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Toward a Quantum Behavioral Interface Specification
Language
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Abstract: ScaffML is a behavioral interface specification language tailored to Scaffold, a quantum programming lan-
guage. It can specify pre- and post-conditions for Scaffold modules and allows assertions to be intermixed with Scaffold
code, which helps in debugging and verification. This paper discusses the goals and overall approach of ScaffML and
describes the basic features of the language with examples. ScaffML provides an easy-to-use specification language
for quantum programmers, which can support static analysis, run-time checking, and formal verification of Scaffold
programs.
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1. Introduction
1.1 Model-Oriented Specification Languages

Model-oriented specification languages combine the ideas
from two seminal papers by Hoare [12, 13]. One paper [12] intro-
duced to use of two predicates (pre- and postcondition) over pro-
gram states to specify a computation. The first predicate (called
precondition) specifies the requirements on the state before the
computation, while the second predicate (called postcondition)
specifies the desired final state. The other paper [13] introduced
to use of an abstraction function that maps the implementation
data structure (i.e., an array) to a mathematical value space (i.e.,
a set). The idea behind this is that one can use the abstract val-
ues to specify the abstract data type (ADT), which allows users
of the ADT’s operation to reason about calls without considering
the details of the implementation. In terms of these ideas, model-
oriented specification languages specify software modules (pro-
cedures, functions, and methods) using pre- and postconditions.
The pre- and postconditions use the vocabulary specified in an
abstract model, which mathematically specifies the abstract val-
ues.

The most widely used model-oriented specification languages
are VDM [15] and Z [22]. Both come with a mathematical toolkit
from which users can assemble abstract models for use in speci-
fying procedures. The toolkit of VDM resembles that of a (func-
tional) programming language; it provides certain basic types (in-
tegers, booleans, characters) and structured types such as records,
Cartesian products, disjoint unions, and sets. The toolkit in Z is
based on set theory; it has a relatively elaborate notation for vari-
ous set constructions, as well as powerful techniques for combin-
ing specifications (the schema calculus).
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Although generic model-oriented specification languages such
as Z and VDM can specify programs written in different pro-
gramming languages, they can not specify the exact interface of
modules written in a specific programming language. This is be-
cause the details of the interface that need to be specified may
differ from one programming language to another. To compen-
sate, several behavioral interface specification languages (BISLs)
have been designed, each tailored to a specific programming lan-
guage. Examples include Larch/C++ for C++ [19], ACSL for
C [6], and JML [20] and AAL [17] for Java. The advantage of tai-
loring each BISL to a specific programming language is that one
can specify both the behavior and the exact interface to be pro-
grammed. Recent research results have shown that using BISLs
to specify programs written in a specific programming language
has great practical benefits both in static compile-time checking
and run-time checking [11].

1.2 Formal Specification of Scaffold
Research for formal specification languages must adapt to the

emergence of new language paradigms to specify programs writ-
ten in these new languages by presenting new specification ap-
proaches that are relevant to these new languages. Quantum pro-
gramming is the process of designing and building executable
quantum computer programs to achieve a particular computing
result and has been drawing increasing attention recently. A num-
ber of quantum programming approaches are available to write
quantum programs, for instance, Scaffold [1], Qiskit [3], Q# [23],
ProjectQ [24], and Quipper[9]. As research in quantum pro-
gramming is reaching maturity with many active research prod-
ucts, researchers for formal specification languages in general and
BISLs, in particular, should focus on this new paradigm.

The field of quantum programming has, so far, focused pri-
marily on problem analysis, language design, and implementa-
tion. The specification and validation of quantum programs have
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received comparatively little attention. To formally verify quan-
tum programs, we must have some means to specify the prop-
erties of quantum programs formally. However, although many
generic formal specification languages and BISLs have been pro-
posed for specifying programs written in classical procedural and
object-oriented programming languages, no BISL exists, to our
knowledge, that can be used to specify programs written in quan-
tum programming languages such as Scaffold until now. More-
over, due to specific features such as quantum superposition, en-
tanglement, and no-cloning in a quantum programming language,
existing formal specification languages (and BISLs) for classical
programming languages can not be applied to quantum program-
ming languages straightforwardly. This motivates us to design
a formal specification language suitable for specifying programs
written in quantum programming languages.

