
IPSJ SIG Technical Report

Entanglement Analysis of Quantum Programs in Q#

Shangzhou Xia1,a) Jianjun Zhao1,b)

Abstract: Quantum entanglement plays a crucial role in quantum computing. Entangling information has important
implications for understanding the behavior of quantum programs and avoiding entanglement-induced errors. Entan-
glement analysis is a static code analysis technique that determines which qubit may entangle with another qubit and
establishes an entanglement graph to represent the whole picture of interactions between entangled qubits. This pa-
per presents the first static entanglement analysis method for quantum programs developed in the practical quantum
programming language Q#. Our method first constructs an interprocedural control flow graph (ICFG) for a Q# pro-
gram and then calculates the entanglement information not only within each module but also between modules of the
program. The analysis results can help improve the reliability and security of quantum programs.

Keywords: Entanglement analysis, quantum programming, Q#

1. Introduction
In recent years, with the development of quantum computers,

more and more quantum programming languages and environ-
ments have been developed to support programming quantum
computers. However, since quantum programming requires ex-
ploiting unique quantum properties such as superposition and en-
tanglement, it is more challenging than classical programming,
which makes understanding the behavior of quantum programs
very difficult. There is an urgent need, therefore, to develop meth-
ods and tools to support the analysis of quantum programs effi-
ciently and automatically.

Quantum entanglement plays a crucial role in quantum com-
puting. Entangling information has important implications for
understanding the behavior of quantum programs and avoiding
entanglement-induced errors. The quantum software at this stage
is still in a mixed state of classical and quantum. During the pro-
gram execution, it is inevitable that some quantum bits in the
quantum software need to be measured. Due to the existence
of entanglement phenomena, performing measurements without
systematic entanglement information may lead to the destruction
of the state of other quantum bits in the program as well, which
leads to program errors and information loss. In addition, due to
the no-cloning principle of quantum computing, ancilla qubits are
often used to assist the operation during the program execution.
Therefore, it is also one of the goals of entanglement analysis
to ensure that the ancilla qubits are no longer entangled with the
system after the auxiliary operation is completed.

Entanglement analysis is a static analysis technique that deter-
mines which qubit may entangle with another qubit in a quantum
program. Several entanglement analysis methods [12, 13, 8, 19,
9, 14] have been proposed to support different types of quantum

1 Kyushu University, Fukuoka, Japan
a) xia.shangzhou.218@s.kyushu-u.ac.jp
b) zhao@ait.kyushu-u.ac.jp

programming languages, but no entanglement analysis method
for supporting the practical quantum programming language Q#
has been available until now. As the first step toward the efficient
analysis of entanglement information in practical quantum pro-
grams, this paper presents the first static entanglement analysis
method for quantum programs developed in the practical quan-
tum programming language Q#. Our method first constructs an
interprocedural control flow graph (ICFG) for a Q# program and
then calculates the entanglement information within each module
and between modules of the program. Our method establishes an
entanglement graph to represent the whole picture of interactions
between entangled qubits in the program. The analysis results can
help improve the reliability and security of quantum programs.

The rest of the paper is organized as follows. Section 2 in-
troduces some basic concepts of quantum computation and Q#.
Section 3 presents an example to illustrate how the entanglement
analysis algorithm works. Section 4 presents the algorithm for
entanglement analysis at both intraprocedural and interprocedu-
ral levels. Related work is discussed in Section 5, and conclusion
is given in Section 6.

2. Backgroud Information
We briefly introduce some basics of quantum computing [11]

and the quantum programming language Q#.

2.1 Basic Concepts of Quantum Computation
2.1.1 Quantum Bit

A classical bit is a binary unit of information used in classical
computation. It can take two possible values, 0 or 1. A quantum
bit (or qubit) is different from the classical bit in that its state is
theoretically represented by a linear combination of two bases in
the quantum state space (represented by a column vector of length
2). We can define two qubits |0⟩ and |1⟩, which can be described
as

© 2022 Information Processing Society of Japan 1

Vol.2022-QS-7 No.19
2022/10/28

IPSJ SIG Technical Report

|0⟩ =
10
 and |1⟩ =

01

Qubits |0⟩ and |1⟩ are the computational basis state of the qubit.
In other words, they are a set of the basis of quantum state space.

