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Abstract: Intermittent computing is an emerging computing paradigm to enable computation in devices
powered by energy harvesting. This can enable several battery-less and low maintenance applications. Pre-
vious research in intermittent computing has shown that it is possible to support complex computation
under sever energy constraints and frequent interrupts with checkpointing. However, the performance is
still limited by the system architecture and energy efficiency. In this work we propose a model for a non-
volatile FPGA based reconfigurable heterogenous architecture and investigate its potential for future high
performance intermittent computing systems.
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1. Introduction

Recent years have witnessed a rapid growth in the num-

ber of IoT devices and their applications. For many ap-

plications, batteries require maintenance and limit the life

time of the device. Energy-Harvesting devices can extract

energy from the environment utilizing different forms of en-

ergy like solar, kinetic and RF. Replacing batteries with EH-

devices can enable self-powered devices that require little to

no maintenance.

Since energy harvesting devices relies on unpredictable

energy sources, they impose multiple challenges. They can

only buffer and store a small amount of energy at a time.

Additionally, the nature of the power source results in fre-

quent and unpredictable failures. Hence, EH-powered de-

vices must carry computation under strict energy budgets

and frequent interrupts, which is known as intermittent com-

puting. Intermittent computing deals with the challenge of

guaranteeing correct forward progress of the program exe-

cution under very frequent and unpredictable interruptions.

The system utilizes the buffered energy to perform compu-

tation while checkpointing its progress. When the buffer is

empty a failure occurs, and the system must wait for en-

ergy to become available again in the next cycle. The in-

terrupts vary with the energy source and can range from

every milliseconds to every few minutes and hours [5]. This

has motivated extensive research in efficient checkpointing
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techniques ranging from software to hardware levels.

Although achieving low checkpointing overheads can en-

able running complex applications in intermittent systems,

research have shown that the overall performance is still lim-

ited by the underlying architectures capabilities and energy-

efficiency [7][9]. Ultra-low-power architectures have been

favoured due to their low power operation and high pro-

grammability which means they can support various EH

sources and multiple applications. However this comes with

the cost of performance. Performance in an intermittent sys-

tems is limited by the variable power cycles and the charging

duration between them. Hence, power utilization, i.e., the

ability of the system to translate the available power into

performance is a key factor. In an intermittent system this

is not a trivial task due to the power unpredictability and the

amount of power sacrificed in maintaining forward progress.

FPGAs have demonstrated high performance and energy

efficiency in various areas as an adaptive and reconfigurable

computing platform. In particular, CPU-FPGA hetero-

geneous architectures have been investigated as a way to

achieve both high performance and energy efficiency in a

wide range of applications ranging from data centers to em-

bedded systems [4][1][15]. We notice that although such an

architecture can achieve high performance and energy effi-

ciency without sacrificing the desired programmibility, FP-

GAs have not been considered in accelerating intermittent

systems. We observe the potential of a heterogeneous CPU-

FPGA architecture in accelerating intermittent computing.

In particular, the reconfigurability of FPGAs, which can en-

able exploiting the area and performance relation under vari-

able power conditions in intermittent execution. We focus

on non-volatile FPGAs since their configuration data is not
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lost during a power failure.

In this paper, we propose a performance model to under-

stand the potential of an intermittent CPU-FPGA hetero-

geneous system. We model the acceleration in a single phase

of a program running under intermittent conditions. Then

we perform a quantitative analysis to compare between two

non-volatile and volatile FPGA models. From the analysis,

we derive insights for designing a future high performance

architecture for intermittent computing based on applica-

tion specific FPGA acceleration.

Major contributions of this work are as follows.

• This is the first work to consider FPGA-based acceler-

ation for intermittent computing.

• We perform power and performance modeling for

an intermittent system with CPU-FPGA and CPU-

NVFPGA.

• We derive insights from the model to aid us in realizing

a future CPU-NVFPGA based high performant inter-

mittent architecture.

Our results show that NVFPGA offers an advantage over

a volatile FPGA and can provide a significant speedup in ac-

celerating an intermittent system, but this requires careful

optimization for the reconfiguration latency and the memory

architecture between the CPU and the FPGA.

The rest of this paper is organized as follows, Section 2

introduces intermittent computing and review some of the

literature in it. Section 3 explains the FPGA-based intermit-

tent acceleration. Section 4 shows the preliminary analysis

with performance modeling. We conclude with our insights

and future work in Section 5.

2. Intermittent Computing

In this section we provide a brief introduction of intermit-

tent computing. We focus on discussing the main challenges

and performance limitations in intermittent systems to fa-

cilitate modeling.

