
Electronic Preprint for Journal of Information Processing Vol.30

Regular Paper

Generating Virtual Machine Code of
JavaScript Engine for Embedded Systems

Yuta Hirasawa1,†1,a) Hideya Iwasaki1,†2,b) Tomoharu Ugawa2,c) Hiro Onozawa1,†3,d)

Received: February 1, 2022, Accepted: June 14, 2022

Abstract: Virtual machines (VMs) for dynamically managed languages such as JavaScript are generally implemented
in C or C++. Implementation of VMs in such low-level languages offers the advantage of high flexibility, but it suffers
from problems of descriptiveness and safety. These problems are due to the fact that even though a variety of VM
operations are based on the VM’s internal datatypes for first-class objects in the target language, the C code typically
treats all VM internal datatypes as a single type in C. In addition, VMs implemented in C or C++ have a size problem
which is a serious issue for VMs on embedded systems. The reason for this problem is the difficulty of eliminat-
ing unnecessary code fragments from the C code for a specific application. To solve these problems, we propose a
domain-specific language for describing VM programs and a corresponding compiler to C programs, called VMDL and
VMDLC, respectively. We also propose related utility tools. This framework enables generation of C source code for
an eJSVM, a JavaScript VM for embedded systems. VMDL’s concise syntax enables static VM datatype analysis for
optimizations and error detection. We evaluated the framework and confirmed its effectiveness from both qualitative
and quantitative viewpoints.

Keywords: JavaScript virtual machine, domain-specific languages, VM internal datatype, compilers

1. Introduction
JavaScript [23] is widely used for developing not only web ap-

plications on browsers but also server-side programs and even
applications on embedded systems. Virtual machines (VMs)
for dynamically managed languages such as JavaScript are typ-
ically implemented in C or C++ [25]. Implementations in such
languages have the advantage of high flexibility, because these
languages enable programmers to describe low-level processing.
Despite this advantage, the use of C *1 to implement VMs has
the following three problems. The first two are problems for the
VM developer, while the last one is a problem for the application
developer.
Descriptiveness problem. Writing VM code directly in C tends
to lead to complex code, which in turn decreases the descriptive-
ness of the VM code.

For example, a VM for a dynamic language contains many dis-
patch operations, each of which identifies the datatypes of given
values at runtime and selects an appropriate branch. We call this
operation a type dispatch. In C, type dispatches are typically de-
scribed in terms of switch statements for all possible combina-
tions of datatypes. However, this makes the code complicated,

1 The University of Electro-Communications, Chofu, Tokyo 182–8585,
Japan

2 The University of Tokyo, Bunkyo, Tokyo 113–0001, Japan
†1 Presently with Fujitsu Limited
†2 Presently with School of Science and Technology, Meiji University
†3 Presently with KLab Inc.
a) 19yhirasawa@ipl.cs.uec.ac.jp
b) hideya.iwasaki@acm.org
c) tugawa@acm.org
d) 19honozawa@ipl.cs.uec.ac.jp

especially when type dispatches depend on multiple values and
nested switch statements are used. Furthermore, in the case of
JavaScript, a VM sometimes performs type dispatch again after
performing type conversions, which makes the process even more
complex.

Another example of the descriptiveness problem is the inser-
tion of patterned code fragments. A VM developer often has to
insert code fragments for managing the root set of garbage col-
lection (GC), write barriers, and so on. Suppose that a VM uses
a GC algorithm that moves objects. When calling a C function
that may invoke GC, the addresses for the values of the GC target
must be saved to the GC root area before the function call so that
the GC can find the locations of those values. For example, if
two variables a and b hold pointers to GC target objects and a C
function gmay cause GC, it is necessary to insert code fragments
to push the addresses of a and b and to pop them after the call to
g, as follows.
push(&a); push(&b); g(...); pop(); pop();

Forgetting such push and pop operations will cause a and b to
become dangling pointers if GC happens to occur during the exe-
cution of g. Unfortunately, the compiler cannot detect this event.
Furthermore, the insertion of these code fragments is a tedious
and error-prone task, and the fragments also decrease maintain-
ability. Accordingly, this is not only an instance of the descrip-
tiveness problem but also of the safety problem that is described
next because dangling pointers will cause a VM to crash.
Safety problem. C also involves the risk of overlooking
datatype-related bugs that cannot be detected at compile time. In
a typical implementation, the C code for a VM defines a single

*1 For simplicity, we write “C” to refer to C/C++.

c⃝ 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

type (say, Value) that corresponds to all first-class data in the
target language. The individual datatype is typically identified by
using some part within the value of a Value type as a tag. In
fact, internal representations that use tags can be found in many
programming language implementations.

In dynamic languages, datatypes are determined at runtime. If
a C function expects its argument to be of a specific datatype in
the target language, an assertmacro is often used. Suppose that
the C datatype, Value, is implemented as a type synonym for
uint64 t, and that the lowest three bits are used as a tag. Sup-
pose also that the datatype Fixnum for fixed-length integers in the
target language is represented by Value with a specific tag value.
If the C function f expects only a Fixnum as its actual argument,
then f’s definition would appear as follows.
void f(Value x) { assert(isFixnum(x)); ... }

Here, isFixnum is a C function (or macro) that determines
whether the tag of a given Value represents a Fixnum. Because
the checking by assert is done at runtime, a call to f with a
non-Fixnum actual argument may be overlooked even if the VM
developer performs comprehensive testing.

Another example of a bug that cannot be detected statically in
C is conversion from a Value to a C datatype. A computation
on a Fixnum object n should be done after converting n to the C
datatype int64 t as follows.
int64_t x = (int64_t)n >> 3;

However, a C compiler will not report an error if the VM devel-
oper forgets the shift operation to drop the tag.
int64_t x = (int64_t)n;

As a result, such bugs are likely to be overlooked.
VM size problem. This problem is particularly serious for VMs
on embedded systems. Because the installed memory on an em-
bedded system is limited, it is important to reduce the VM size
to handle only the minimum necessary capability. Generally, an
application on an embedded system is designed for a specific pur-
pose, such as measuring temperature and humidity data and send-
ing it to a server, and the application is executed repeatedly. Ac-
cordingly, a VM for an embedded system does not have to be fully
featured but only needs the minimum datatypes, VM instructions,
and built-in functions required to run the target application. How-
ever, a VM written in C, where switch statements are used for
type dispatches, may include case branches that are never taken
by the target application. The VM might also include instructions
and built-in functions that are unnecessary for the target applica-
tion. Furthermore, some patterned code fragments such as those
for GC root management may be redundant; for example, if a
variable always has a Fixnum value, then it does not need to be
saved to the GC root area.

To solve these three problems, we propose an approach to de-
scribe VM programs for embedded systems in a domain-specific
language (DSL) and to compile them into C programs. We de-
signed the DSL to perform static analysis of possible datatypes
for each variable of type Value on the basis of the given operand
datatypes of VM instructions and the argument datatypes of func-
tions. Through the results of this analysis, the compiler selects
only the necessary parts of the DSL programs and translates them
into C programs. In this translation process, the compiler in-

serts patterned code fragments that are judged to be necessary,
and it generates an efficient type dispatch code. The datatypes of
operands and arguments for a specific application can be obtained
through a profiling run of the application on a desktop computer.

By following the above approach, we have implemented a
framework to generate the C source code of an eJSVM [21],
which is a JavaScript VM for embedded systems. Although our
targets are JavaScript and C, the underlying idea is general and
not limited to those languages.

Our proposed approach has the following three main compo-
nents.
• VMDL (Virtual Machine Description Language), a statically

typed DSL for the VM developer to describe eJSVM code.
• VMDLC (VMDL Compiler), a compiler that applies datatype

analysis on VMDL code to generate the minimum required
C source code fragments for an eJSVM that is specialized
for the target application. This component is used by the
application developer.

• A set of utility tools to help generate the customized eJSVM.
The tools include a code selector, which selects only the nec-
essary function definitions written in VMDL according to the
specifications of the target application; and a specification
generator, which generates specifications from the results of
a profiling execution. These tools are also used by the appli-
cation developer.

Note that VMDL is not designed to have the same level of de-
scriptive power as the C language. It excludes features such as
pointers and the capabilities of handling the raw bit patterns of
Values, because these makes it difficult to perform datatype anal-
ysis. It does not provide less frequently used features, either.
When a VM requires such features, the VM developer can de-
scribe them via C functions and call them from the VMDL code.
In addition, VMDL does not provide tightly optimized assembly
code generation; instead, it leaves common optimizations to the
C compiler.