Any qubit |e⟩ can be expressed as a linear combination of two
bases:

|e⟩ = α|0⟩ + β|1⟩

where α and β are complex numbers, and |α|2 + |β|2 = 1. This
restriction is also called normalization conditions.
2.1.2 Quantum Gate and Circuit

Just as a logic gate in a digital circuit can modify the state of
a bit, a quantum gate can change the state of a qubit. A quan-
tum gate can have only one input and one output (transition of a
single quantum state), or it can have multiple inputs and multiple
outputs (transition of multiple quantum states). The number of
inputs and outputs should be equal because the operators need to
be reversible, which means no information can be lost in quantum
computing.

NOT Gate. The NOT gate works on a single qubit, which can ex-
change the coefficients of two basis vectors: NOT (α|0⟩ + β|1⟩) =
α|1⟩ + β|0⟩. The quantum NOT gate is an extension of the NOT
gate in classical digital circuits.

A single input-output quantum gate can be represented by a
2 × 2 matrix. The state of a quantum state after passing through
the quantum gate is determined by the value of the quantum state
vector left multiplied by the quantum gate matrix. The quantum
gate matrix corresponding to the NOT gate is

X =
0 1
1 0

.
Therefore, the result of a qubit passing a NOT gate can be denoted
as

X
α
β

 = 0 1
1 0

 α
β

 = β
α

.
Hadamard Gate. The Hadamard gate also works on a single qubit,
which can decompose existing quantum states according to its co-
efficients as:

H(α|0⟩ + β|1⟩) = α+β√
2
|0⟩ + α−β√

2
|1⟩.

This can be represented by a matrix:

H =
√

2
2

1 1
1 −1

.
Although the Hadamard gate is not directly related to the AND
and OR gates in classical digital circuits, it has important appli-
cations in many quantum computing algorithms.
2.1.3 Controlled NOT Gate

Computer programs are full of conditional judgment state-
ments: if so, what to do, otherwise, do something else. In quan-
tum computing, we also expect that the state of one qubit can
be changed by another qubit, which requires a quantum gate with
multiple inputs and outputs. The following is the controlled-NOT
gate (CNOT gate). It has two inputs and two outputs. If the input
and output are taken as a whole, this state can be expressed by

α|00⟩ + β|01⟩ + γ|10⟩ + θ|11⟩,

where |00⟩, |01⟩, |10⟩, |11⟩ are column vectors of length 4, which
can be generated by concatenating |0⟩ and |1⟩. This state also
needs to satisfy the normalization conditions, that is |α|2 + |β|2 +
|γ|2 + |θ|2 = 1.

The CNOT gate is a two-qubit operation, where the first qubit
is usually referred to as the control qubit and the second qubit as
the target qubit. When the control qubit is in state |0⟩, it leaves the
target qubit unchanged, and when the control qubit is in state |1⟩,
it leaves the control qubit unchanged and performs a Pauli-X gate
on the target qubit. It can be expressed in mathematical formulas
as

CNOT (α|00⟩ + β|01⟩ + γ|10⟩ + θ|11⟩) = α|00⟩ + β|01⟩ + γ|11⟩ + θ|10⟩.

The action of the CNOT gate can be represented by the matrix:

X =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2.2 Quantum Entanglement

Quantum systems may exhibit entanglement [7, 15], a quan-
tum mechanical phenomenon. A state is considered entangled if
it cannot be broken down into more basic parts. The existence
of entanglement relations makes mutually independent qubit sys-
tems connected, thus enabling the information interaction of dif-
ferent qubit systems. At the same time, the existence of entangle-
ment relations among systems makes it impossible to be consid-
ered separable systems. When a measurement is made on some
qubits in the system, it affects the state of other qubits.

Definition 1 For a state |φ⟩ of a set S of qubits and a partition
(A, B) of S , (A, B) is entangled iff there does not exist two states
|φA⟩ and |φB⟩ of the respective parts A and B such that |φ⟩ = |φA⟩

⊗ |φB⟩. (A, B) is separable iff (A, B) is not entangled.
For example, a GHZ state

√
2

2 (|000⟩+|111⟩) is entangled. When
the result of observing the first qubit is 0, the other qubits must all
be 0. Therefore, the measurement of some qubits in the absence
of system entanglement information leads to the destruction of
the system state in which it is located, triggering bugs and infor-
mation loss of the program.