1.3 Our Specification Approach to Scaffold
Instead of designing a generic specification language for quan-

tum programming, we choose instead to design a behavioral
interface specification language (BISL) tailored to Scaffold, a
quantum programming language [1]. A BISL describes both the
details of a module’s interface with clients and its behavior from
the client’s point of view [20]. Using a BISL, we can formally
specify both the behavior and the exact interface of Scaffold pro-
grams’ modules, which is an essential step towards formally ver-
ifying these modules.

Our BISL for Scaffold is called ScaffML (Scaffold Modeling
Language), which uses the same basic approaches as classical
BISLs, such as ACSL [6] for C and JML [20] for Java, to specify
Scaffold modules and interfaces. ScaffML provides annotations
to specify Scaffold programs with pre- and postconditions and
class invariants. These annotations enable both dynamic anal-
ysis in support of activities such as debugging and testing and
static analysis in support of the formal verification of properties
of Scaffold programs. Static analysis activities could verify that
the code of a Scaffold module correctly implements its specifica-
tion.

The key to the verification process is to develop a trans-
formation tool that automatically transforms Scaffold programs
with ScaffML specifications into corresponding verification con-
ditions (VC) through VC generators, which are finally received
by some interactive provers or automatic provers such as Coq [8]
or CVC3 [4]. By doing this, we can formally check and verify
Scaffold programs.

In this paper, we discuss the goals of ScaffML and its overall
specification approach. We also provide examples of how to use
ScaffML to specify Scaffold modules.

The rest of the paper is organized as follows. Section 2 presents
the design rationale for ScaffML. Section 3 briefly introduces
ANSI/ISO C Specification Language. Section 5 uses examples to
show how Scaffold modules are specified in ScaffML. Section 6
discusses related work, and conclusion and future work are given
in Section 7.

2. Design Rationale
Our purpose in developing ScaffML is to study how quan-

tum programs can be specified and verified formally. Design-
ing ScaffML is, therefore, only a part of our proposed activi-
ties. We must also develop techniques and tools to support the
formal specification and verification of Scaffold programs aug-
mented with ScaffML specifications. We have therefore chosen
to design ScaffML as a compatible extension to Scaffold to (1) fa-
cilitate its adoption by current Scaffold users and (2) facilitate the
adoption of existing ACSL-based verification toolchain to check
Scaffold programs.

ACSL is an especially appropriate base for the ScaffML de-
sign for two reasons. First, Scaffold is an extension to C for
implementing quantum programming, and ACSL is a BISL spe-
cially designed for C. By structuring ScaffML as an extension to
ACSL, we can focus our attention on the new issues associated
with the use of quantum modules. Second, ACSL has an efficient
toolchain for supporting static and dynamic checking of C pro-
grams. If we can automatically transform Scaffold programs with
ScaffML specifications into corresponding verification conditions
(VC) through VC generators, which are finally received by some
interactive provers or automatic provers such as Coq and CVC3,
we can use the ACSL toolchain to verify Scaffold programs.

To focus on the key ideas of ScaffML, in this paper, we do not
consider the specification of Scaffold classical modules, which
can be specified in the same way as ACSL [6] for C.

3. ANSI/ISO C Specification Language
ANSI/ISO C Specification Language (ACSL) [6] is a formal

BISL tailored to C programming language [16]. ACSL allows
precondition, postconditions, and assertion to be specified for C
functions. The predicates in ACSL are written using regular C
expressions extended with logical operators and universal and ex-
istential quantifiers. ACSL specifications are expressed as special
commends in C function definitions, enclosed between /*@ and
*/.

ACSL supports specifying a C function at both statement and
function levels. These two-level specifications together form the
complete behavioral specifications for the function. A function-
level specification for a C function is a set of requirements over
the arguments of the function and/or a set of properties that are
ensured at the end of the function. The formula that expresses the
requirements is called a precondition, whereas the formula that
expresses the properties ensured when the function returns is a
postcondition. Together, these conditions form a specification (or
contract) between the function and its callers: each caller must
guarantee that the precondition holds before calling the function.
In exchange, the function guarantees that the postcondition holds
when it returns.

3.1 The Workflow of ScaffML
Figure 1 shows the workflow of the ScaffML working sys-

tem. First, a Scaffold program with its ScaffML specification
is translated into the intermediate code written in an intermedi-
ate language. Then, the code is fed into a verification condition
(VC) generator to generate the necessary verification conditions,
which are finally received by an interactive prover or an automatic
prover like Coq or CVC3.
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Fig. 1 The Workflow of ScaffML.

