows the result of a different number of bits n, and each
figure contains results of multiple latent dimensions Nz. In the
range with a large number of training data, the points and dotted
lines show almost the same trend regardless of the number qubits,
which imply that the approximation error of the loss Eq.(3.7) is
almost independent of the number of qubits n and depends mainly
on the latent dimension Nz.
3.2.1.2 Experiment B

We turn to the second experiment to confirm that the approx-
imation error of the proposed loss scales similar as Eq.(2.8), the
case of the loss between different distributions. Specifically, we
numerically show the dependence of the following expectation on
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Fig. 2 Typical result of numerical simulations on the relationship between
the number of training data and approximation error of the empiri-
cal loss Eq.(3.7). Each curve indicates the results of various latent
dimensions Nz with the number of qubits n = 10. For reference,
the scaling curves M−1/Nz are added as dotted lines, and the color of
each line are the same as that of the corresponding points. These
graph show that the approximation error of the loss Eq.(3.7) mainly
scale as M−1/Nz , and almost independent of the number of qubits n.

the number of training data M.

Ez̃,z∼U(0,1)Nz

[
lim

K→∞
Jclocal

ξ̃,η̃;ξ,η
(z̃, θ̃ : z,θ; K) − Jclocal

ξ̃,η̃;ξ,η
(z̃, θ̃ : z,θ; M)

]
,

(3.9)

where Jclocal is defined in Eq.(3.8). In this case, we set different
fixed parameters for the two unitary operators in Eq.(3.8).

The first term of Eq.(3.9) is difficult to calculate numerically,
because it contains an limit on the number of training data. Since
the first term is independent of the number of training data, the
first term is expected to take the following form from Eq.(2.8):

Ez̃,z∼U(0,1)Nz

[
Jclocal

ξ̃,η̃;ξ,η
(z̃, θ̃ : z,θ; M)

]
= aM−1/b + c, (3.10)

Therefore, in the following, we fit the Monte Carlo results of the
first term with Eq.(3.10), and show the dependence of the fitting
parameter b on the latent dimension Nz.

The results of the numerical simulation is depicted in Fig.3,
which shows the dependence of the fitting parameter b on the
number of bits n and latent dimension Nz. Fig.3 indicates that the
fitting parameter b is almost independent of the number of bits n,
and is almost linearly dependent on the latent space Nz.

The above Experiments A and B suggest the following obser-
vation:
Observation 11. The scaling of the approximation error of the
loss Eq.(3.2) with respect to the number of training data M is
independent of the number of bits, but determined by the latent
dimension Nz:

Lclocal

(
{|ψ⟩i}

M
i=1, {U(z j,θ) |0⟩}Mj=1

)
≲ O(M−1/Nz ). (3.11)

Proving this observation would be very challenging and is the
subject of future work. This observation shows that the proposed
loss is efficient when the intrinsic dimension of the data and the
latent dimension are sufficiently low, at least for the approximate
error due to the finiteness of training data.

1 2 4 6 10 14
Nz(latent dimension)

0

2

4

6

8

10

12

b(
fi

tt
in

g
pa

ra
m

et
er

)

n = 1
n = 2
n = 4
n = 6
n = 8

Fig. 3 The simulation results on the dependence of the fitting parameter b
on (a) the number of bits n and (b) the latent dimension Nz. The
fitting parameter b is obtained by fitting the empirical loss Eq.(3.9)
by Eq.(3.10). The subfigure (a) shows that the fitting parameter b
is almost independent of the number of bits n, and the subgraph (b)
shows that b is linearly dependent on the latent dimension Nz.

3.2.2 Approximation error due to finite number of shots
The error analysis in Sec.3.2.1 assumes that the nunber of shot

is infinite, i.e., the ground cost between the quantum states can be
determined perfectly. Here, we analyze the effect of the finiteness
of the number of shots on the approximation error.