For a state |φ⟩ of a set S of qubits and a partition (A, B,C) of
S . The following are the three properties of the entanglement
relation:

• Transitive: If (A, B) is entangled, (B,C) is entangled, then
(A,C) is entangled.

• Symmetric: If (A, B) is entangled, then (B, A) is entangled

• Eliminable: If (A, B) is separable and for an operation U that
U(|φA⟩ ⊗ |φB⟩) is entangled, then there must exist operation
V that VU(|φA⟩ ⊗ |φB⟩) is separable.

2.3 Quantum Programming and Q#
Quantum programming is the process of designing and build-

ing executable quantum computer programs to achieve a partic-
ular computing result [10, 18]. A quantum program consists of

© 2022 Information Processing Society of Japan 2

Vol.2022-QS-7 No.19
2022/10/28

IPSJ SIG Technical Report

blocks of code, each of which contains classical and quantum
components. Quantum operations can be divided into unitary op-
erations (reversible and preserve the norm of the operands) and
non-unitary operations (not reversible and have probabilistic im-
plementations). A quantum computer program uses a quantum
register of qubits to perform quantum operations and a classical
register of classic bits to record the measurements of the qubits’
states and apply quantum operators conditionally [6]. Therefore,
a typical quantum program usually consists of two types of in-
structions (or statements). One is called classical instructions
that operate on the state of classical bits and apply conditional
statements. Another is called quantum instructions that operate
on the state of qubits and measure the qubit values.

Q# [16] is a scalable, multi-paradigm, domain-specific quan-
tum programming language developed by Microsoft for quantum
computing. Q# allows users to write code that can be executed on
machines of various computing capabilities. We can use it to sim-
ulate a few qubits on a local machine or thousands of qubits for
enterprise-level applications. Q# is a multi-paradigm program-
ming language that supports both functional and imperative pro-
gramming styles. Q# can be used to write algorithms and code
snippets that execute on quantum processors. Figure 1 shows an
example Q# program, which will be described in Section 3 in
detail.

3. Example
We next present an example to illustrate how our entanglement

analysis works. Figure 1 is a quantum program written in Q#.
The main body of the program is composed of the QFT algo-
rithm and the GHZ algorithm. Since researchers may modify and
reorganize the existing algorithm in the process of developing the
algorithm, we construct the structure of calling the GHZ algo-
rithm in the QFT algorithm.

Based on the three properties of entanglement introduced in
Section 2, we convert the entanglement relation into the struc-
ture of an entanglement graph. In the entanglement graph, nodes
represent qubits in a superposition state, and edges represent en-
tanglement relations. Two nodes in an entanglement graph are
entangled if they are connected. Therefore, we can modify the
entanglement graph step by step according to the interprocedu-
ral control flow graph (ICFG). The entanglement relation of the
whole program will be generated automatically at the end of the
ICFG-based analysis.

First, our analysis algorithm constructs the corresponding
control-flow graph (CFG for short) for each module (function
or operation) in the program. Due to the nature of quantum
operations, we transform the statements in Q# into

line: tuple(operation, object).

Among them, since the Q# language allows the structure of quan-
tum arrays, the use statement has the option to create the number
of qubits when creating a qubit, so the use statement is trans-
formed to

line: tuple(use, name, number).

Based on the call relationship, we generate the corresponding in-

1 namespace NamespaceQFT {

2 open Microsoft.Quantum.Intrinsic;

3 open Microsoft.Quantum.Diagnostics;

4 open Microsoft.Quantum.Math;

5 open Microsoft.Quantum.Arrays;

6

7 operation GHZ(target:Qubit[]): Unit {

8 H(target[0]);

9 Controlled X(target[0], target[1]);

10 Controlled X(target[1],target[2]);

11 }

12

13 operation initialqubit(target:Qubit) : Unit {

14 // initial qubit state

15 }

16

17 @EntryPoint()

18 operation QFTfor3qubits() : Unit {

19 use qs=Qubit[3];

20 initialqubit(qs[0]);

21 initialqubit(qs[1]);

22 initialqubit(qs[2]);

23

24 H(qs[0]);

25 Controlled R1([qs[1]], (PI()/2.0, qs[0]));

26 Controlled R1([qs[2]], (PI()/4.0, qs[1]));

27

28 use newq=Qubit[1];

29 GHZ([qs[1],qs[2],newq]);

30

31 H(qs[1]);

32 Controlled R1([qs[2]], (PI()/2.0, qs[1]));

33

34 H(qs[2]);

35

36 SWAP(qs[2], qs[0]);

37 }

38 }

Fig. 1 An example Q# program.

terprocedural control flow graph (ICFG for short). Then, we clas-
sify the state of a qubit into the classical state (denoted by C) and
the quantum state (superposition state) (denoted by Q) accord-
ing to whether the qubit state is in the superposition state or not.
At the same time, due to the uncomputation mechanism, we cre-
ate a stack data structure for the Q to record the operations. The
following table indicates how the C state and Q state are trans-
formed.