4. Specifying Scaffold Quantum Gates in
ScaffML

The Scaffold provides a standard library of gates which consist
of several types of most commonly used quantum gates. We list
some of the quantum gates in Figure 2. As the first step, in this
section, we try to specify several gates in ScaffML.

4.1 Representation of Quantum Bit Coefficient
In classical programming languages, given an array int a[i],

we use a[0], a[1], . . . , a[i-1] to express the elements of the ar-
ray a[i]. In quantum programming languages such as Scaffold,
we can define a quantum register using the statement qreg q[i],
and the elements of q[i] can be represented as q[0], q[1], . . . ,
q[i-1]. For each qubit |q⟩ = α|0⟩ + β|1⟩, it can be also repre-
sented as an array [α, β], where the coefficients α and β are the
squares of probability of |0⟩ and |1⟩. To distinguish the repre-
sentations of the qubit coefficient and the number of qubits in a
quantum register, in ScaffML, we use q[|0⟩] = α and q[|1⟩] = β to
express the coefficient of each qubit. As a result, a qubit q can be
expressed as |q⟩ = α|0⟩ + β|1⟩ = [α, β] = [q[|0⟩], q[|1⟩]].

In fact, the intention behind |0⟩ and |1⟩ is to show the variable
is a quantum bit. So the q[|0⟩] and q[|1⟩] can express the intrinsic
of a qubit q. If a qubit is in a quantum register, for example, Fig-
ure 3 shows that we can express the coefficient α and β of q[0] as
q[0][|0⟩] and q[0][|1⟩]; the[0] shows this qubit the first one in the
quantum register q[], the [|0⟩] and [|1⟩] show the coefficients of
|0⟩ and |1⟩ of q[0].

4.2 Pre-Defined Modules in ScaffML
To help programmers understand the equation meanings of pre-

and postconditions, we defined several modules in ScaffML. Fig-
ure 4 shows some of these modules. The annotated equation is
equivalent to the module above. For example, the sum of the co-
efficients’ squares equals 1 for each qubit’s. Equivalent to writing
the equation for the sum of the coefficients’ squares equals 1, we
can use the defined module qubitselfCheck() to specify. The
keyword ensures means the module or equation should match
the preconditions and postconditions. The keyword old means
the variable which holds the value before the Scaffold module.

4.3 Specifying a Pauli Gate
There are three types of Pauli gates: Pauli-X, Pauli-Y, and

Pauli-Z. Here we take the Pauli-X gate as an example to show

how to specify Pauli gates. Pauli-X is a single-qubit rotation
through π radians around the x-axis. The X-gate is represented
by the Pauli-X matrix:

X =
 0 1

1 0

 (1)

For a qubit |q⟩ = α|0⟩ + β|1⟩ = [α, β] = [q[|0⟩] , q[|1⟩]], the X|q⟩
= β|0⟩ + α|1⟩ = [β, α] = [q[|1⟩], q[|0⟩]]. We can specify the
Pauli-X gate, as shown in Figure 5. Here, requires valid spec-
ifies the name and size of the required array, respectively. And
assigns specifies the length of the array should not be modified
or changed. And then ensure the elements of the qubit are ex-
changed with each other. At last, referring to the last module in
Figure 5, ensure the sum of the coefficients’ squares equals 1.

4.4 Specifying a Hadamard Gate
The Hadamard gate is a single-qubit operation that maps the

basis states |0⟩ and |1⟩ to |0⟩+|1⟩√
2

and |0⟩−|1⟩√
2

, respectively, thus creat-
ing an equal superposition of the two basis states. The Hadamard
gate is represented by the Hadamard matrix:

H =
1
√

2

 1 1
1 −1


Using ScaffML, we can specify the Hadamard gate, as shown in
Figure 6. We should ensure that the result of the qubit after the
Hadamard gate meets the condition of the Hadamard matrix.

4.5 Specifying a CNOT Gate
The Controlled NOT (CNOT) gate contains two qubits, where

one of the qubits is called the control qubit while the other one is
called the target qubit. The CNOT gate can realize the following
operation: (1) Performs a Pauli-X gate on the target qubit when
the control qubit is in state |1⟩; (2) Performs the target qubit un-
changed when the control qubit is in state |0⟩. Figure 7 shows the
Circuit Elements of the CNOT Gate. The CNOT Gate is repre-
sented by the CNOT matrix:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Figure 7 shows the specification in ScaffML for the CNOT

Gate. The command behavior means there are two situations.
The first is that the control qubit |a⟩ is 0. The measZ() measures
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Fig. 2 Some Examples of Quantum Gates.