The following proposition shows the upper bound of the differ-
ence between the loss from infinite and finite number of shots.
Proposition 12. Let c̃(Ns)

localbe an estimator of the ground cost
clocal of Eq.(2.10) using Ns samples. Suppose the support of two
different probability distributions are sufficiently separated, i.e.,
there exists a lower bound g > 0 to the ground cost for any
i, j ∈ {1, 2, . . . ,M} ((clocal(|ψi⟩ ,U(z j,θ) |0⟩) > g, ∀i, j)). Then,
with any real constant δ, the following inequality holds

P
(
|Lclocal

(
{|ψ⟩i}

M
i=1, {U(z j,θ) |0⟩}Mj=1

)
−Lc̃(Ns )

local

(
{|ψ⟩i}

M
i=1, {U(z j,θ) |0⟩}Mj=1

)
|

≥

√
2M
δ

√
1 − g

Ns
+

(1 − g)2

4N2
s g
+

1 − g
2Ns
√
g

)
≤ δ.

(3.12)

Proposition 12 suggests that the approximation error is
bounded above by O(

√
M/Ns) under the condition M ≫ 1 and

Ns ≫ 1. Combining this with Observation 11, it is implied
that the approximation error due to the finite number of shots
Ns and training data M is bounded above by about O(M−1/Nz ) +
O

(√
M/Ns

)
, where Nz is a latent dimension.

Then, we consider the average approximation error due to the
number of shots by numerical simulations. Again, we employ
the hardware efficient ansatz shown in Fig. 1 of Sec. 3.2.1. The
purpose of the numerical simulation is to check the dependence
of the following expectation value on the number of shots Ns and
training data M.

Ez̃,z∼U(0,1)Nz

[∣∣∣∣∣J c̃(Ns )
local

ξ̃,η̃;ξ,η
(z̃, θ̃ : z,θ; M) − Jclocal

ξ̃,η̃;ξ,η
(z̃, θ̃ : z,θ; M)

∣∣∣∣∣] ,
(3.13)

where J c̃(Ns )
local denotes the proposed loss defined in Eq.(3.8). As in
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Section 3.2.1, we approximate the expectation with respect to the
latent variables z, z̃ by Monte Carlo calculations. Also, we ran-
domly choose fixed parameters ξ,η,θ, ξ̃, η̃, θ̃ prior to the simu-
lation.

Simulation results are depicted in Fig. 4, which shows the fol-
lowing phenomena.
• In the range of small training data M, the approximation er-

ror is roughly proportional to M−1/2.
• In the range of big training data M, the approximation error

takes
√

c1 ln M + c2 with constants c1 and c2.
• The dependence on the number of shots Ns is roughly pro-

portional to N−1/2
s .

Of these, the dependence on the number of shots Ns would be due
to the central limit theorem. We also roughly explain the depen-
dence on the number of training data in Appendix A.1.

The analysis here indicates that it is necessary to properly bal-
ance the number of shots and the samples to reduce the approxi-
mation error.
3.2.3 Qubit and training data number dependence of gradi-

ent
In this section, we numerically confirm that the proposed al-

gorithm avoids the vanishing gradient problem. As mentioned
in Sec.2.3, the cost function built from the global measurements
suffer from the curse of dimendionality, that is known as barren
plateaus(BPs) phenomenon for variational quantum algorithms,
i.e., the gradients of the cost function vanish exponentially with
the number of qubits n. To avoid it, we built the cost function
from local measurements in the proposed loss. Here, we see the
qubit number dependence of the variance in the partial deriva-
tive of the cost function, which is common way to characterize
the BPs. We calculated the expectation of the variance of the
proposed loss, Eq.(2.10), based on the training data {|ψi⟩}

Nr
i=1 and

the sampled data from the generative model {U(z j, θ) |0⟩}
Nr
j=1. The

structure of ansatz of the generative model {U(z j, θ) |0⟩}
Nr
j=1 was

same as Fig. 1, and we numerically evaluated the following value:
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Fig. 4 Typical simulation result of the approximation error of the proposed
loss due to the number of shots defined in Eq.(3.13). The dependence
on the number of training data M with various latent dimensions are
shown. For reference, we add the curve of M−1/2 as dotted line. The
fitting result of the points Ns = 128 with the curve is added as dashed
line.