C → Q
Hadamard(C) := Q, {H}

CNOT(C, C) := (Q, Q), ({Cline}, {Nline})

Q → C If the stack of a qubit is empty, or there is no H and Nline

For the Q# code in Figure 1, the program starts executing from
the Entrypoint() statement and creates three qubits with C
states (|0⟩ by default) at the time of the use statement (line 20).
When passing through the initialqubit function, some qubits
become Q states (superposition states), which may be assumed
to be (Q, C, C). At this time, qs[0] becomes the Q state, so the
Uinit operation is stored in the corresponding stack (if there is a
specific operation, the specific operation is pushed into the stack).

When the H operation (line 25) is performed, it is put into the
stack of qs[0]. If H is the inverse of Uinit, remove Uinit. At
this point, the stack of qs[0] is empty, qs[0] changes from the
Q state back to the C state, and deletes the node in the graph. If H
is not the inverse of Uinit, push H onto the stack.

In the execution of the cphase (CP) operation (line 26), the
statement has no effect on the entanglement relation because CP

© 2022 Information Processing Society of Japan 3

Vol.2022-QS-7 No.19
2022/10/28

IPSJ SIG Technical Report

Fig. 2 The intraprocedural analysis based on the CFGs for the GHZ operation and QFTfor3qubits oper-
ation.

is not a state transformation operation, and the operation target is
in the C state.

When executing the GHZ statement (line 30), we can use the
result of the GHZ transformation and the entanglement relation-
ship graph. Since three inputs are required when calling the GHZ
function, we create the inputs (a,b,c) with the states (Q, Q, Q)
for the three qubits. The same processing is used for the GHZ
internal operations, which generate the corresponding stack and
graph.

When GHZ is called, an alias relationship between the input
qubits (qs[1] and qs[2]) and the (a,b,c) is created:

{ qs[1]↔ a, qs[2]↔ b, newq↔ c }.

Then the aliasing relation is lifted in turn, e.g., for qs[1]. Now

the stack operation of a is passed to qs[1]. In the process of stack
passing, as in the judgment of entering the stack, it is necessary
to detect whether the top of the stack of qs[1] is the inverse op-
eration of the bottom of the stack of a. The qs[0] in the example
is the C state, and there is a state transition operation H in the
stack of a, so it is possible for qs[0] to inherit the stack oper-
ation directly. Also, we connect the point connected to a in the
entanglement graph to the node of qs[1] and delete the node of
a, as shown in Figure 3.

For multiple calls to the GHZ function, we only need to perform
the stack merge and graph transformation instead of repeatedly
executing the GHZ function. The operations in the statements from
line 32 to line 35 are not inverse operations on the top of the target
stack and therefore enter the stack normally. Because the state-

© 2022 Information Processing Society of Japan 4

Vol.2022-QS-7 No.19
2022/10/28

IPSJ SIG Technical Report

Fig. 3 The interprocedural analysis based on the ICFGs for calling the GHZ operation.

ment in line 37 performs a SWAP operation, the stacks of qs[0]
and qs[2] are swapped, as well as the names of the nodes in the
graph. The final entanglement relation returned by our algorithm
is shown in Figure 2.

4. Entanglement Analysis
We next present our entanglement analysis for Q#. Sections 4.1

and 4.2 introduce the computation mechanism and the classical
and quantum states. Section 4.3 introduce the intraprocedural
entanglement analysis. Section 4.4 extends the intraprocedural
analysis to interprocedural analysis.