The organization of this paper is as follows. Section 2 gives
an overview of eJS which is the target of the proposed frame-
work. Section 3 describes the design of VMDL mainly through
specific examples. Section 4 describes VMDLC, including its op-
timizations, and Section 5 describes the Utility tools. Section 6
describes evaluations of the framework with some obtained ex-
periences and some experimental results on two kinds of proces-
sors. Finally, we discuss related work in Section 7, and conclude
the paper in Section 8.

2. System Overview
2.1 eJSVM

The proposed framework generates eJSVM code for a target
application. Thus, we first explain the eJSVM, which is a com-
pact, efficient JavaScript VM that is based on eJS (embedded
JavaScript) [21]. eJS enables application development for em-
bedded systems by using a high-level language, JavaScript. The
eJSVM supports a subset of ECMAScript 5.1, which excludes
complicated features such as the eval function. Given the back-
ground described for the “VM size problem” in Section 1, eJS
is focused on the capability of generating customized eJSVMs,

c⃝ 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Table 1 eJSVM internal datatypes.

JS datatypes VM internal datatypes

Undefined, Null, Boolean Special

String String

Number Fixnum, Flonum
Object Simple object

Array Array

Function Function, Builtin
Regexp Regexp

Fig. 1 Overview of the eJSTK.

which are specialized for specific target applications.
The eJSVM is a register-based VM, and its VM instruction

set was originally designed in the eJS research. We refer to the
datatypes of the first-class values inside an eJSVM as VM internal
datatypes, and to the datatypes defined in the JavaScript specifi-
cation [6] as JS datatypes. Table 1 shows the corresponding items
among the JS datatypes and VM internal datatypes.

2.2 eJS Toolkit
The eJSTK (eJS ToolKit) is provided as a toolkit for gener-

ating customized eJSVMs according to specifications for the tar-
get application. The proposed framework is a main part of the
eJSTK. Figure 1 illustrates the overall structure of the eJSTK.
Although the eJSTK provides capabilities for customizing the in-
ternal representations of VM internal datatypes and generating a
JavaScript compiler (eJSC) for an eJSVM, these capabilities are
omitted from the figure because due to being outside the scope of
this paper.

The VM source code consists of programs in C, which we call
the C part, and those in VMDL, which we call the VMDL part.
These programs are written by a VM developer. VMDL’s descrip-
tion targets are definitions of the following:
• VM instructions,
• built-in functions, and
• type conversion functions,

which are closely related to JavaScript’s logic for handling the
eJSVM’s internal datatypes. We refer to these as VMDL func-
tions for convenience, though VM instructions are not functions.
VMDL programs can be regarded as templates that cover the op-
erations for all possible combinations of VM internal datatypes.
Other aspects of VM implementation, such as VM initialization,
GC and so on are written in C.

Because a target JavaScript application needs only a subset of
VMDL functions, not all VMDL functions are necessary for gen-
erating a customized eJSVM. In the eJSTK, the code selector
selects only the required VMDL functions according to the target
application’s specifications. These specifications are typically de-
fined by the application developer, but the developer is generally
not familiar with the internals of an eJSVM. The proposed frame-
work thus provides a profiling mechanism and a specification
generator to help application developers define specifications eas-
ily. First, the target application is executed by a full-set eJSVM
with profiling capabilities on a desktop computer. As a result, log
files for the VM instructions and built-in functions are generated.
Next, the specification generator produces specification files from
these log files. By using these utility tools, the application devel-
oper can obtain specifications for the target application without
going into the details of the eJSVM.

The VMDL compiler, VMDLC, acts as a translator from VMDL
programs to C programs. After selecting the required VMDL
functions, VMDLC compiles VMDL programs by eliminating un-
necessary parts from the templates in VMDL. It eliminates these
parts by using the information in the specifications, and it then
outputs the minimum necessary C code fragments. To this end,
VMDLC performs static VM datatype analysis. Finally, the
eJSVM is obtained by compiling and linking the generated C
fragments from the VMDL part and the C part with a C compiler.

In the former version of eJSTK reported in Ref. [21], part of
the VM code was written in a simple DSL called vmgen. How-
ever, vmgen was specialized for only describing VM instructions
and was therefore unable to describe definitions for datatype con-
version functions and built-in functions. In addition, vmgen did
not perform datatype analysis. Although vmgen was capable of
generating small pieces of type dispatch code for VM instruc-
tions, this capability was unsatisfactory from the viewpoint of
removing as much unnecessary code as possible from a VM, be-
cause of the lack of datatype analysis.

2.3 Specifications
There are three kinds of specifications:
• instruction specifications for the operands of VM instruc-

tions,
• built-in specifications for the arguments of built-in functions,

and
• type conversion specifications for the arguments of datatype

conversion functions.
As described in the previous subsection, the specification gen-

erator can generate the first two kinds. In contrast, the last kind
is automatically generated through VMDLC’s datatype analysis,
whose details will be described in Section 4.

Each specification is given as an ordered collection of the fol-

c⃝ 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

lowing form:
name (operand1, operand2, . . .) action

where name is the name of a VMDL function, and operandi is the
i-th operand or argument of that function. Each operand specifies
either a VM internal datatype listed in the right column of Ta-
ble 1, the symbol “ ” for all datatypes, or the symbol “-” for non-
input operands. Finally, action is either accept, unspecified,
or error. Here, accept indicates that the combination of the
specified operands is allowed; unspecified indicates that the
eJSVM’s behavior is not determined for the combination; and
error indicates that the eJSVM signals an error for the combi-
nation.

For example, if only the JS Number datatype is allowed for
both operands of an add instruction to perform the addition oper-
ation, then its instruction specification is written as follows.
add (-,Fixnum,Fixnum) accept

add (-,Fixnum,Flonum) accept

add (-,Flonum,Fixnum) accept

add (-,Flonum,Flonum) accept

add (-,_,_) unspecified

Because the first operand of the add instruction is a destination,
“-” is specified. For the second and third operands, all combi-
nations of VM internal datatypes corresponding to Number (i.e.,
Fixnum and Flonum) are specified as accept. Other combina-
tions of datatypes are specified as unspecified.

3. VMDL
3.1 Introduction to VMDL through Examples

VMDL is a statically typed DSL whose syntax resembles that
of the C language, but it was carefully designed for ease of
datatype analysis at the granularity of VM internal datatypes. In
particular, VMDL provides a special syntax that allows concise,
clear descriptions of type dispatches on the basis of VM internal
datatypes. Figure 2 shows a simplified BNF of VMDL. In this

Fig. 2 Simplified BNF of VMDL.

section, we introduce the flavor of VMDL through specific exam-
ples.
3.1.1 VM Instructions

First, as an example of a VM instruction definition, Fig. 3
shows a simplified add instruction. VMDL source code consists
of two parts. The first part declares the names of union types by
using the union keyword and external functions. The second part
is the main body of a VMDL function definition.

VMDL handles the following datatypes.
• The VM internal datatypes listed in Table 1.
• Union types that combine multiple VM internal data-types.
• Certain C datatypes that represent data in the C language.

The details will be presented in Section 4.2.
A union type represents any of the datatypes that are included

in the union type. It becomes available in VMDL code by declar-
ing it as shown in Lines 1 and 2. Line 1 defines the union type
Number, which represents either Fixnum or Flonum. Line 2
defines the union type ffs in the same manner. VMDL offers
JSValue as a predefined union type for all VM internal datatypes,
so the VM developer can thus use JSValue without defining it
explicitly.

External functions are those defined outside this VMDL defini-
tion. In Fig. 3, these are declared in Lines 4–9. It is not required
to distinguish whether an external function is written as a C func-
tion or as a VMDL function, because even if it is defined in VMDL,
it is still compiled to a C function by VMDLC. An external func-
tion is declared by giving its name followed by “:”, and then the
datatypes of its arguments and return value in the following for-
mat.

Fig. 3 Simplified version of the add instruction.

c⃝ 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

argumentTypes -> returnType
When there are multiple arguments, their datatypes before “->”
must be separated by commas and enclosed in parentheses.

An external function can have annotations attached in paren-
theses immediately before the function name. Every annotation
gives a characteristic of the external function, such as “it may
trigger GC” and “it may be called from the C part”. For example,
int to number is annotated with triggerGC (Line 5), which in-
dicates that this function may trigger GC. Given this annotation,
VMDLC automatically inserts push/pop operations as described
in Section 1 for GC target values, if any, before and after the call
to int to number.