2.1 Checkpointing in Intermittent Computing

Typical intermittent computing systems consist of EH-

powered computing device, sensors, and peripherals. The

energy harvester charges a small buffer. Harvested energy

is used to charge the buffer. When the buffer is full, the de-

vice carries on computation as shown in Figure 1. When the

buffer is empty a power failure occurs and the device has to

wait for energy to become available again in the next energy

cycle. Since it is difficult to predict the time at which the en-

ergy buffer runs out during execution, and power availability

depends on the source, these interrupts are unpredictable. If

the program restart its execution with each failure, it is not

able to make forward progress [20] and finish its execution.

Following the same terminology in [20], the following sub-

sections discusses single-backup and multi-backup systems

and their main overheads.

2.1.1 Multi-Backup Systems

Early intermittent systems relied on compilers to make pe-

riodic backups during the program execution. The program

Fig. 1 The power cycles in intermittent execution

saves its state during execution and when a failure occurs, it

resumes from the most frequent backup. This backup pro-

cess is known as checkpointing, and the systems that per-

form frequent backups are known as multiple-backup sys-

tems. The backups in a multiple-backup system can be

triggered by different ways. Early works relied on frequent

voltage measurements to trigger backups [18]. However, it

was shown later on that program re-execution from such

backups can result in erroneous states due to inconsistencies

caused in the non volatile memory [17]. In other works the

backups are triggered by idempotency violations detected by

hardware [8] or software [22]. Idempotent sections are code

sections that can be re-executed multiple times error-free.

Since these sections can re-execute without errors, back-

ups are triggered at their boundaries. However, the most

recent work in [3] have shown that program addresses re-

naming can eliminate backups resulting from idempotency

violations and guarantee correct execution. The main chal-

lenge in these systems is to reduce the number of backups

and re-execution overheads.

2.1.2 Single-Backup Systems

In order to further reduce the checkpointing overheads,

some systems suggest to perform a single checkpoint per

power cycle. Hibernus [2] relies on voltage measurement

devices and voltage thresholds to take a single checkpoint

before a power failure. This shifts the checkpointing over-

head to the voltage measurement device which can incur up

to 40% energy overhead. In order to eliminate checkpoint-

ing overheads, Alpaca [14] suggests slicing the program into

tasks that can be executed in a single power cycle based on

the energy buffer size. The compiler backups the task infor-

mation only and guarantees the correct re-execution of these

tasks in case a power failure occurs during execution. How-

ever, they rely on the programmer to divide the program by

reasoning about the energy buffer size.

While the majority of the aforementioned techniques try

to limit or avoid architectural modifications, Non-volatile

processors [6][23][12][21][11] exploit fast and emerging mem-

ory technologies to enable fast backup. These works propose

placing non-volatile memories at each level in the memory

hierarchy. The processor relies on the built-in voltage de-

tector and triggers a backup before the failure. The backup

will copy the volatile registers to the non-volatile flip flops.

This reduces the backup operation but consumes high en-

ergy during backup operations. The work presented in [13]
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Fig. 2 Architecture of a non-volatile FPGA-based accelerator

investigates various backup and design strategies for such

processors.

2.1.3 Performance in Intermittent Computing

The performance in an intermittent systems is decided by

the power utilization and charging duration. Although with

low checkpointing overheads it is possible to run complex

computations, the charging duration and the architecture

energy efficiency limit the performance [7]. Ultra-low-power

architectures have low power operation thresholds and can

operate under a wide range of EH sources with various con-

ditions. However such architectures fail to take advantage

of power variability and situations when abundant power is

available. One approach to meet performance requirements

is to design and optimize the architecture based on the EH

source characteristics [13]. However, such approaches relies

heavily on these characteristics that can vary with different

conditions.

3. NVFPGA-based ImC

Field programmable gate arrays (FPGAs) are hardware

that can be tailored to different applications. Typical FP-

GAs contain a large number of configurable logic blocks

(CLBs), comprised of look-up-tables (LUTs) and registers

and multiplexers. These logic blocks can be configured to

perform different functions. The logic blocks are surrounded

by a sea of programmable interconnects. FPGAs are highly

configurable and can achieve high energy efficiency and per-

formance compared to CPUs.

With the steady improvements in FPGA design automa-

tion tools, FPGAs started to gain attention in a wide variety

of areas.

Volatile FPGAs are based on CMOS technology and use

SRAM cells for configuration. Since the SRAM is volatile,

configuration information and intermediate data will be lost

when power is turned off. On the other hand, non-volatile

FPGAs use nonvolatile elements in the interconnect, this

means their configuration data will not be lost when the

power is turned off.