4.1 Uncomputation Mechanism
The uncomputation mechanism is a unique mechanism of

quantum computing. Since quantum operations are unitary oper-
ations, for each step of the operation, there must be a correspond-
ing inverse operation. Uncomputation is the mechanism by which
an operation cancels out when the operation and the correspond-
ing inverse operation occur at the same time. The description
using the matrix is that the multiplication of two operation ma-
trices results in an identity matrix. Due to the no-cloning nature
of qubits, the information in a qubit can only be used and can-
not be copied. Therefore, each step of the operation modifies the
information in the original qubit, and the uncomputation mecha-
nism is used to restore it after the execution of the operation in
order to ensure that the original information remains unchanged.
In addition to this, for the intermediate results of operations in
quantum programs, a new qubit is needed to save the result tem-
porarily, that is, the ancilla qubit, and the ancilla qubit needs to
be restored after the operation to ensure that the ancilla qubits

does not affect the program. This process also uses the uncom-
putation mechanism. For some common gate operations, their
corresponding inverse operations are shown in Table 1.

Table 1 Some quantum gates and their corresponding inverse gates.

Operation Inverse Operation
Hadamard Hadamard
NOT NOT
Phase(a) Phase(-a)
CNOT(a, b) CNOT(a, b)

Moreover, any unitary operation can be composed of these four
basic operations (Hadamard, NOT, Phase, Control). For the con-
venience of description, we use (H,N, P,Cline) to represent each
of them, as shown in Table 2. To align multi-qubit operations, we
use line to keep track of the operations.

Table 2 Examples for describing the quantum operations.

Operation Description
CCNOT(a, b, c) (Cline,Cline,N)
CPhase(a, b, c) (Cline,Cline, P)

The Q# language allows user-defined operations, such as the
GHZ function in the example in Figure 1. The syntactic structure
of the customs operations is shown in Figure 4. For the Name
function, Q# will have a corresponding adjoint Name function.
When the Name function and the adjoint Name function act on
the same qubit in succession, the uncomputation mechanism is
implemented to cancel each other out.

Due to the existence of the uncomputation mechanism, the en-
tanglement relationship in the program also has the possibility of

© 2022 Information Processing Society of Japan 5

Vol.2022-QS-7 No.19
2022/10/28

IPSJ SIG Technical Report

operation Name (Q : Qubit) : Unit is Adj+Ctl {

body(...) {

//opeartion

}

adjoint(...) {

//inverse operation

}

controlled(cs, ...) {

//controlled operation

}

}

Fig. 4 The template of Q# operation.

elimination. Therefore, in order to improve the accuracy of pro-
gram entanglement, the uncomputation mechanism cannot be ig-
nored. Due to the strict requirements of the uncomputation mech-
anism for the order of operations, we use the stack structure to
record operations. When an operation is pushed onto the stack,
first determine the relationship between the push operation and
the stack top operation. If they are mutually inverse operations,
the uncomputation mechanism is implemented to delete the stack
top operation. Otherwise, the push operation will be used as a
new stack top operation to be judged with the next push opera-
tion. For entangled statements, we also create a stack to record
entanglement operations, and when implementing the uncompu-
tation mechanism, delete the entanglement operations on the top
of the stack. When the stack is empty, it means that there is no
entanglement between qubits.

4.2 Quantum State System
In quantum computing, the state of a qubit will be only in

|0⟩, |1⟩, or superposition state, where only the superposition state
leads to uncertainty in the results. Therefore, we denote the su-
perposition state as the Q state and |0⟩ and |1⟩ as the C state. For
single-qubit operations, NOT and Phase gates do not implement
the transition between Q states and C states. Hadamard gates can
change C states to Q states. If the Hadamard gate changes the
Q state to the C state, it must satisfy the uncomputation require-
ment. For multi-qubit operations, the C state of the controlled bit
is changed to a Q state only if the control bit is a Q state. The
execution of the corresponding inverse operation can realize the
transition from Q state to the C state.

For quantum operations, the state that the target qubit is in af-
fects the results of the operation execution, especially the entan-
glement relation. By definition, the effect of entanglement arises
from the difference in the measurement results of the target qubit,
that is, the difference in the observation caused by the uncertainty
of the operation. Thus, Q and C states will produce different
results when faced with an entangled statement. In a quantum
program, the statements that produce entanglement relations can
be expressed as the relation between control and controlled bits.
When the control bit of an entangled statement is a C state, the
operation of the controlled bit is deterministic, and no branch-
ing occurs. If the control bit is in the Q state, the operation of
the controlled bit depends on the uncertainty of the Q state, and
thus the entanglement relation is expressed in the quantum state.
Therefore, the nodes in the entanglement graph are created, and

entanglement relations are constructed only when the qubit is in
the Q state.