The definition of the VMDL add function begins at Line
11. VMDL functions can be annotated in the same way as
external functions, and two annotations, vmInstruction and
triggerGC, are specified here. The vmInstruction indicates
that this function defines a VM instruction operation. A VMDL
function annotated with vmInstruction is compiled to a C code
fragment of the threaded interpreter function [2]. The code of a
vmInstruction function can use special built-in variables for
accessing the VM’s internal state, including the VM’s registers
and runtime stack. Next, the datatypes of the arguments and re-
turn value come immediately after the function name, in the same
form as for external functions. Here, the arguments are the input
operands for this instruction, and the return value is the output
operand. In the case of the add instruction, the first operand is
the output register, and the second and third operands are the in-
put registers. Thus, the two arguments v1 and v2 represent the
second and third operands, and the return value represents the
first operand.

The main body of the instruction definition begins at Line 13.
It consists of a match statement labeled with top. This statement
describes a type dispatch by the VM internal datatypes of v1 and
v2. The first case clause (Line 16) is for the case when both
operands are of the Fixnum type. The second case clause (Line
21) is for the case when both operands are of the String type.
The third case clause (Line 25) is for the case when v1 is of the
String type and v2 is of the ffs type, i.e., Fixnum, Flonum, or
Special. The last case clause (Line 31) has the condition true
and is for cases not matching any of the above conditions. In the
third case clause, the to string function converts the datatype
of v2 to String. This function, whose definition will be given
later, is declared as an external function in Line 7. The result of
the datatype conversion is stored in the local variable s. Local
variables must be declared with their datatypes, and in this case,
the datatype of s is String. After the type conversion, type dis-
patch must be performed again for v1 and the conversion result
s. This is done by the rematch statement in Line 29; rematch
specifies the label (in this example, top) of the match to be dis-
patched again and the values to be used in the match.
3.1.2 Datatype Conversion Functions

Next, as an example of a datatype conversion function, Fig. 4
shows a simplified version of the to string function.

Datatype conversion functions from an individual type to
String, such as fixnum to string, are declared as external
functions in Lines 3–5. Annotations given to to string are

Fig. 4 Simplified to string function.

specified in Line 7. Here, makeInline indicates that this func-
tion is subject to the inlining optimization, which will be de-
scribed in Section 4.5. The function definition begins at Line
8. The datatypes for a function’s arguments specify those of the
actual arguments. In this example, to string accepts a sin-
gle argument whose datatype is JSValue (i.e., any VM inter-
nal datatype), and it returns a String value. The main body
of the definition is Lines 8–23. This function is defined by us-
ing a match statement to perform type dispatch according to the
datatype of v and then returning the result of the appropriate type
conversion function for each case.
3.1.3 Built-In Functions

As an example of defining a built-in function, Fig. 5 shows
the Array.prototype.every method. Roughly speaking, this
method returns whether every element in a receiver array satisfies
a given callback function or not. In the VMDL code, this method
is implemented as a VMDL function array every, whose first
argument (a) is the receiver array and second argument (fn) is
the callback function. The every method can take an optional
argument that specifies the receiver of every call to the callback
function; if it is not given, undefined is used.

Because the callback function must be a user-defined function
(Function) or a built-in function (Builtin), the datatype of the
callback function argument is of the union type Callable (Line
2). Lines 4–15 list the types for auxiliary functions. Line 17
gives the annotations for array every. The builtinFunction
annotation states that the VM function is a built-in function.
The eJSVM internally manages a context for the current execu-
tion state, including the runtime stack and VM registers. Cer-
tain VMDL functions and external functions in VM code require
the context to be passed. For such functions, the VM developer
can use the needContext annotation. When generating C code,
VMDLC automatically provides a context argument to every func-
tion annotated with needContext.

Lines 19–44 give the definition body. In the body of a VM
function annotated with builtinFunction, a pseudo-variable
na is available and has the number of actual arguments. The body
uses a while statement to iterate on the elements of the receiver
array. In the body of the while statement, a match statement

c⃝ 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Fig. 5 Simplified every function.

performs type dispatch on the basis of the VM internal datatype
of fn. The callback function is called by send function3 or
send builtin3.

3.2 Description Based on VM Internal Datatypes
In VMDL, VM internal datatypes can be used as variable types,

VMDL function arguments, and return values. In addition, union
types that combine multiple VM internal datatypes can be used.
These enable datatype analysis at the granularity of VM internal
datatypes according to the control flow of VMDL code. At every
position in the VMDL code, this analysis finds the set of VM in-
ternal datatypes that can be stored for each variable in its scope
at runtime. The details of the analysis will be described in Sec-
tion 4.1.

3.3 Variables
There are two kinds of variables in VMDL:
• variables that hold VM internal datatype values (VM vari-

ables), and
• variables that hold C language datatype values (C variables).

Both kinds of variables must be declared in advance with their
datatypes. A VM variable obeys the single assignment rule, i.e.,
only one assignment to it is allowed on every possible execution
path. This simplifies the datatype analysis by VMDLC. Note that
assignments to the same variable on different paths are allowed,

unlike with static single assignment (SSA) form. The declared
type of a VM variable works as a static assertion. Thus, the value
to be assigned to a VM variable should be consistent with the
declared datatype. In other words, a VM variable declared as a
union type can be assigned a value of any of the VM datatypes in
the union type. For example, a Fixnum value can be assigned to
a variable declared as JSValue, but it is a static error to assign a
String value to a variable declared as Fixnum.

In contrast, VMDL does not allow union types for C datatypes.
Thus, a C variable is allowed to be reassigned. Expressions as-
signed to C variables and function arguments must match the de-
clared C datatypes.

3.4 Function Annotations
Annotations can be attached to VMDL functions and external

functions. There are three kinds of annotations: those that de-
scribe the properties of the target function, those that specify how
VMDLC handles the VMDL function, and those that are specific
to eJSVM. In the examples given in Section 3.1, triggerGC is
an instance of the first kind of annotation, while makeInline is
an instance of the second kind. An instance of the third kind is
builtinFunction. The first and second kinds of annotations are
language-common and can therefore be extended to other target
languages.

A VMDL function calling a triggerGC function must also be
annotated with triggerGC.

3.5 Interfaces with the C Language
In addition to the VM internal datatypes, VMDL defines C

datatypes, which represent types in C. For example, the int and
double types are the same as those in C, cstring represents a
C string, and CValue represents a black-box value whose content
cannot be manipulated from the VMDL code. It is not permitted to
define a union type that includes C datatypes. For arithmetic and
relational operations in VMDL, the same arithmetic conversions
are applied as in C.

VMDL allows the VM developer to define types that are
mapped to structures and arrays. By using such mapped types,
whose details are omitted in this paper, a VMDL program can ac-
cess the members of composite types.

4. VMDL Compiler
The VMDL compiler, VMDLC, converts VMDL code to C code.

Given the VM internal datatypes required by the target applica-
tion as specifications, VMDLC analyzes all the VMDL code and
outputs C source code for a customized VM with the minimum
required features for the target application.

4.1 Datatype Analysis
We informally explain the datatype analysis by VMDLC by us-

ing a specific example.
VMDLC performs static type analysis on a VMDL code by cal-

culating the type environment at every point in the code from the
top to the bottom direction. Here, a type environment is a set of
mappings between variables and their possible datatypes. Note
that every VM variable in a type environment is mapped to a sin-

c⃝ 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Table 2 Calculated type environments at each point in Fig. 3.

1st round 2nd round

(1) { { v1 7→ Fixnum, v2 7→ Fixnum }, { v1 7→ String, v2 7→ Fixnum } } { { v1 7→ Fixnum, v2 7→ Fixnum }, { v1 7→ String, v2 7→ Fixnum },
{ v1 7→ String, v2 7→ String } }

(2) { { v1 7→ Fixnum, v2 7→ Fixnum } } same
(3) { } { { v1 7→ String, v2 7→ String } }
(4) { { v1 7→ String, v2 7→ Fixnum } } same
(5) { { v1 7→ String, v2 7→ Fixnum, s 7→ String } } same
(6) { } same

gle VM internal datatype. This means that type environments do
not use union types; instead, if a VM variable has a union type,
it is represented as a set of type environments. For example, if
v’s datatype is Number, then the mapping {{v 7→ Fixnum}, {v 7→
Flonum}} is used instead of {v 7→ Number}.

One drawback of this representation is that the number of type
environments in a set can grow exponentially. As a result, unac-
ceptably large amount of computation time and space might be
required by VMDLC in the worst case. However, this undesir-
able situation did not occur with respect to building customized
eJSVMs for benchmark programs used in the evaluation in Sec-
tion 6, because the number of VM variables of union types de-
clared in the same scope was small. In fact, all VMDLC compila-
tion times of VMDL functions were within 500 milliseconds.