Fig. 3 The coefficient of a qubit in quantum register.

ensures equal_a: Unchanged{Here,Old}(a, 2);
//ensures a[|0>] == \old(a[|0>]);
//ensures a[|1>] == \old(a[|1>]);

ensures Hadamard_t: HadamardCheck{Here,Old}(t, 2);
//ensures t[|0>] == (\old(t[|0>]) + \old(t[|1>]))*sqrt(1/2);
//ensures t[|1>] == (\old(t[|0>]) - \old(t[|1>]))*sqrt(1/2);

ensures Phase_t: PhaseCheck{Here,Old}(t, 2);
//ensures t[|0>] == \old(t[|0>]);
//ensures t[|1>] == \old(t[|1>])) * eˆ(i*angle);

ensures qbitself_t: qbitselfCheck(t);
//ensures pow(t[|0>],2) + pow(t[|1>],2) == 1;

Fig. 4 Some predefined modules in ScaffML.

/*@

requires valid: \valid(t[0]+(|0>..|1>));

assigns t[0][|0>..|1>];

ensures reverse: Reverse{Here,Old}(t[0], 2);
ensures qbitself_t[0]: qbitselfCheck(t[0]);

*/

gate X(qreg t[1]);

Fig. 5 A simple program specifying a Pauli-X gate.

/*@

requires valid: \valid(t[0]+(|0>..|1>));

assigns t[0][|0>..|1>];

ensures Hadamard_t[0]: HadamardCheck{Here,Old}(t[0], 2);
ensures qbitself_t[0]: qbitselfCheck(t[0]);

*/

gate H(qreg t[1])

Fig. 6 A simple program specifying a Hadamard gate.

the qubit to compare with 0 or 1. In this situation, the target qubit
|b⟩ will not be changed. The second is that the control qubit |a⟩ is
1. In this situation, the target qubit |b⟩ will be reversed. In other
words, the target qubit |b⟩ passed a Pauli-X gate. The complete
behaviors express the fact that for all ranges a and b that sat-
isfy the preconditions of the contract, at least one of the specified
named behaviors, in this case, false and true, applies. The dis-
joint behaviors show that for all ranges a and b that satisfy the
preconditions of the contract at most, one of the specified named
behaviors, in this case, false and true, applies.

© 2022 Information Processing Society of Japan 4

Vol.2022-QS-7 No.18
2022/10/28



IPSJ SIG Technical Report

4.6 Specifying a Rotation Gate
The rotation operators are generated by exponentiation of the

Pauli matrices according to exp(iAx) = cos(x)I + isin(x)A. For
example, Rx Gate is a single-qubit rotation through angle θ (ra-
dians) around the x-axis. The Rx Gate is represented by the Rx

matrix:

Rx(θ) = exp(−iXθ/2) =
 cos( θ2 ) −isin( θ2 )
−isin( θ2 ) cos( θ2 )

 (2)

We can specify the Rx Gate as shown in Figure 8. We should en-
sure that the output of the result is consistent with the Rx matrix
operation.

4.7 Specifying a Phase Shift Gate
The phase shift is a family of single-qubit gates that map the

basis states |0⟩ 7→ |0⟩ and |1⟩ 7→ eiφ |1⟩. The probability of mea-
suring a |0⟩ or |1⟩ is unchanged after applying this gate, however,
it modifies the phase of the quantum state. The Phase shift is
represented by the Phase shift matrix:

P(φ) =
 1 0

0 eiφ

 (3)

Using ScaffML, we can specify the Phase shift Gate as Fig-
ure 9 shows. The coefficient of |0⟩ keeps itself. The coefficient of
|1⟩ rotated angle φ, so it multiplied eiφ.