When the state of a qubit is changed from a Q state to a C state,
the system can be converted to an expression of the tensor prod-
uct from the point of view of separability. Therefore, the qubit
will be disentangled from other qubits.

Table 3 show the state transitions for some single-qubit and
multi-qubit operations.

Table 3 State transition for single-qubit and multi-qubit operations.

Single-qubit Operation Multiple-qubit Operation
N(C) := C CNOT(C, Q) := (C, Q)
P(C) := C (global phase) CNOT(C, C) := (C, C)
H(C) := Q CNOT(Q, C) := (Q, Q)
H(H(C)) := C CNOT(Q, C) := (Q, Q)
H(Q1) := Q2 (Q1 , H(C) CP(C, Q) := (C, Q)
P(Q) := Q CP(Q, C) := (Q, C)
N(Q) := Q CP(C, C) := (C, C)

CP(Q, Q) := (Q, Q)
N: NOT gate, P: Phase gate, H: Hadamard gate

CNOT: Controlled NOT gate, CP: Controlled Phase gate

4.3 Intraprocedural Analysis
At the beginning of the quantum program execution, the cre-

ated qubit will default to the |0⟩ state, which is preset to the C
state. During the execution of the program (which can be repre-
sented by a control flow graph of the program), the state of the
qubit changes continuously. The qubit in the C state will not gen-
erate entanglement relations and will not affect subsequent oper-
ations. When a qubit in the C state encounters a state transition
operation, we modify its state to Q state and create a stack for
recording subsequent operations. At this point, the qubit in state
Q is already capable of generating entanglement relations, so we
create the corresponding nodes in the entanglement graph. When
the entanglement statement is executed, we connect the corre-
sponding nodes, thus transforming the entanglement relationship
into a connected relationship of the graph. When an operation
is executed at the qubit in state Q, if the corresponding stack is
empty or there is no N operation in the stack, the state of the qubit
is transformed to state C, and the node is deleted. Meanwhile,
due to the transferability of the entanglement relation, the entan-
glement relation previously constructed by this qubit is passed
on, so the original entanglement relation is passed on to the qubit
connected to it in the entanglement graph.

4.4 Interprocedural Analysis
We perform an interprocedural analysis to deal with the prob-

lem of calls between functions or operations. There are many
function-specific modular functions in existing quantum pro-
grams, such as GHZ, QFT, and Amplitude Amplification. For
modular functions used at high frequencies, we generate the cor-
responding stack and entanglement graphs in advance. Unlike
regular processing, the Q state is sensitive to all quantum oper-
ations since the call to the function requires input. The Q state
behaves differently from the C state in the face of quantum oper-
ations. Therefore, we presuppose that all qubits of inputs are in

© 2022 Information Processing Society of Japan 6

Vol.2022-QS-7 No.19
2022/10/28

IPSJ SIG Technical Report

Fig. 5 An example for the interprocedural analysis

the Q state when processing the calling function. When the main
program executes to the calling function, we create an alias rela-
tionship between the qubit as input in the main function and the
qubit in the preprocessing calling function. Then the two stacks
are merged, and the stack in the calling function is stacked from
the bottom of the stack to the stack in the main function in order.
If the inverse operation is satisfied, the offset is performed, other-
wise, the stack is entered. For the entanglement graph, the qubit
of the main function inherits the concatenation relation in the call-
ing function and then removes the nodes in the calling function
graph.

If the qubit of the main function cannot maintain the Q state
after the merging of two stacks is finished, the concatenation re-
lation is passed, and the node is deleted.

In Figure 5, qubit q1 in the main operation is used as input to
call other operations. We construct the {q1↔a} alias relationship.
When the aliasing relation is lifted, the stack of a is merged into
the stack of q1. During the merge, operations C and B are un-
computed by the inverse operations in the call stack. Therefore,
at the end of the call, the stack of q1 retains only operations A
and D. For the entanglement graph, q1 inherits the concatenation
relation of a and removes node a.