In the following description, we simply write “type environ-
ment” to refer to a “set of type environments”. The type envi-
ronment at the entrance of a VMDL function is determined by the
specification given by the application developer.

Type environment calculation proceeds along the control flow
of the target VMDL program. At a join point of two flows, e.g.,
at the bottom of an if statement, we take the union of the two
calculated type environments. For a match statement, the type
environment calculation may be iterated until the environment
does not change, because internal rematch statements alter the
control at the beginning of the match statement. Calculated type
environments are used to eliminate unnecessary code that is never
executed by the target application.

As an example of a datatype analysis process, consider the add
instruction shown in Fig. 3 when the following instruction speci-
fication is given.
add (-,Fixnum,Fixnum) accept

add (-,String,Fixnum) accept

add (-,_,_) unspecified

Because rematch is used in the VMDL add function, the type
environment calculation is repeated twice. Table 2 lists the cal-
culated type environment at each comment position in Fig. 3.

In the first round, the type environment at position (1) is
{{v1 7→ Fixnum, v2 7→ Fixnum}, {v1 7→ String, v2 7→
Fixnum}}, according to the given instruction specification. In the
type dispatch by the match statement, only the type conditions
of the first and third case clauses can be selected. The type en-
vironments at the top of the first case clause (Line 17, (2)) is
{{v1 7→ Fixnum, v2 7→ Fixnum}}, and that at the top of the third
case clause (Line 26, (4)) is {{v1 7→ String, v2 7→ Fixnum}}.
These are obtained by restricting v1’s datatype according to the
previous type environment at (1) through the case conditions.
Because the datatype conditions of the second and fourth case

clauses cannot match the type environment at (1), the type envi-
ronments at (3) and (6) are both empty.

Inside the third case clause (Line 25), the local variable s is
declared, and the initialization expression has a String value.
The type environment at (5) thus becomes {{v1 7→ String, v2 7→
Fixnum, s 7→ String}}. Here, the rematch statement assigns v1
to the variable v1 and s to the variable v2, and a type dispatch
is performed again with the match statement labeled with top
(Line 14). Hence, the second round of type analysis begins with
the type environment at (1) extended to {{v1 7→ Fixnum, v2 7→
Fixnum}, {v1 7→ String, v2 7→ Fixnum}, {v1 7→ String, v2 7→
String}}.

The type environment at each point in the second round is listed
in the right column of Table 2. In this round, the second case
clause (Line 21) of add is executed, because the type environment
at (1) has been extended, and the type environment at (3) becomes
{v1 7→ String, v2 7→ String}. The second case clause has no
rematch statement, and the other case clauses do not change the
type environment at (1) any further. The type environment calcu-
lation thus terminates. The right column of Table 2 lists the final
type environments for all points in the program.

As seen in the table, the type environment at the top of the
fourth case clause (Line 32, (6)) is empty, which implies that the
clause is never executed. Accordingly, VMDLC eliminates such
clauses with the empty type environments to generate the mini-
mum necessary code according to the instruction specification.

4.2 Datatypes of Variables
As described in Section 3.3, a VM datatype variable declared

as a union type can be assigned a value of any VM datatype in
that union type. In the datatype analysis process, the datatypes
for such variables in type environments are not the declared types
but the types of the actually assigned values. For example, con-
sider the following VMDL code fragment.
f(JSValue x) {

JSValue v;

if (...) {

v <- to_string(x); // (1)

} else {

v <- to_flonum(x); // (2)

}

// (3)

...

}

The variable v is declared as JSValue, but a String value is
assigned at (1), and a Flonum type value is assigned at (2). In
both execution paths of the if statement, a value is assigned to

c⃝ 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

v, so this code has no “unassigned to variable” error. The type
environment at (1) is {{x 7→ JSValue, v 7→ String}}, and that at
(2) is {{x 7→ JSValue, v 7→ Flonum}}. As a result, the type en-
vironment at (3) becomes {{x 7→ JSValue, v 7→ String}, {x 7→
JSValue, v 7→ Flonum}}. Thus, if we write code that assumes
that the value of v is a String at (3), VMDLC will report an error.
An example of such error code is f(v), for which f’s argument
is restricted to a String value.

Note that VMDLC performs the type analysis independently for
VM datatype variables and C variables,

4.3 Annotation Processing
When compiling a function annotated with vmInstruction

or builtinFunction, VMDLC automatically inserts specific
code fragments to prepare special built-in variables, e.g., those
for accessing the interpreter’s internal state in the case of
vmInstruction.

When a VMDL function annotated with triggerGC is called,
VMDLC automatically inserts push/pop operations for VM vari-
ables to/from the GC root. In some cases, these operations do not
have to be inserted, as will be described in Section 4.5.3.

Because of the automatic code insertion by VMDLC, the VM
developer only needs to pay attention to the essential program
logic of VMDL functions, without having to deal with the details
mentioned above.

4.4 Generation of Type Conversion Specifications
Datatype conversion functions are mainly called from VM in-

structions and built-in functions. Their datatypes are determined
by the instruction specifications and built-in specifications, re-
spectively. By using the information in these specifications, type
conversion specifications can be automatically obtained with-
out the application developer having to deal with them. Thus,
VMDLC has a mechanism for automatically generating type con-
version specifications. Through this mechanism, the proposed
framework performs inter-VMDL function datatype analysis to
produce the minimum required VM code in C.

As a simple example, we consider the VM add instruction
shown in Fig. 3 and the to string datatype conversion function
shown in Fig. 4. Suppose that we have the following instruction
specification for add.
add (-,String,Fixnum) accept

add (-,String,Flonum) accept

add (-,_,_) unspecified

For simplicity, suppose also that to string is called only from
the add instruction. Because v2’s datatype in the type environ-
ment at Line 27 in Fig. 3 is Fixnum or Flonum, VMDLC outputs
the following specification of to string.
to_string (Fixnum) accept

to_string (Flonum) accept

to_string (_) unspecified

In this way, VMDLC obtains the datatype information for the nec-
essary arguments of every datatype conversion function.

If a datatype conversion function is called from the C part
of the VM source code, VMDLC stops computing the necessary
datatype information and instead outputs the specification as “all

datatypes are accepted”. Such a function is annotated by the VM
developer with a calledFromC annotation.

4.5 Optimizations
VMDLC performs multiple optimizations by using the results

of the datatype analysis. Note that it does not perform the general
optimizations performed by a C compiler, because the generated
C code is compiled separately by the C compiler.
4.5.1 Function Inlining

When a VMDL function is called in a case branch of a match
statement, it may perform a type dispatch again, even though a
type dispatch has already been performed in the match statement.
Consider the add function shown in Fig. 3 again. If the case
clause at Line 25 is selected, the to string function shown in
Fig. 4 is called at Line 27. In to string, a type dispatch is per-
formed again according to its argument, which comes from v2 in
add. As a result, duplicated type dispatches on the same value oc-
cur in both the caller and the callee of to string. To avoid this,
the function inlining optimization eliminates such redundant, use-
less type dispatches.

To enable inlining, the makeInline annotation is given to the
function to be inlined. For the call to the to string function in
Line 27 of the add function, the argument v2 is already known to
be of Fixnum type because of the type environment at (4). Thus,
this call is replaced with a call to the fixnum to string func-
tion, which is returned in the case clause for Fixnum at Line
14 in Fig. 4. As described above, the function inlining here is de-
signed to optimize type dispatches. Unlike general inlining, func-
tion inlining is performed only when the replacement consists of
a single expression such as fixnum to string(v2). This is be-
cause the purpose of this inlining optimization is to eliminate
redundant type dispatches while preventing the VM size from
growing at the same time.