4.8 Specifying a SWAP Gate
The SWAP gate is a two-qubit operation. Expressed in basis

states, the SWAP gate swaps the state of the two qubits involved
in the operation:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (4)

We can specify the SWAP gate, as Figure 10 shows. The post-
condition is the values of |a⟩ and |b⟩ are swapped. The command
EqualRanges means the elements of the first array are equal to

/*@

requires valid: \valid(control[0]+(|0>..|1>));
requires valid: \valid(target[0]+(|0>..|1>));

assigns control[0][|0>..|1>];
assigns target[0][|0>..|1>];

behavior false:
assumes measZ(control[0]) == 0;
ensures equal_control[0]: Unchanged{Here,Old}(control[0], 2);
ensures equal_b: Unchanged{Here,Old}(target[0], 2);

behavior true:
assumes measZ(control[0]) == 1;
ensures equal_control[0]: Unchanged{Here,Old}(control[0], 2);
ensures reverse: Reverse{Here,Old}(target[0], 2);

complete behaviors;
disjoint behaviors;

ensures qbitself_control[0]: qbitselfCheck(control[0]);
ensures qbitself_target[0]: qbitselfCheck(target[0]);

*/

gate CNOT(qreg target[1], qbit control[1])

Fig. 7 A simple program with specifying CNOT gate.

/*@

requires valid: \valid(t[0]+(|0>..|1>));

assigns t[0][|0>..|1>];

ensures Phase_Rx: PhaseCheck_Rx{Here,Old}(t[0], 2);
//ensures t[0][|0>] == \old(t[0][|0>])*cos(angle/2) -
\old(t[0][|1>])*isin(angle/2);

//ensures t[0][|1>] == \old(t[0][|1>])*cos(angle/2) -
\old(t[0][|0>])*isin(angle/2);

ensures qbitself_t[0]: qbitselfCheck(t[0]);
*/

gate Rx(qbit t[1], float angle)

Fig. 8 A simple program with specifying Rx gate.

/*@

requires valid: \valid(t[0]+(|0>..|1>));

assigns t[0][|0>..|1>];

ensures Phase_t[0]: PhaseCheck{Here,Old}(t[0], 2);
//ensures t[0][|0>] == \old(t[0][|0>])
//ensures t[0][|1>] == \old(t[0][|1>]) * eˆ(i*angle);
ensures qbitself_t[0]: qbitselfCheck(t[0]);

*/

gate Phase(qreg t[0], float angle)

Fig. 9 A simple program with specifying Phase shift gate.

the elements of the second array one by one, Here and old is used
to express the values of the array after or before the SWAP gate,
the number 2 means each array has two elements.

/*@

requires valid: \valid(a[0]+(|0>..|1>));
requires valid: \valid(b[0]+(|0>..|1>));

assigns a[0][|0>..|1>];
assigns b[0][|0>..|1>];

ensures equal_a[0]: EqualRanges{Here,Old}(a[0], 2, b[0]);
ensures equal_b[0]: EqualRanges{Old,Here}(a[0], 2, b[0]);
ensures qbitself_b[0]: qbitselfCheck(a[0]);
ensures qbitself_a[0]: qbitselfCheck(b[0]);

*/

gate SWAP( qreg a[1], qreg b[1] )

Fig. 10 A simple program with specifying SWAP gate.

5. Specifying Scaffold Programs in ScaffML
In Scaffold, a module is a modular unit implementation whose

definition is similar to a C function. ScaffML can specify the
properties of an individual module in a Scaffold program using
module specifications, and the specifications of all the modules in
the program form a specification of the whole program.

In ScaffML, the specification of a module is similar to that of
a function in ACSL or a method in JML. The specification is an-
notated with three formulas, that is, a precondition, a postcon-
dition, and a frame condition which is declared by a requires,
ensures, and modifies clause respectively. The precondition,
postcondition, and frame condition together form a specification
of the module for checking the code of the module.

In this section, we use ScaffML to specify two of widely used
modules in quantum algorithms: Bell state and Quantum Fourier
Transform (QFT).

5.1 Specifying the Bell State
The Bell state is the simplest and purest type of entangled

quantum state. As shown in Figure 11, the Bell state construc-
tion circuit can construct a pair of quantum bits of the Bell state,
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they can be represented by |00⟩+|11⟩
√

2
. Measuring one of the quan-

tum bits is equivalent to immediately giving the same measured
value of the other quantum bit. In other words, in this system, the
two bits have the same value, 0 or 1.

Fig. 11 Quantum circuit for the Bell state.