Vξ,η,θ,z

[
∂

∂θ
Lclocal

(
{|ψ⟩i}

M
i=1, {UNL ,ξ,η(z j,θ) |0⟩}Mj=1

)]
, (3.14)

where z is sampled from the uniform distribution U(0, 1) and
parameters ξ,η,θ are randomly chosen. More concretely, the
optimal transport loss is calculated by the ground cost with stat-
evector simulator. The derivative of the optimal transport loss
is calculated based on the derivative of the ground cost, which is
obtained by parameter shift rule [38]. The expectation of the vari-
ance is approximated by Monte Carlo calculations with randomly
chosen z,ξ,η and θ . The derivatives is taken with respect to θ1,1.
We show the numerical simulation result based on i) Global mea-
surements represented by Eq.(2.9) and ii) Local measurements
represented by Eq.(2.10).

The fixed training data sets {|ψi⟩}
Nr
i=1 are prepared as follows;

|ψ⟩i = W ′V ′2(ζ i
2)W ′V ′1(ζ i

1) |0⟩⊗n

where ζ i
1 = {ζ

i
1, j}

n
j=1 and ζ i

2 = {ζ
i
2, j}

n
j=1 are n-dimensional param-

eters. These parameters ζ i
ℓ, j ∈ [0, 2π] are randomly chosen from

the uniform distribution and fixed during Monte Carlo calcula-
tion. The operators W ′, V ′1 and V ′2 are defined as follows:

W ′ =
n−1∏
i=1

CX j, j+1, V ′1(ζ i
1) =

n∏
j=1

R j,Y (ζ i
1, j), V ′2(ζ i

2) =
n∏

j=1

R j,Z(ζ i
2, j),

(3.15)

where CX j,k denote a controlled X gate, which act X gate on k-
th bit with j-th bit as the control bit. R j,Y and R j,Z denote single
qubit Pauli rotations around x and y axes, respectively.

The results of the numerical simulation in the case of M = 8
are shown in Fig. 5(a) and (b). The clear exponential decays in
variance of gradient are observed for Global cost regardless of
NL. In contrast, for Local cost shallow circuits exhibit approxi-
mately constant scaling for n ≥ 10, and deep circuits also exhibit
slower scaling than Global cost and keep larger variance even in
n ≥ 8. These observations coincide with previous report [36]
that analyses the commonly used cost function. It is reasonable
since the cost function used in [36] is equivalent to single ground
cost of our framework. The result implies that the ground cost
built from local measurement avoids gradient vanishing even for
quantum optimal transport loss.

In addition to the qubit number dependence, the training data
number dependence may also be critical for proposed algorithm.
The simulation results of the training data number dependence in
the case of n = 14 are shown in Fig. 5(c). In the figure, the points
represent the numerical results and the dotted lines represent the
scaling curve M−x. Each curves are well fitted by M−x where x is
around 1. It implies that the training number dependence almost
obey the simple statistical scaling. Therefore, the proposed algo-
rithm would be scaled though the training sample number should
be appropriate for efficient learning.

4. Demonstration
In this section, we present anomaly detection based on the cost

function defined in Eq.(2.3) as a proof-of-concept of the pro-
posed loss function. Anomaly detection is a task that one judges
whether test data x(t) is anomalous(rare) data or not based on the
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Fig. 5 The simulation results on the variance in the gradient of the cost function. The scaling in the qubit
number n of (a) Global cost defined in Eq.(2.9) and (b) Local cost defined in Eq.(2.10), and (c) in
the training data number M of Local cost. Each curve in the figures represents different number of
layers NL. The clear exponential decay is observed in (a), but is avoided in (b). The polynomial
decay (≃ M−1) is observed in (c), and it implies simple statistical scaling.

knowledge learned from past training data xi, (i = 1, 2, . . . ,M).
The feature of this task compared to typical classification is the
large bias between the number of normal and anomalous(rare)
data, i.e. almost all past data is normal. Therefore, typical clas-
sification schemes are not suitable to solve this task, and other
schemes have been widely studied [44].