Function inlining has another advantage besides the elimina-
tion of redundant type dispatches. The VM here has two kinds
of type conversion functions: those that accept all VM internal
datatypes for an argument, such as the to string function, and
those that expect a unique VM internal datatype, such as the
fixnum to string function. We refer to the former as to y
functions and to the latter as x to y functions. The inlining opti-
mization enables the VM developer to use to y functions even in
a context in which the source datatype of a conversion is uniquely
determined without causing extra overheads for duplicated type
dispatches. This capability enhances the descriptiveness and re-
duces the burden on the VM developer who does not need to be
fully aware of type environments or to worry about identifying
which x to y function to use.
4.5.2 Type Condition Splitting

The function inlining optimization cannot be applied in a con-
text in which the argument datatype of a function call to be inlined
is not uniquely determined. For example, suppose that the follow-
ing instruction specification is given to the add function shown in
Fig. 3.
add (-,Fixnum,Fixnum) accept

add (-,String,Fixnum) accept

add (-,String,Flonum) accept

c⃝ 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Fig. 6 A case clause with splitting type conditions.

add (-,_,_) unspecified

The only difference from the previous instruction specifica-
tion given in Section 4.1 is that the combination of String
and Flonum is also allowed, in the third line. With this in-
struction specification, the type environment at (4) in the add
function becomes {{v1 7→ String, v2 7→ Fixnum}, {v1 7→
String, v2 7→ Flonum}}, where v2 has two possible datatypes,
Fixnum and Flonum. Here, function inlining is not per-
mitted for to string(v2) in Line 27, because v2’s type is
not uniquely determined. There are two possible replace-
ments; the first is fixnum to string(v2), and the second
is flonum to string(v2). This situation occurs because the
case clause specifies the type condition by using the union type
ffs for the variable v2.

For such a case, VMDLC enables function inlining by split-
ting the case clause so that the condition for a union type is di-
vided into conditions for the individual datatype. By splitting
the case clauses in the above example, the add function would
appear as shown in Fig. 6, in which the case clause of the orig-
inal code (Line 25 in Fig. 3) is divided into three case clauses
(Lines 6, 11, and 16 in Fig. 6). Because v2’s datatype is now
unique in each case clause, the inlining optimization can be ap-
plied. Specifically, to string(v2) in Line 8 is replaced with
fixnum to string(v2) and to string(v2) in Line 13 is re-
placed with flonum to string(v2). Note that the case clause
starting at Line 16 will be eliminated and not included in the C
code, because the type environment is empty.

Note, however, that splitting a case clause increases the num-
ber of case clauses and duplicates the body of the original case
clause in the VMDL code, which might increase the VM size.
Accordingly, it is necessary to limit the type conditions to be split
to those that are expected to be effective. To this end, VMDLC
accepts options from the application developer to narrow down
the type conditions to be split and performs splitting only when
function inlining becomes available.
4.5.3 Push and Pop Elimination

As another optimization, VMDL suppresses the generation of
unnecessary push/pop operations in the following four cases.

First, in an eJSVM, some VM internal datatypes are repre-

sented as immediate values without any pointers. For example,
a Fixnum value has a two’s complement representation embed-
ded in a word. Even if GC occurs, it is not necessary to per-
form push/pop operations for such immediate values because
these contain no pointers. As a result of VMDLC’s type anal-
ysis, push/pop operations can be eliminated when the type en-
vironment indicates that a VM variable is of a datatype with an
immediate representation, like Fixnum.

Second, some functions annotated with triggerGC cause GC
only when specific datatypes are passed. For example, consider
the to double function, which is given a value of a VM inter-
nal datatype and converts it to a C double value. This func-
tion causes GC only when a value of JS datatype Object (e.g.,
Simple object and Array) is given, because it allocates in-
termediate data on the heap, but it does not do so when other
datatypes are given. Accordingly, if type analysis indicates that
the actual argument of a to double call is of a VM internal
datatype that does not cause GC, and if this call has been suit-
ably replaced through inlining, then it is not necessary to wrap
the replaced call with a push/pop.

Third, push/pop operations are not inserted for a VM variable
that is never used after a call of a triggerGC function.

Fourth, when multiple triggerGC functions are successively
called, pop and push operations for the same variables between
the two such function calls are eliminated. For example, for a
series of two triggerGC VM function calls “f(); g();”, and
two Value variables, a and b, VMDLC generates
push(&a); push(&b); f(); g(); pop(); pop();

instead of the following redundant code.
push(&a); push(&b); f(); pop(); pop();

push(&a); push(&b); g(); pop(); pop();

For simplicity, VMDLC applies this optimization within every ba-
sic block.

4.6 Generation of C Code
VMDLC generates C code from VMDL code unless it detects

any errors via its datatype analysis. Each corresponding C state-
ment is uniquely and naturally determined from a VMDL state-
ment except for the match and rematch statements. For match
and rematch, VMDLC outputs (nested) switch and goto state-
ments by using the algorithm given in our previous paper [21].
4.6.1 Example of VM Instruction

Figure 7 shows the formatted C code generated from the VM
add instruction shown in Fig. 3, given the instruction specifica-
tion described in Section 4.4. Although the specification does not
specify the case of add (-,String,String) as accepted, the
VMDL’s datatype analysis judges this case as necessary, because
the rematch statement in Line 29 in the add instruction requests
the case in which both operands are String values.

This code fragment is included in the main loop of the threaded
interpreter. In that main loop, v1 and v2 have been appropri-
ately defined to denote the first and second input operands, re-
spectively. Line 1 generates a label for the add instruction. The
match statement in the VMDL code is compiled to nested switch
statements. The eJSVM uses the tag values described in Sec-
tion 1 to identify VM internal datatypes, and these are obtained

c⃝ 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Fig. 7 Generated C code for the VM add instruction.

by using get ptag (Lines 4 and 6). The outer switch in the
generated code first dispatches according to v1’s datatype, and
in the String case (Line 5), the inner switch dispatches ac-
cording to v2’s datatype. Note that, in the Fixnum case (Line
22) for the outer branch, an inner switch statement for check-
ing whether v2 is a Fixnum is unnecessary. This is because
add (-,Fixnum,Fixnum) is the only acceptable combination of
datatypes in which the first operand is a Fixnum, while the other
combinations are unspecified; we can thus assume that v2 is
of the Fixnum type if the first operand is of a Fixnum. The as-
signments to regbase[r0] (Lines 9 and 26) set the results to the
destination of the add instruction. For the rematch statement,
the generated code reassigns both v1 and v2 appropriately (Line
18), and then goes to the top of the outer switch. Although re-
dundant assignments are generated, we expect the C compiler to
remove such redundancies.
4.6.2 Example of Built-In Function

Figure 8 shows the formatted C code generated from the VM
array every function shown in Fig. 5, given the built-in specifi-
cation of “array every (, ,) accept”.

Because the VMDL function has been annotated with
needContext, the context argument is automatically provided.
In addition, from the builtinFunction annotation, fp (frame
pointer) and na (number of arguments) are also added as argu-
ments. In an eJSVM implementation, the arguments given to a
built-in VMDL function (e.g., a, fn, and this for array every)
are given via an array of VM registers, which is named args.
Line 2 is added by the builtinFunction annotation and
makes args available for accessing actual arguments. Lines 3–5
obtain the receiver, the callback function, and the this object
from args and assign them to their corresponding local Value
variables. Because int to number and get array element
have been annotated with triggerGC, push/pop operations

Fig. 8 Generated C code for the VM array every function.

are automatically inserted. Note that because of the push/pop
elimination optimization, redundant pops and pushes have been
removed between these two function calls (Lines 12–14). Here,
PUSHn and POPn are macros that are expanded to n pushes and n
pops, respectively.

The switch statement (Line 6) generated from the match
statement in the VMDL code performs a type dispatch by using the
“header tag” value in the object body of a Function or Builtin,
which is obtained by using get htag. In the eJSVM, the return
value of a built-in function has to be stored in a special register
by using set a (Lines 36 and 42).

5. Utility Tools
5.1 Profiler and Specification Generator

To help the application developer prepare instruction specifi-
cations and built-in specifications, the proposed framework pro-
vides the profiler and the specification generator. The profiler is
a full-set eJSVM that can record logs of the names and datatypes
of the operands/arguments of executed VM instructions and built-
in functions. Note that logs are not recorded for type conversion
functions, because their specifications can be inferred and gen-
erated by VMDLC. The profiling is meant to be performed on a
desktop computer, with execution of the target application by the
full-set eJSVM. Specifications are obtained by giving the gener-
ated log files to the specification generator.

c⃝ 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

When using this profiler, the application developer is expected
to iterate profile runs by giving various inputs until all possible
datatypes that the application might use are obtained. For an ap-
plication that is given a fixed input, such as one in the benchmark
programs used in Section 6, its minimum specifications can be
obtained with a single profile run.

5.2 Code Selector
In general, there are VM instructions and built-in functions

that are never used by the target application. The specifica-
tion files generated by the specification generator contain only
unspecified lines for these cases. For example, if the target ap-
plication does not use the VM leftshift instruction, the follow-
ing line is generated for this instruction in the instruction specifi-
cation file.
leftshift (-,_,_) unspecified

The code selector excludes the VMDL files for unspecified
VMDL functions and leaves only the files required for later pro-
cessing by VMDLC. Note that the code selector excludes both
unnecessary VM instructions and unnecessary built-in functions.