Figure 12 gives the specification of the Bell state. At first, we
ensure the input qubits a and b are both in the state of 1|0⟩ + 0|1⟩.
After preparing a Bell pair, there are two situations. The first is
the Bell pair system is in the state of |00⟩, in this situation, a and b
are measured as 0, and the CNOT gate has not worked. The sec-
ond is the Bell pair system is in the state of |11⟩, in this situation,
a and b are measured as 1, and the CNOT gate has worked.

/*@

requires valid: \valid(a[0]+(|0>..|1>));
requires valid: \valid(b[0]+(|0>..|1>));

assigns a[0][|0>..|1>];
assigns b[0][|0>..|1>];

ensures \old(a[0][|0>]) == 1;
ensures \old(a[0][|1>]) == 0;
ensures \old(b[0][|0>]) == 1;
ensures \old(b[0][|1>]) == 0;
ensures a[0][|0>] == sqrt(1/2);
ensures a[0][|1>] == sqrt(1/2);
ensures b[0][|0>] == sqrt(1/2);
ensures b[0][|1>] == sqrt(1/2);

behavior CNOTfalse:
assumes measZ(a[0]) == 0;
ensures measZ(b[0]) == 0;

behavior CNOTtrue:
assumes measZ(a[0]) == 1;
ensures measZ(b[0]) == 1;

complete behaviors;
disjoint behaviors;

ensures qbitself_a[0]: qbitselfCheck(a[0]);
ensures qbitself_b[0]: qbitselfCheck(b[0]);

*/

module PrepareBellPair(qreg a[1], qreg b[1]) {
H(a[0]);

CNOT(a[0],b[0]);

}

Fig. 12 Specifying the Bell state (an entangled state).

5.2 Specifying the QFT
The Quantum Fourier Transform (QFT) is a discrete Fourier

transform that decomposes the original equation into a simpler
product of multiple Unitary Matrix. Using this decomposition,
Figure 13 shows the discrete Fourier transform can be used as
a quantum circuit, which contains multiple Hadamard gates and
controlled phase shifting gates.

Figure 14 gives the specification of QFT. We analyze the out-
put of module QFT and ensure the states of every qubit. In order
to form the output of module QFT, some of the qubits should be
in the state of 1|0⟩ + 0|1⟩ and the other qubits should be in the
state of 0|0⟩ + 1|1⟩.

6. Related Work
There has been significant work in the field of generic spec-

ification languages in general and BISLs in particular. Widely
used generic specification languages include Z [22], VDM [15],
B [2], and Larch [10]. Several BISLs based on Larch have been
designed, each tailored to a specific programming language. Ex-
amples include LCL (for C) [10], LM3 (for Modula-3) [10], and
Larch/C++ [19]. In addition to the Larch family, Meyer’s work
on the programming language Eiffel has advanced the cause of
applying formal methods to object-oriented programs [21]. In
Eiffel, unlike a Larch-style interface specification language, one
can use Boolean expressions to specify pre- and postconditions
for operations on ADTs written in Eiffel; that is, program ex-
pressions can be used in pre- and postconditions. In addition, in
Eiffel, one can use class invariants to specify the global properties
of instances of the class. On the other hand, several projects have
been carried out to support the Design By Contract (DBC) prin-
ciple, originally introduced by Meyer in Eiffel [21]. Examples
include iContract [18] and Jass [5].

Recently, the emergence of Java as a popular object-oriented
programming language has led to several BISLs designed for
Java. Examples include JML [20], ESC/Java [7], and AAL [17].
JML allows assertions to be specified for Java classes and inter-
faces and provide very expressive power to specify Java modules
(classes and interfaces). ESC/Java is a static checking tool for
Java. It can statically check for various errors in a Java program
without executing the program. The annotation language in ES-
C/Java is a subset of JML for annotating Java code in various
ways. AAL is an annotation language designed for annotating
and checking Java programs. Like JML, AAL supports runtime
assertion checking. AAL also supports full static checking for
Java programs similar to ESC/Java. AAL translates annotated
Java programs into Alloy [14], a simple first-order logic with re-
lational operators, and uses Alloy’s SAT solver-based automatic
analysis technique to check Java programs.

Although the specification languages mentioned above can
specify programs written in various classical programming lan-
guages, they are not designed to specify programs written in
quantum languages such as Scaffold. In summary, ScaffML is the
first BISL tailored to Scaffold that can be used to specify quantum
programs.