5. Related Work
This section discusses some related work in the areas of entan-

glement analysis of quantum programs.
As a first step in dealing with entanglement analysis, Per-

drix [12] proposed a type system reflecting the entanglement and
separability between quantum bits that can approximate the en-
tanglement relations of an array of quantum bits. Prost and Zer-
rari [14] proposed a logical entanglement analysis method that
can deal with functional programming languages with higher-
order functions. They followed the idea of classical aliasing anal-
ysis proposed by Berger et al. [4] and applied it to quantum en-
tanglement analysis. Their logical framework can analyze more
complex quantum programs, but not quantum programs without
annotations and considering only pure quantum states. In [13],
Perdrix further proposed an approach to entanglement analysis
based on abstract interpretation [5]. In this approach, a correla-

tion between concrete quantum semantics and a simple quantum
programming language is established based on super operators,
abstract semantics is introduced, and approximations are justi-
fied. Honda [8] proposed an alternative approach to entanglement
analysis that considers the possibility of unitary gates withdraw-
ing entanglement and measurement operations that may separate
multiple quantum bits. The approach borrows some ideas from
the work of Perdrix and uses the stabilizer formalism [11, 1] to
improve the reasoning about the separability of quantum vari-
ables in quantum programs. However, these methods only an-
alyze fine-grained entanglement between specific quantum bits
and are therefore limited in their analytical scale to handle com-
plex programs, such as teleportation. In comparison to these
methods, our method aims to analyze the entanglement relations
in large-scale quantum programs written in Q#.

ScaffCC [9] is a compiler framework for quantum program-
ming language Scaffold [2]. ScaffCC supports conservative en-
tanglement analysis by identifying each pair of quantum bits that
may be entangled together in a program. The resulting entangle-
ment information can help programmers design algorithms and
perform debugging. ScaffCC uses data flow analysis techniques
to obtain entanglement information in programs. Our entangle-
ment analysis targets Q#, which is different from Scaffold in na-
ture that needs unique entanglement analysis techniques.

Recently, Yuan et al. [19] formalized purity as a central tool for
automatically reasoning about entanglement problems in quan-
tum programs. A pure expression is one whose evaluation is not
affected by measurements of qubits it does not own, meaning no
entanglement with any other expression in the computation. They
also designed Twist, the first language with a type system for rea-
soning about purity. Unlike their work, we focus on the analysis
of entanglement information in Q# quantum programming lan-
guage, which has more language features than Twist language.

6. Conclusion
This paper has presented a static entanglement analysis method

for quantum programs developed in the practical quantum pro-
gramming language Q#. To perform the analysis, our method
first constructs an interprocedural control flow graph (ICFG) for

© 2022 Information Processing Society of Japan 7

Vol.2022-QS-7 No.19
2022/10/28

IPSJ SIG Technical Report

a Q# program and then calculates the entanglement information
within each module and between modules of the program. We be-
lieve that our analysis approach can help improve the reliability
and security of quantum programs by uncovering entanglement-
induced errors in the programs.

As for future work, we would like to handle more language
features in Q#, such as classical-quantum mixed programs, and
apply our analysis approach to other quantum programming lan-
guages, such as Qiskit [3] and Cirq [17].

References
[1] Scott Aaronson and Daniel Gottesman. Improved

simulation of stabilizer circuits. Physical Review A,
70(5):052328, 2004.

[2] Ali J Abhari, Arvin Faruque, Mohammad J Dousti, Lukas
Svec, Oana Catu, Amlan Chakrabati, Chen-Fu Chiang,
Seth Vanderwilt, John Black, and Fred Chong. Scaf-
fold: Quantum programming language. Technical report,
Department of Computer Science, Princeton University,
2012.