6. Evaluation
6.1 Evaluation Setup

To evaluate the proposed framework, we generated eJSVMs
for the following two devices:
• a Raspberry Pi 3 Model B+ (RP), and
• a FRDM-K64F (FD).

We used the latter as an instance of small devices for embedded
systems. Table 3 summarizes the details of the execution envi-
ronments for those devices. For both environments, we generated
eJSVMs with a 32-bit configuration. By using the profiler and the
specification generator, we prepared the minimum specifications
for each benchmark program that we used in the evaluation. Of
course, the minimum specifications may differ from program to
program. Each eJSVM generated from these specifications was
an eJSVM customized for each benchmark program.

We used eight programs from the AreWeFastYet bench-
mark [15] and 12 programs from the SunSpider benchmark *2.
These programs were slightly modified to run on an eJSVM. In
addition, we used the dht11 benchmark program [17], which we
created on the basis of a program that was actually used in IoT
devices. It repeatedly converts a sequence of bits from a tempera-
ture and humidity sensor into numerical temperature and humid-
ity values.

For each benchmark program, we used the following eJSVMs

Table 3 Execution environments for evaluation.

RP FD

CPU Cortex-A53 (ARMv8) Cortex-M4F (ARM)
64-bit SoC

Frequency 1.40 GHz 120 MHz
Memory 1 GB 256 KB RAM +

1,024 KB flash
OS Raspbian 9.13 mbed-os-6.14.0
C compiler GCC 6.3.0 20170516 GCC 7.3.1 20180622

+deb9u1 (15:7-2018-q2-6)

*2 https://webkit.org/perf/sunspider/sunspider.html

in the evaluation.
• An eJSVM of the previous version [21] (Prev), which was

generated by the old DSL (vmgen) for describing VM in-
structions. The old DSL could describe type dispatching
conditions, but the code for each branch had to be given by
a C code fragment. Thus, we gave up the analysis of the C
code on the basis of VM internal datatypes. The previous
version was also not equipped with a code selector mecha-
nism to exclude unnecessary function definitions. Note that
this mechanism was implemented in VMDLC.

• An eJSVM generated by VMDL without any optimization
(Opt−).

• An eJSVM generated by VMDL with inlining optimization
(OptI).

• An eJSVM generated by VMDL with both inlining and type
condition splitting optimizations (OptIS).

When generating eJSVMs on the RP with the C compiler, we
enabled inline caching [5] and hidden class [4] caching at alloca-
tion sites. When generating eJSVMs on the FD, however, we had
to disable these capabilities because of the limited RAM size. All
of the VMs used the garbage collection with the Fusuma com-
paction [18].

6.2 Descriptiveness and Safety
First, we evaluated whether VMDL improved both the descrip-

tiveness and safety of VM programs.
6.2.1 Type Dispatch

In C, type dispatches based on multiple datatypes are described
by nested and usually complicated switch statements. In con-
trast, we found that VMDL allowed the VM developer to write
type dispatches flatly by using match statements. Moreover,
datatype conditions could be expressed concisely by using log-
ical operations.
6.2.2 Automatic Push and Pop Insertion

The annotations given to VMDL functions provide information
to VMDLC, which enables it to generate a program that follows
the internal implementation of the VM. Because of this mecha-
nism, the VM developer can write VMDL functions in a concise
manner without having to deal with the VM’s issues in detail.

Automatic insertion of push/pop code for a triggerGC func-
tion is a typical example of how the descriptiveness of VM pro-
grams can be improved. In the VM code of the previous eJSVM,
denoted as Prev, 36 save and restore operations were contained
in the VM instructions, type conversion functions, and so on, and
these were manually written in C with the VM developer’s care-
ful coding. With the current eJSVM, however, these descriptions
were replaced with VMDL code. As a result, manual insertions of
these explicit push/pop operations was no longer necessary. This
shows the effectiveness of improving the descriptiveness of VM
code and reducing the burden on the VM developer. In addition,
the automatic push/pop insertion improved the safety of the VM
code, because errors from forgetting to insert the necessary code
for those operations could no longer occur.
6.2.3 Context Passing

As described in Section 3.1.3, the needContext annotation
can be attached to functions that require the context to be

c⃝ 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Table 4 VM sizes (in bytes) and numbers of inlining optimizations.

Program VM size (RP) VM size (FD) Inlining
Prev Prev+ Opt− OptI OptIS Prev Prev+ Opt− OptI OptIS OptI OptIS

AreWeFastYet benchmark
Bounce 77,876 61,396 60,060 59,964 138,744 101,456 103,440 103,184 22
List 77,732 61,232 59,804 59,780 138,680 101,440 103,280 103,088 20
Mandelbrot 78,212 61,772 60,520 60,344 +166 139,216 101,440 104,048 103,912 +312 24 +5 (3)
Permute 77,820 61,324 59,884 59,856 138,752 101,440 103,360 103,160 20
Queens 77,760 61,264 59,828 59,820 138,688 101,440 103,280 103,088 20
Richards 78,324 61,828 60,556 60,548 139,432 101,440 104,056 103,824 25
Sieve 77,792 61,296 59,868 59,860 138,712 101,440 103,328 103,136 20
Towers 77,912 61,424 59,988 59,972 138,816 101,440 103,424 103,224 20

SunSpider benchmark
3d-cube 78,044 61,220 60,472 60,188 + 20 139,232 107,224 110,048 109,880 +224 33 +4 (2)
access-binary-trees 76,860 59,800 58,208 58,088 138,304 101,104 101,776 101,744 17
access-fannkuch 76,212 60,100 57,628 57,556 137,480 102,512 101,536 101,504 18
access-nbody 77,708 60,276 59,172 59,044 +132 139,000 101,624 103,728 103,608 +328 18 +6 (3)
bitops-3bit-bits-in-byte 75,808 58,360 56,548 56,516 136,968 100,720 100,152 100,112 14
bitops-bits-in-byte 75,736 58,288 56,456 56,436 136,928 100,720 100,112 100,072 12
bitops-bitwise-and 75,704 58,256 56,472 56,468 136,928 100,720 100,096 100,104 12
controlflow-recursive 75,852 58,404 56,668 56,600 137,096 100,720 100,288 100,248 14
math-partial-sums 76,748 59,924 58,448 58,312 + 68 138,120 111,072 111,880 111,768 +240 23 +4 (2)
math-spectral-norm 77,076 60,228 59,044 58,908 + 28 138,384 101,624 103,088 102,960 + 72 22 +2 (1)
string-base64 77,116 61,252 60,088 59,644 +100 138,320 101,864 103,320 102,832 + 64 33 +1 (1)
string-fasta 77,400 60,912 59,664 59,504 +140 139,176 101,312 104,248 104,152 + 72 28 +3 (2)

IoT program
dht11 76,816 60,200 58,864 58,772 137,832 101,040 101,888 101,504 27

passed. When generating C code for a function annotated with
needContext, VMDLC automatically supplies the context argu-
ment. This annotation frees the VM developer from giving the
context argument explicitly, which is necessary when writing VM
instructions, datatype conversion functions, and built-in functions
directly in C. In this evaluation, we found that all 466 instances of
explicit context passing in the Prev code were reduced by using
VMDL.
6.2.4 Type Checking

Type checking for VM internal datatypes helps to statically
detect type errors. In the case of C, the Value type described
in Section 1 is the only C datatype that represents all first-class
values in the target language, and it is impossible to type check
statically on the basis of VM internal datatypes. In contrast,
VMDL code can be type checked statically at the granularity of
VM internal datatypes, which improves the safety of VM pro-
grams. As a specific example, we describe a case study on the
String.prototype.split method.

The built-in method split(separator, limit) returns an Array
object in which substrings of the receiver String split by
separator are stored. The second argument, limit, specifies a limit
on the length of the returned array. With Prev code, we defined
this built-in method in C, including the following code.
cint lim = (args[2] == JS_UNDEFINED)?

...: number_to_cint(args[2]);

Here, args[2] is limit, whose datatype is Value, and cint is
a type synonym for C’s signed integer. However, this code was
a bug, because limit was restricted as a Number, the expected
VM internal datatype for number to cint’s argument. This is
against the specification of split, in which any VM internal
datatype was allowed for limit. This bug was undetected by the C
compiler because the C type of the argument was Value. In fact,
we were not aware of the bug until we implemented the same
functionality in VMDL as described below and were notified of

Fig. 9 VMDL definitions for split.

the error signaled by VMDLC.
Next, we defined split as the VMDL function string split.