7. Conclusion
In this paper, we presented ScaffML, a behavior interface spec-

ification language tailored to Scaffold, and discussed the goals of
ScaffML and the overall specification approach. ScaffML is an
extension to ACSL, a BISL for C, for specifying Scaffold pro-
grams. ScaffML uses the same way as ACSL to specify Scaffold
classical modules and extends ACSL with new notations to spec-
ify Scaffold quantum modules.

On the one hand, ScaffML provides a way to specify Scaffold
programs with assertions (pre- and postconditions and module
invariants), supporting runtime checking such as debugging and
testing scaffold programs. On the other hand, ScaffML offers the
possibility of fully automatic compile-time analysis for Scaffold
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Fig. 13 Quantum circuit for the Quantum Fourier Transform (QFT) algorithm.

/*@

requires valid: \valid(qbits[]+(|0>..|1>));

assigns qbits[][|0>..|1>];

module QFTCheck(qbits[], width, M_PI){
int r = M_PI/pi;

for ( int s = width-1; s >= 0; s-- ){

if ( power(2,s) <= M_PI/pi )

{

//ensures qbit[s][|1>] == 1;
//ensures qbit[s][|0>] == 0;

r = r - power(2,s);

}

else

{

//ensures qbit[s][|0>] == 1;
//ensures qbit[s][|1>] == 0;

}

}

}

ensures QFTCheck_qbits[]: QFTCheck(qbits[], width, M_PI);
ensures qbitself_qbits[]: qbitselfCheck(qbits[]);

*/

module QFT (qreg qbits[width])

Fig. 14 Specifying the QFT.

programs, such as checking the code of a Scaffold module against
its specification.

We also gave examples of ScaffML to show how to specify the
deserved set of quantum gates in Scaffold, the entanglement state
(Bell state), and the QFT quantum algorithm.

The work presented in this paper is preliminary; much work
remains to be done to make ScaffML practical. We list our future
work as follows:

• We would like to investigate our specification framework
further and refine our proposed specification constructs for
Scaffold.

• For formally verifying Scaffold programs, we would like
to develop a transformation tool that automatically converts
Scaffold programs with ScaffML specifications into corre-
sponding verification conditions (VC) through VC genera-
tors, which are finally received by some interactive provers
or automatic provers such as Coq or CVC3.

• We would like to develop formal semantics for ScaffML to
support static analysis, checking, and testing.

• We plan to conduct some case studies using ScaffML to
specify some Scaffold programs for implementing complex
quantum algorithms such as Shor’s and Grover’s algorithms.
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Appendix

A.1 Scaffold
Scaffold [1] is a quantum programming language developed by

a team from Princeton University and others. Using Scaffold, the
computational operations and data structures involved in a quan-
tum algorithm can be programmed and finally compiled into a
machine-executable form. The team also developed Scaffold’s
compiler, ScaffCC, which optionally compiles Scaffold source
code into instructions that can eventually be executed on QX, a
quantum simulator developed by QuTech Labs.

The Scaffold is an extension of the C language. It adds new
data types, such as qbit and cbit, and defines quantum opera-
tions, including Pauli-X gates, Hadamard gates, and other quan-
tum logic gates. A program written with Scaffold comprises the
classical part and the quantum part. The former includes classi-
cal data types and control structures; the latter includes quantum
data types and operations.

A complete Scaffold program usually consists of multiple mod-
ules, and since quantum circuits are always ”reversible,” these
modules must satisfy the following requirements to be executed
on a quantum device.

• Either consists only of unitary quantum operations.

• Or be able to be compiled into unitary quantum operation
instructions.

To compile some classical modules into unitary quantum in-
structions, Scaffold includes the CTQG module, which can com-
pile some classical circuits into an instruction set consisting of
only NOT, controlled-NOT (CNOT), and Toffoli gates. For ex-
ample, when calculating the addition a+b, if N-bit binary num-
bers can represent both a and b, this classical instruction can be
composed by 6N-3 CNOT gates and 2N-2 Toffoli gates without
auxiliary quantum bits. Therefore, the operations such as classi-
cal addition computed by the user in Scaffold are eventually com-
piled and executed as a set of quantum operation instructions.