In the field of quantum technology, such as quantum compu-
tation, quantum communication and quantum metrology, it is re-
quired to control quantum states accurately. However, quantum
states are quite fragile and easily disturbed even by trivial en-
vironmental fluctuation. To detect such noise quickly and re-
move damaged state is key for the practical application of quan-
tum technology. Previous anomaly detection schemes rely on the
classical data obtained by quantum state measurement [45, 46].
To naively identify a quantum state, which is known as quan-
tum tomography, requires exponentially large measurement in the
number of qubit. In contrast, we propose an anomaly detection
scheme with direct processing of quantum states and the mea-
surement number is much reduced. More concretely, we use the
generative model that learns the quantum data source from input
quantum dataset. In other words, we can generate arbitrary quan-
tum circuit with a fixed depth circuit in principle, although off
course the precision heavily depends on the expressibility of the
circuit. A that imitates a deep circuit

In general, anomaly detection is performed in the following
three steps [47].
( 1 ) (Distribution estimation): Construct a probability distribu-

tion model of normal data based on past data, a large major-
ity of which is normal.

( 2 ) (Anomaly score design): Define an Anomaly Score (AS)
based on the probability distribution model of normal data.

( 3 ) (Threshold determination): Set a threshold of AS for judging
whether anomaly or not.

Of these steps, the probability distribution model in Step 1
is estimated by the learning algorithm presented in Sec. 3.1.
Anomaly score design in Step 2 is processed by the similar way as
AnoGAN [48] in classical machine learning. Namely, we define a
loss functionL(G(z,θ) |0⟩ , |ψ(t))⟩ calculated by the test data |ψ(t)⟩

and the sample U(z, θ̄) generated by the learned probability dis-
tribution model, and take the minimum value in latent variable z

as AS:

(Anomaly Score) = min
z
L(U(z, θ̄) |0⟩ , |ψ(t)⟩). (4.1)

As the loss function L, we use the local ground cost
clocal(|ψ(t)⟩ ,U(z, θ̄)) defined in Eq.(2.10) below, for simplicity.
The derivative in z is calculated for minimizing the loss function
with respect to z, by employing the parameter shift rule similarly
as the derivative in θ.

Algorithm 2 Algorithm for Anomaly Detection
Input: A trained quantum circuit U(z, θ̄) , test data {|ψ(t⟩}

Output: Anomaly Score
1: Initialize z

2: repeat
3: Calculate the ground cost L from {U(z, θ̄)} and |ψ(t)⟩ as in Eq.(2.10)
4: Calculate the gradients

{
∂L
∂zk

}Nz

k=1
with parameter shift rule [38, 39].

5: Update z by using the gradients
{
∂L
∂zk

}Nz

k=1
6: until convergence

The numerical experiments of Algorithm 2 are shown in
Fig. 6. The concept of the model used here is same as previ-
ous sections, but we introduce so-called alternated layered ansa-
taz (ALT) into ansatz, that is more favorable than hardware ef-
ficient ansatz (HEA) (shown in Fig. 1) from the aspect of the
gradient vanishing phenomenon [35]. Fig. 6 depicts the Bloch
sphere spanned by |0⟩⊗10 and |1⟩⊗10, and θ (ϕ) indicate the angle
from z (x)-axis in the Bloch sphere. Training data {|ψ j⟩}

Nr
j=1, that

corresponds to the normal data, is depicted in (a). It is represented
as follows;

|ψ j⟩ = cos(
π

2
∆θ j) |0⟩ + e2πi∆ϕ j sin(

π

2
∆θ j) |2n − 1⟩ , (4.2)

where n is the number of qubit, ∆θ j and ∆ϕ j are the deviation
of θ and ϕ. ∆θ j and ∆ϕ j are sampled from the normal distribu-
tion N(µ, σ) and the uniform distribution U(a, b), where µ and
σ is the average and the variance, respectively. We selected
(µ, σ, a, b) = (0, 0.02, 0, 0.2) for n = 10. This corresponds to
the two dimensional distribution, hence we set the dimension of
latent variable as Nz = 2 for our model. After the training phase,
we input various test data {|ψ(t)⟩}, shown in (b), that is represented
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as follows;

|ψ(t)⟩ = cos(
π

2
θ(t)) |0⟩ + e2πiϕ(t)

sin(
π

2
θ(t)) |2n − 1⟩ , (4.3)