First, we used the VMDL code shown in Fig. 9 (a), which directly
corresponded to the above C code. However, VMDLC signaled
an error during compilation, because limit, the third argument
of the built-in function split, was declared as a JSValue (Line
4), but it was passed as a number to cint argument declared as
a Number. These two VM internal datatypes were inconsistent,
that is, JSValue was not a subset of Number. We thus corrected
string split in VMDL as shown in Fig. 9 (b). In this code,
toInteger, whose argument was JSValue, was used instead of
number to cint. Through this correction, string split was
successfully defined.

6.3 Efficiency
6.3.1 VM Size

Table 4 lists the VM size (in bytes) for each VM generated

c⃝ 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

for the RP and FD. For comparison, we also implemented an
extended version of Prev, which we call Prev+, to include the
code selection mechanism for built-in functions. In the table,
each OptIS column indicates the difference from the correspond-
ing OptI column, with an empty cell indicating that there was no
difference. The reason for the differences in VM sizes was that the
number of case clauses was increased by the type condition split-
ting optimization. As the number of case clauses increased, the
number of chances to apply inlining optimization also increased.
The table also lists the numbers of inlining optimizations, with
the numbers of split type conditions in parentheses.

Note that for Prev (and for Prev+), the VM developer manually
created the carefully optimized code from the beginning. In con-
trast, the use of VMDL frees the VM developer from the burden of
such careful coding. Nevertheless, the VM sizes for Prev+, Opt−,
and OptI were almost the same, although the sizes of Opt− and
OptI for the RP were a little smaller and those for the FD were a
little larger than for Prev+.

Comparing Opt− and OptI, we can see that inlining optimiza-
tions did not affect the VM sizes. This was because we restricted
function inlining from a function-call expression to another ex-
pression. This suppressed the increase in code size after inlining,
and it also eliminated functions that were no longer called from
anywhere after inlining.

For every program that applied the type condition splitting op-
timization, the VM size for OptIS was larger than that for OptI,
because new case clauses were generated. However, the size
growth was at most only 166 bytes for the RP and 328 bytes for
the FD, more specifically, the growth was about 0.3% of the total
size. Despite this, as will be seen in the next subsection, the exe-
cution time for OptIS with such a program was about 5% shorter
than that for OptI on average.
6.3.2 Execution Time

By using VMDL, the VM developer does not have to manu-
ally write carefully optimized VM code because of the VMDLC’s
datatype analysis and various optimizations. In contrast, such
careful coding was necessary in the Prev approach. In spite of
this, in this evaluation, we found that VMDL could generate VMs
that were as efficient as, or even more efficient than VMs gener-
ated with Prev code.

Figures 10 and 11 show the execution times, averaged over 50
runs (RP) and 20 runs (FD), of the benchmark programs on the
RP and FD, respectively. Here, we only show the results for Opt−

and OptI, while those for OptIS will be presented later. For each
program, the execution times were normalized to the execution
time of the Prev case. The geometric mean is also shown. On the
FD, Richards and controlflow-recursive failed to run due to lack
of memory.

For more than half of the programs, Opt− was slower than
Prev. This was because the Prev code was manually optimized
by the VM developer in terms of VM internal datatypes, whereas
the VMDL code was not. For example, in the Prev code with the
old DSL, the VM developer used appropriate x to y functions in
dispatched body code written in C. In contrast, with VMDL, only
to y functions were used in case clauses, because every case
clause was the target of type analysis for optimization. However,

Fig. 10 Normalized execution times (RP).

Fig. 11 Normalized execution times (FD).

Fig. 12 Normalized execution times for OptIS as compared to OptI.

because Opt− did not optimize the code, calls to to y functions
remained and caused duplicated type dispatches. Averaged over
the results on all the executed benchmarks, the execution times
for Opt− were 102.1% (RP) and 101.1% (FD) of those for Prev.

For many of the programs, OptI was faster than Prev. This indi-
cated that the VMDL code was optimized in terms of VM internal
datatypes through function inlining. Averaged over the results on
all the executed benchmarks, the execution times for OptI were
97.4% (RP) and also 97.4% (FD) of those for Prev.

For seven programs that applied the type condition splitting op-
timization, the execution times for OptIS were smaller than those
for OptI. Figure 12 shows the execution time ratios (OptIS/OptI)

c⃝ 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

for those programs. Note that this figure shows speedup com-
pared to OptI, while Figs. 10 and 11 shows the normalized exe-
cution times compared to Prev. Both the RP and the FD showed
almost the same tendency, with averages of 95.6% and 96.2%,
respectively.

7. Related Work
eJS previously used a simple DSL [21], vmgen, to define VM

instructions. The syntax of vmgen is limited and focused only
on generating dispatch code based on the operand datatypes in
the definitions of VM instructions. An instruction is described as
a set of operations that are guarded with operand datatypes, and
each operation consists of a C code fragment that is directly in-
cluded in the generated code. The role of the DSL processor is
limited to generating a datatype-based dispatch code in terms of
C’s match statement to choose one of the operations. In contrast,
VMDL offers a syntax that makes it easy to perform static analysis
on the operations of VM instructions, datatype conversion func-
tions, and built-in functions. This enables VMDLC to infer the
possible set of datatypes for each VM variable, which enhances
error detection and various optimizations.

Latendresse [14] generated a compact VM for the Scheme lan-
guage by automatically generating new instructions for the VM.
That approach assigns new opcodes for repetitive sequences of
instructions to reduce the VM size. We also seek to reduce the
VM size, but our approach is totally different in that we eliminate
unnecessary parts of the VM for the target application.

Jikes RVM [1] is a meta-circular Java VM, that is, a Java VM
is written in Java. The Maxine VM [22] is also a meta-circular
Java VM. Both of those approaches use a safer general-purpose
language than C, namely Java, to describe VM code and thus in-
crease the safety of the VM. In contrast, our approach defines
and uses a DSL, called VMDL, that achieves both descriptiveness
and safety. Jikes RVM’s ahead-of-time (AOT) compiler compiles
the class files of the Java VM into native code. Write barriers for
GC are woven into the VM executable by the AOT compiler. The
AOT compiler also recognizes special annotations, such as one
specifying that the annotated method does not cause GC, to con-
trol how annotated methods are compiled. VMDL also has similar
annotations.

Vmgen *3 [8], [10] and its successor Tiger [3] are virtual ma-
chine interpreter generators with special support for stack ma-
chines. Interpreters of VMs such as Gforth [7] and Cacao Java
VM [11] were described in Vmgen. Specifically, those ap-
proaches defined DSLs and used them to describe instructions,
which were essentially C code fragments annotated with meta
information such as the effect of an instruction on stack-top ele-
ments. The meta-information was used to generate an interpreter
with various common optimizations such as stack caching and
superinstructions. In contrast to VMDL, Vmgen and Tiger have
no special support for dynamically typed values and only C types
are used in their DSLs.

There are many works on static analysis for scripting lan-
guages and dynamically typed languages [9], [13], [16], [19],

*3 Note that this is a different technology from vmgen in the previous ver-
sion of eJSTK.

[20]. VMDL can be regarded as an instance of a special-purpose
scripting language. VMDLC applies a control-flow analysis to
calculate type environments.

The Truffle DSL [12] is a language for describing abstract syn-
tax tree (AST) interpreters. It consists of the Java language with
special annotations. In Truffle, operations of the target language,
such as add, are described as AST nodes, and the VM developer
implements methods to execute these operations for the given ar-
guments. The Truffle DSL allows the VM developer to imple-
ment specialized methods for arguments having specific types.
The Truffle framework generates glue code for each AST node
that dispatches to specialized methods according to the datatypes
of the arguments. An AST interpreter written in the Truffle DSL
is executed by a Java VM with a special just-in-time (JIT) com-
piler [24]. The JIT compiler inlines the execution method of a
child node into the execution method of its parent node, which
eliminates type-based dispatch code for the child node. As pro-
posed here, the type-based dispatch and inlining of VMDL have
essentially the same effects; however, VMDL is meant for em-
bedded systems with restricted resources. Accordingly, the inlin-
ing of VMDL is carefully designed not to bloat the VM footprint.
VMDL also allows the VM developer to limit possible datatypes
by specifying operands.