[3] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis
Barkoutsos, Luciano Bello, Yael Ben-Haim, David
Bucher, Francisco Jose Cabrera-Hernández, Jorge
Carballo-Franquis, Adrian Chen, Chun-Fu Chen, Jerry M.
Chow, Antonio D. Córcoles-Gonzales, Abigail J. Cross,
Andrew Cross, Juan Cruz-Benito, Chris Culver, Salvador
De La Puente González, Enrique De La Torre, Delton
Ding, Eugene Dumitrescu, Ivan Duran, Pieter Eendebak,
Mark Everitt, Ismael Faro Sertage, Albert Frisch, An-
dreas Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan
Gomez-Mosquera, Donny Greenberg, Ikko Hamamura,
Vojtech Havlicek, Joe Hellmers, Łukasz Herok, Hiroshi
Horii, Shaohan Hu, Takashi Imamichi, Toshinari Itoko,
Ali Javadi-Abhari, Naoki Kanazawa, Anton Karazeev,
Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng,
Manoel Marques, Francisco Jose Martı́n-Fernández, Dou-
glas T. McClure, David McKay, Srujan Meesala, Antonio
Mezzacapo, Nikolaj Moll, Diego Moreda Rodrı́guez,
Giacomo Nannicini, Paul Nation, Pauline Ollitrault,
Lee James O’Riordan, Hanhee Paik, Jesús Pérez, Anna
Phan, Marco Pistoia, Viktor Prutyanov, Max Reuter, Julia
Rice, Abdón Rodrı́guez Davila, Raymond Harry Putra
Rudy, Mingi Ryu, Ninad Sathaye, Chris Schnabel, Eddie
Schoute, Kanav Setia, Yunong Shi, Adenilton Silva,
Yukio Siraichi, Seyon Sivarajah, John A. Smolin, Mathias
Soeken, Hitomi Takahashi, Ivano Tavernelli, Charles Tay-
lor, Pete Taylour, Kenso Trabing, Matthew Treinish, Wes
Turner, Desiree Vogt-Lee, Christophe Vuillot, Jonathan A.
Wildstrom, Jessica Wilson, Erick Winston, Christopher
Wood, Stephen Wood, Stefan Wörner, Ismail Yunus
Akhalwaya, and Christa Zoufal. Qiskit: An Open-source
Framework for Quantum Computing. jan 2019.

[4] Martin Berger, Kohei Honda, and Nobuko Yoshida. A log-
ical analysis of aliasing in imperative higher-order func-
tions. In Proceedings of the tenth ACM SIGPLAN interna-

tional conference on Functional programming, pages 280–
293, 2005.

[5] Patrick Cousot and Radhia Cousot. Abstract interpretation:
a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on Princi-
ples of programming languages, pages 238–252, 1977.

[6] Andrew W Cross, Lev S Bishop, John A Smolin, and
Jay M Gambetta. Open quantum assembly language. arXiv
preprint arXiv:1707.03429, 2017.

[7] Albert Einstein, Boris Podolsky, and Nathan Rosen. Can
quantum-mechanical description of physical reality be
considered complete? Physical review, 47(10):777, 1935.

[8] Kentaro Honda. Analysis of quantum entanglement in
quantum programs using stabilizer formalism. arXiv
preprint arXiv:1511.01572, 2015.

[9] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff
Heckey, Alexey Lvov, Frederic T Chong, and Margaret
Martonosi. ScaffCC: Scalable compilation and analysis of
quantum programs. Parallel Computing, 45:2–17, 2015.

[10] Jarosław Adam Miszczak. High-level structures for quan-
tum computing, volume 4. Morgan & Claypool Publishers,
2012.

[11] Michael A Nielsen and Isaac Chuang. Quantum computa-
tion and quantum information, 2002.

[12] Simon Perdrix. Quantum patterns and types for entan-
glement and separability. Electronic Notes in Theoretical
Computer Science, 170:125–138, 2007.

[13] Simon Perdrix. Quantum entanglement analysis based on
abstract interpretation. In International Static Analysis
Symposium, pages 270–282. Springer, 2008.

[14] Frédéric Prost and Chaouki Zerrari. Reasoning about en-
tanglement and separability in quantum higher-order func-
tions. In International Conference on Unconventional
Computation, pages 219–235. Springer, 2009.

[15] Erwin Schrödinger. Discussion of probability relations be-
tween separated systems. In Mathematical Proceedings of
the Cambridge Philosophical Society, volume 31, pages
555–563. Cambridge University Press, 1935.

[16] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah,
Christopher Granade, Bettina Heim, Vadym Kliuchnikov,
Mariia Mykhailova, Andres Paz, and Martin Roetteler. Q#:
enabling scalable quantum computing and development
with a high-level dsl. In Proceedings of the Real World
Domain Specific Languages Workshop 2018, pages 1–10,
2018.

[17] Google AI Quantum team. Cirq. 2018.
[18] Mingsheng Ying. Foundations of quantum programming.

Morgan Kaufmann, 2016.
[19] Charles Yuan, Christopher McNally, and Michael Carbin.

Twist: sound reasoning for purity and entanglement in
quantum programs. Proceedings of the ACM on Program-
ming Languages, 6(POPL):1–32, 2022.

© 2022 Information Processing Society of Japan 8

Vol.2022-QS-7 No.19
2022/10/28