where θ(t) ∈ {−0.5,−0.4, · · · , 1.5}, and ϕ(t) ∈

{0,±0.1,±0.2, · · · ,±1}.
The resultant anomaly score (AS) for each test data is shown

in (c). We see intuitively reasonable results, i.e. AS clearly
depends on the distance between the training data and the test
data. Therefore, we can perform anomaly detection as follows;
if we set the threshold as AS = 0.4, the data corresponding to
0.35 ≤ θ(t)/π ≤ 0.7 and −0.15 ≤ ϕ(t)/π ≤ 0.35 in Fig. 6 is normal,
and others are anomaly. Note that this dataset cannot be learned
by conventional anomaly detection scheme [45, 46] since the en-
semble average of the data becomes single mixed state, not the set
of pure states, and it is necessary to directly process the quantum
state for appropriate learning, not via classical data.

In addition to that, the number of shot for this experiment is
also notable. In this section, we use QASM simulator for the
numerical simulation. The shot number is Ns = 1000 for each
measurement in training phase, and Ns = 50 for anomaly detec-
tion task, even the case of n = 10. The dimensionality of n = 10
system’s Hilbert space is 1024. It indicates that small number of
shot is enough to perform anomaly detection, compared to the
dimensionality of the Hilbert space, once we have model learn
normal state appropriately. This is a strong advantage for practi-
cal situation.

Finally, we compare the learning curve with different settings.
Typical learning curves are shown in Fig. 7. The blue plots, which
are labeled ”local”, represents the case that ”the cost function is
calculated based on the local observable (Eq. 2.10), and the ansatz
is ALT (L-ALT)”. On the other hands, the orange plots, which are
labeled ”global”, represents the case that ”the cost function is cal-
culated based on the global observable (Eq. 2.9), and the ansatz is
HEA (G-HEA)”. Note that both plotted costs are calculated based
on global cost. Concretely, a plot of ”local” indicates the cost cal-
culated based on global cost with the parameter at each iteration,
that is trained with the cost calculated based on local cost, hence
we can directly compare them. We observe that L-ALT has clear
advantage over G-HEA in terms of fast convergence. This result
coincides with that of Sec. 3.2.3, indicating the advantage of the
local cost. In addition to the convergence speed, the final cost of
L-ALT is lower than that of G-HEA. However, whether training is
success or not heavily depends on the random seed, which deter-
mines the arrangement of rotation gates in ansatz, and we could
not observe the successful training with all cases, even with local
cost. Investigating efficient way to train the model is crucial, and
we leave it as future work.

5. Conclusion
In classical machine learning, many generative models are vig-

orously studied, but there are few studies on quantum generative
models for quantum data. This paper would be one of the first step
for building such a quantum generative model. In this paper, we
proposed a loss function for such a generative model by employ-
ing the optimal transport, which have the properties of statistical
divergence. Also, we numerically and analytically investigated

the properties of the proposed loss, and confirm that the approx-
imation error of the proposed loss is almost independent of the
number of qubit, the error can be reduced by increasing the num-
ber of shots and training data, and the vanishing gradient problem
can be avoided. In addition, we performed the demonstration of
anomaly detection as a proof-of-concept.
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Appendix

A.1 Rough explanation on the shape of Fig.4
Here, we give the rough explanation of the dependence of the

mean approximation error on the number of training data, pre-
sented in Fig.4 of Sec.3.2.2. Throughout this section, we assume
that the number of shots Ns is sufficiently large to hold the asymp-
totic theory.

We first focus on the case of small number of training data M,
where the approximation error behaves like M−1/2. In this case,
the training data {xi}

M
i=1 would be well separated from each other

and the optimal transport plan {πi, j}
M
i, j=1 is not expected to be af-

fected by the number of shots Ns. In most cases, the number of
non-zero elements of optimal transport plan A = {(i, j)|πi, j > 0} is
M and the value of those are 1/M.