8. Conclusion
This paper proposes a DSL for describing VM programs for

embedded systems. This DSL enables static VM datatype analy-
sis and compilation into C programs by applying type-based op-
timizations. The proposed approach is implemented as a frame-
work for developing customized eJSVMs, JavaScript VMs for
embedded systems, which are specialized for specific target ap-
plications. The framework consists of VMDL (the DSL), VMDLC
(a VMDL compiler), and related utilities. VMDL enables descrip-
tion of VM programs on the basis of VM internal datatypes, and
VMDLC analyzes the programs at the granularity of these inter-
nal datatypes, which is difficult for VM programs that are directly
written in C. The proposed approach largely solves the descrip-
tiveness, safety, and VM size problems described in Section 1.

Acknowledgments This work was partly supported by JSPS
KAKENHI Grant Number JP18KK0315.

References
[1] Alpern, B., Augart, S., Blackburn, S.M., Butrico, M.A., Cocchi, A.,

Cheng, P., Dolby, J., Fink, S.J., Grove, D., Hind, M., McKinley, K.S.,
Mergen, M.F., Moss, J.E.B., Ngo, T.A., Sarkar, V. and Trapp, M.: The
Jikes Research Virtual Machine project: Building an open-source re-
search community, IBM Syst. J., Vol.44, No.2, pp.399–418 (2005).

[2] Bell, J.R.: Threaded Code, Comm. ACM, Vol.16, No.6, pp.370–372
(1973).

[3] Casey, K., Gregg, D. and Ertl, M.A.: Tiger – An Interpreter Gen-
eration Tool, Proc. Compiler Construction, 14th International Con-
ference (CC 2005), Lecture Notes in Computer Science, Vol.3443,
pp.246–249, Springer (2005).

[4] Chambers, C., Ungar, D.M. and Lee, E.: An Efficient Implementation
of SELF a Dynamically-Typed Object-Oriented Language Based on
Prototypes, Proc. Conference on Object-Oriented Programming: Sys-
tems, Languages, and Applications (OOPSLA 1989), pp.49–70, ACM
(1989).

[5] Deutsch, L.P. and Schiffman, A.M.: Efficient Implementation of the
Smalltalk-80 System, Proc. 11th Annual ACM Symposium on Prin-
ciples of Programming Languages (POPL 1984), pp.297–302, ACM
(1984).

c⃝ 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

[6] ECMA International: Standard ECMA-262 - ECMAScript 2021 Lan-
guage Specification (2021).

[7] Ertl, M.A.: A Portable Forth Engine, Proc. EuroFORTH ’93 Confer-
ence (1993).

[8] Ertl, M.A., Gregg, D., Krall, A. and Paysan, B.: Vmgen: A generator
of efficient virtual machine interpreters, Softw., Pract. Exper., Vol.32,
No.3, pp.265–294 (2002).

[9] Graver, J.O. and Johnson, R.E.: A Type System for Smalltalk, Con-
ference Record of 17th Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL 1990), pp.136–150, ACM (1990).

[10] Gregg, D. and Ertl, M.A.: A Language and Tool for Generating Ef-
ficient Virtual Machine Interpreters, Proc. Domain-Specific Program
Generation, pp.196–215 (2003).

[11] Gregg, D., Ertl, M.A. and Krall, A.: Implementing an Efficient Java
Interpreter, Proc. High-Performance Computing and Networking, 9th
International Conference, HPCN Europe 2001, pp.613–620 (2001).

[12] Humer, C., Wimmer, C., Wirth, C., Wöß, A. and Würthinger, T.:
A domain-specific language for building self-optimizing AST inter-
preters, Proc. 2014 International Conference on Generative Program-
ming: Concepts and Experiences (GPCE 2014), pp.123–132, ACM
(2014).

[13] Jensen, S.H., Møller, A. and Thiemann, P.: Type Analysis for
JavaScript, Proc. Static Analysis, 16th International Symposium (SAS
2009), Lecture Notes in Computer Science, Vol.5673, pp.238–255,
Springer (2009).

[14] Latendresse, M.: Automatic Generation of Compact Programs and
Virtual Machines for Scheme, Proc. Workshop on Scheme and Func-
tional Programming (2000) (online), available from ⟨http://www.
ai.sri.com/˜latendre/pli.pdf⟩.

[15] Marr, S., Daloze, B. and Mössenböck, H.: Cross-Language Com-
piler Benchmarking—Are We Fast Yet?, Proc. 12th Symposium on
Dynamic Languages (DLS 2016), pp.120–131, ACM (2016).

[16] Monat, R., Ouadjaout, A. and Miné, A.: Static Type Analysis by Ab-
stract Interpretation of Python Programs, 34th European Conference
on Object-Oriented Programming (ECOOP 2020), LIPIcs, Vol.166,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp.17:1–17:29
(2020).

[17] Onozawa, H., Iwasaki, H. and Ugawa, T.: Customizing JavaScript Vir-
tual Machines for Specific Applications and Execution Environments
(in Japanese), Computer Software, Vol.38, No.3, pp.23–40 (2021).

[18] Onozawa, H., Ugawa, T. and Iwasaki, H.: Fusuma: Double-ended
threaded compaction, Proc. 2021 ACM SIGPLAN International Sym-
posium on Memory Management (ISMM 2021), pp.94–106, ACM
(2021).

[19] Shivers, O.: Control-Flow Analysis in Scheme, Proc. ACM SIG-
PLAN’88 Conference on Programming Language Design and Imple-
mentation (PLDI 1988), pp.164–174, ACM (1988).

[20] Tobin-Hochstadt, S. and Felleisen, M.: The design and implementa-
tion of typed scheme, Proc. 35th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2008), pp.395–406,
ACM (2008).

[21] Ugawa, T., Iwasaki, H. and Kataoka, T.: eJSTK: Building JavaScript
virtual machines with customized datatypes for embedded systems, J.
Comput. Lang., Vol.51, pp.261–279 (2019).

[22] Wimmer, C., Haupt, M., de Vanter, M.L.V., Jordan, M.J., Daynès, L.
and Simon, D.: Maxine: An approachable virtual machine for, and
in, java, ACM Trans. Archit. Code Optim., Vol.9, No.4, pp.30:1–30:24
(2013).

[23] Wirfs-Brock, A. and Eich, B.: JavaScript: The first 20 years, Proc.
ACM Program. Lang., Vol.4, No.HOPL, pp.77:1–77:189 (2020).

[24] Würthinger, T., Wimmer, C., Humer, C., Wöß, A., Stadler, L., Seaton,
C., Duboscq, G., Simon, D. and Grimmer, M.: Practical partial eval-
uation for high-performance dynamic language runtimes, Proc. 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2017), pp.662–676, ACM (2017).

[25] Würthinger, T., Wimmer, C., Wöß, A., Stadler, L., Duboscq, G.,
Humer, C., Richards, G., Simon, D. and Wolczko, M.: One VM to rule
them all, Proc. ACM Symposium on New Ideas in Programming and
Reflections on Software (Onward! 2013), pp.187–204, ACM (2013).

Yuta Hirasawa received his M.E. de-
gree from the University of Electro-
Communications in 2022 and has been en-
gaged in Fujitsu Limited since 2022. His
research interests are programming lan-
guages.

Hideya Iwasaki is a professor in the
School of Science and Technology at
Meiji University, Japan. Until the end of
March 2022, he had been a professor in
the Graduate School of Informatics and
Engineering at the University of Electro-
Communications. He has been a mem-
ber of the Science Council of Japan since

2011. He received an M.E. degree in 1985 and Dr.Eng. degree
in 1988 from the University of Tokyo. His research interests in-
cludes programming languages and systems, parallel program-
ming, systems software, and constructive algorithmics. He is a
member of the IPSJ and ACM.

Tomoharu Ugawa received his B.Eng.
degree in 2000, M.Inf. degree in 2002,
and Dr.Inf. degree in 2005, all from Ky-
oto University. He worked for a research
project on real-time Java at Kyoto Univer-
sity from 2005 to 2008. In 2008–2014, he
was an assistant professor at the Univer-
sity of Electro-Communications in 2008–

2014 and an associate professor at Kochi University of Technol-
ogy in 2014–2020. He is currently an associate professor at the
University of Tokyo. His work is in the area of implementation
of programming languages with a specific focus on memory man-
agement. He received the IPSJ Yamashita SIG Research Award
in 2012.

Hiro Onozawa received his M.E. de-
gree from the University of Electro-
Communications in 2022 and has been
engaged in KLab Inc. since 2022. His
research interests are JavaScript runtime
systems and memory management.

c⃝ 2022 Information Processing Society of Japan