In the following, we briefly introduce what syntactic details
Scaffold adds to the classical programming language.
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A.1.1 Quantum Data Types
The most basic quantum data type in Scaffold is the quan-

tum register qreg, which can be declared by the statement
qreg qs[n], where n denotes the number of quantum bits in the
register; even if n=1, it is still treated as a quantum register, not as
a separate quantum bit. Alternatively, multiple quantum registers
can be declared as a single quantum structure qstruct:

qstruct struct1 {

qreg first[10];

qreg second[10];

};

In this case, quantum structure struct1 contains two quantum
registers: first and second. Through the following two state-
ments, one can access the first qubit of second in the quantum
structure struct1.

struct1 qst;

qst.second[0];

A.1.2 Quantum Gates
The quantum gate operation in Scaffold can be divided into

two categories according to the implementation; one is the built-
in quantum gates in the standard library; the other is the quantum
gates defined by the gate prototype function. The use of the first
type of gate function only requires the introduction of the header
file gates.h.

According to the prototype function, the second type of gate
operation requires its own definition.

gate gatename

(type_1 parameter_1, ..., type_n parameter_n);

The above statement defines the gate operation named gatename,
which consists of n arguments, the data type of these n arguments
can be quantum registers or classical unsigned integers, charac-
ters, floating point numbers, and double precision floating point
numbers, both of which must be passed to the function by ref-
erence (if the classical data type with the const keyword can be
passed by value). At this point, in the module that defines the gate
operation gatename, the gate operation can be called according
to the following statement:

gatename(parameter_1, ..., parameter_n);

//module prototypes. They are defined elsewhere

module U (qreg input[4], int n);

module V (qreg input[4]);

module W (qreg input[4], float p);

//Quantum control primitive

module control_example(qreg input[4]) {

if (control_1[0]==1 && control_2[0]==1) {

U(input); }

else if (control_1{0}==1 && control_2[0]==0) {

V(input); }

else {

W(input); }

}

Fig. A·1 Example quantum control primitive for controlled execution of 3
different modules, U, V, and W [1]

A.1.3 Loops and Control Structures
Like the C language, Scaffold supports if, switch, and loop

statements, but the control styles of these statements can only

|control1⟩ • • X •

|control2⟩ • X • X

|target⟩ U V W

Fig. A·2 The quantum circuit corresponding to the program in Figure A·1.

contain classic information. Scaffold also provides a quantum
control statement; the control predicate contains qubits. When
computing the control predicate statement, the quantum state of
the qubit is determined, and the code is executed according to the
result. For example, Figure A·1 shows a simple Scaffold program
taken from [1], which describes quantum control primitive for
controlled execution of 3 different modules. Obviously, this pro-
gram will determine which code to execute according to the quan-
tum states of control qubits control_1[0] and control_2[0].
According to the principle of delay measurement, this code will
be compiled into the circuit shown in Figure A·2. Note that the
qubits in the control predicate cannot be used again in the pro-
gram.

A.1.4 Modules
The Scaffold supports modular design for readability, main-

tainability, and other features. A complete program usually con-
sists of one or more modules, each of which is responsible for one
task and can pass data of classical or quantum data types between
modules. The syntax for defining a module is as follows.

return_type module module_name

(type_1 parameter_1, ..., type_n parameter_n);

where return_type can be null, integer, character, floating-
point, double-precision floating-point, or structure, and the re-
quirements for the argument list are the same as those for the gate
prototype function. The defined module can be called by

module_name(parameter_1, ..., parameter_n);

Preprocessor Directives

Gate Prototypes

Module(classical/quantum code)

External module(prototype only)

Module(classical/quantum code)

Module(classical/quantum code)

C2QG Module

C2QG Module

C2QG Module

main() Module

…
…

…
…

Preprocess directives to 
include code, define 
constants and macros

Arbitrary gates can be 
defined if lower-level 
tools support them

Modules can include 
calls to other modules

C2QG modules can 
include calls to other 
C2QG modules only

The main’s restrictions 
are the same as other 
modules

External modules can be 
defined just by prototype

Modules can 
include calls to 
other modules, 
C2QG modules, 
and gate 
prototypes

Fig. A·3 The whole structure of a Scaffold program [1].

Figure A·3 shows the whole structure of a Scaffold programs,
taken from [1].

In this paper, we use ACSL [6] as our basis for designing
ScaffML; we extend ACSL with a few new notations to spec-
ify Scaffold programs. To focus on the key ideas of ScaffML, in
this paper, we do not consider how to specify Scaffold classical
modules, which can be specified in the same way as ACSL for C.
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