The estimated value of the ground cost clocal,i, j of Eq.(3.3) with

Ns shots is given by c̃(Ns)
local,i, j =

√
1
n
∑n

k=1
1

Ns

∑Ns
s=1 X(s)

i, j,k, where X(s)
i, j,k

are random variables following the Bernoulli distribution with
probability 1 − p(k)

i, j . Due to the central limit theorem, the inside

of the root Y (s)
i, j =

1
n
∑n

k=1 X(s)
i, j,k asymptotically converge to a nor-

mal distribution
√

Ns(
∑Ns

s=1 Y (s)
i, j /Ns − µi, j) ∼ N(0, σ2

i, j) with mean

µi, j =
∑n

k=1(1− p(k)
i, j ) and variance σ2

i, j =
∑n

k=1(1− p(k)
i, j )p(k)

i, j . Thus,
delta method tells us that the approximation error of the ground

cost follows
√

Ns

(
c̃(Ns)

local,i, j − clocal,i, j

)
∼ N

(
0,

σ2
i, j

4µi, j

)
.

Assume that the means and variances are almost the same for
all the components, i.e., µi, j ≈ µ, σi, j ≈ σ ∀i, j, the approxima-
tion error of the optimal transport loss due to the number of shots
can be written as

Lc̃(Ns )
local
− Lclocal =

1
M

∑
(i, j)∈A

(
c̃(Ns)

local,i, j − clocal,i, j

)
∼ N

0, ∑
(i, j)∈A

σ2
i, j

4Nsµi, jM2


≈ N

(
0,

σ2

4NsµM

)
.

(A.1)

Thus the approximation error with small number of training data
behaves like (NsM)−1/2 under the condition shown here.

On the other hand, behavior of the approximation error in the
range of large number of training data M is explained by the the-
ory of the extreme value distribution [49]. In the case of large
number of training data, it would be expected that there are many
ground costs clocal,i, j with almost the same value. As an extreme
case, consider the case where all ground costs have a common
constant value, clocal,i, j = c, ∀i, j. Again assume that the number
of shots Ns is sufficiently large, then the ground cost c̃(Ns)

local,i, j fol-

lows a normal distribution, which we denote as N
(
c, σ

2

Ns

)
. Then,

using i.i.d random numbers {Xi, j}
M
i, j=1 which follow a normal dis-

tribution N
(
0, σ

2

Ns

)
, the approximation error can be written as

Lc̃(Ns )
local
− Lclocal ≈ min

{πi, j}
M
i, j=1

M∑
i, j=1

Xi, jπi, j,

subject to
M∑

i=1

πi, j =
1
M
,

Ng∑
j=1

πi, j =
1
Nr
, πi, j ≥ 0.

(A.2)

Now we approximate this minimization by greedy algorithm, i.e.,
consider first obtaining the minimum value Xi1 , j1 from the M2

components, and then the second minimum value Xi2 , j2 from the
rest (M−1)2 components other than i-th row and j-th column, and
so on. Denoting the cumulative distribution function of a random
variable Xi, j as F(x), the distribution of the minimum value of the
k data can be written as

G(x, k) = 1 − (1 − F(x))k,

p(x, k) =
dG(x, k)

dx
= k

dF(x)
dx

(1 − F(x))k−1.
(A.3)

Then the probability density at which x1, x2, x3, . . . , xM are ob-
tained from the greedy algorithm is given as

p(x1, x2, . . . , xM)

= p(x1,M2)
p(x2, (M − 1)2)θ(x2 − x1)

1 −G(x1, (M − 1)2)
p(x3, (M − 2)2)θ(x3 − x2)

1 −G(x2, (M − 2)2)

× · · · ×
p(xM , 12)θ(xM − xM−1)

1 −G(xM−1, 12)

=

M∏
k=1

k2

2k − 1
p(xk, 2k − 1)θ(xk − xk−1),

(A.4)

where θ(x) denotes a step function, and we set x0 = −∞ in the
last expression. Finally, we approximate this expression by the
mode. Then, from the theory of the extreme value distribution,
the mode of p(x, k) can be written as xmode ≈ −σ

√
2 ln M/Ns and

we reach

Lc̃(Ns )
local
− Lclocal ≈

σ
√

Ns

 1
M

M∑
k=1

√
2 ln(2k − 1)


≈

σ
√

Ns

√
2 ln(2M − 1).

(A.5)

Thus we can roughly understand that the approximation error
with large number of training data behaves like N−1/2

s
√

ln(M).
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