(b)

(a)

(c)

(b)

(a)

(c)

Fig. 3 Intermittent execution of a program. (a) The program
with different execution phases. (b) The intermittent ex-
ecution of phase 2 in the MCU compared to (c) phase 2
accelerated.

3.1 NVFPGA based acceleration

Non-volatile FPGA can offer application-specific accelera-

tion to intermittent computing. A system with an ultra-low-

power processor and a reconfigurable non-volatile FPGA is

shown is show in Figure 2. The interface is used for recon-

figuration and the shared memory is used for checkpointing

and shared data. This system design is similar to the previ-

ous acceleration systems for intermittent operation proposed

in [16][19][10].

A program running intermittently in the micro-controller

unit can benefit from the re configurable non-volatile FPGA

acceleration based on the available power at a certain dura-

tion. A program can be divided into different phases with

different features. Based on power availability a phase can

be accelerated by running it in the FPGA. However, since

power failures can occur during this phase execution, the

non-volatile FPGA offer the advantage of keeping the con-

figuration data after the failure. This means the non-volatile

FPGA needs to be reconfigured once for each phase of the

program even when multiple power cycles occur. On the

other hand, a volatile FPGA will need to be reconfigured

once for each power cycle during the acceleration of a pro-

gram phase.

Since this is the first work to consider FPGAs for accel-

erating intermittent systems, we start with a performance

modeling and evaluation. This will be covered in the next

section.

4. Preliminary Analysis

This section explains the preliminary analysis performed

through performance modeling and model analysis.

4.1 Performance Modeling

We model the speedup in a single phase of the program

under intermittent execution compared to a baseline system.

The goal of this model is to show the possible speedup in
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Table 1 Model Parameters and Their Definitions

General Parameters

ncharge Average number of power cycles in the baseline during a phase
n̂charge Average number of power cycles in the accelerator during a phase

tbb Average time between backups in the baseline
tbb hw Average time between backups in the accelerator

tsw Average time spent in computation in a power cycle for the baseline
thw Average time spent in computation in a power cycle for the accelerator
λ Speedup introduced by the accelerator in continuous execution

tsave Average time to backup data after a duration tbb in the baseline
t̂save Average time to backup data after a duration tbb hw in the accelerator

trestore Average time to restore backup data after a power failure in the baseline
t̂restore Average time to restore backup data after a power failure in the accelerator

tre−exec Average time spent in re-execution after a power failure in the baseline
t̂re−exec Average time spent in re-execution after a power failure in the accelerator

Ebl Average energy to execute a phase from the program in the baseline
ϵbl Average energy in a single power cycle in the baseline (less than or equal the capacitor total energy)

Eacc Average energy to execute a phase from the program in the accelerator
ϵacc Average energy in a single power cycle in the accelerator (less than or equal the capacitor total energy)
psupply The supply power during the execution of a single phase of the program

tcharge Average time charge between power cycles in the baseline
t̂charge Average time charge between power cycles in the accelerator

tckpt Average checkpointing time in the baseline in a single power cycle
t̂ckpt Average checkpointing time in the accelerator in a single power cycle

intermittent operation when considering FPGA-based accel-

eration. We assume that a program consists of phases during

execution. We measure the speedup for a single phase of the

program compared to the baseline since it simplifies reason-

ing about power availability during execution. The baseline

consist of a single EH-powered processor while the FPGA

acts as the accelerator. The model parameters are listed in

Table 1.

We start with the total execution time of a single phase in

the baseline. As shown in Figure 3, the total time Tbaseline

can be characterized by the number of charge cycles multi-

plied by the average execution time per cycle.

Tbaseline = ncharge

(
tsw + nsavetsave + trestore + tre−exec

+ tcharge
)

(1)

Where the execution time tsw in a cycle is equal to the

time between backups tbb multiplied by the number of back-

ups. The re-execution time depends on when a failure oc-

curs, it can be equal to 0 at minimum or equal to the time

between backups tbb at maximum. This is modeled with σ

whose value range between 0 and 1.

tsw = nsave × tbb (2)

tre exec = σ × tbb (3)

Charging time during a power failure can be modeled with

the average energy per cycle ϵbl and the power psupply dur-

ing the phase execution.

tcharge =
ϵbl

psupply
(4)

Moreover, the total number of charges needed is equal to

the total energy Ebl required to run a phase of the program

divided by the energy per cycle ϵbl .

ncharge =
Ebl

ϵbl
(5)

For simplicity, we represent the total checkpointing overhead

as

tckpt = nsavetsave + trestore + σtbb (6)

The final equation is then given by

Tbaseline = nchargetsw
(
1 +

tckpt
tsw

+
tcharge
tsw

)
(7)

Next, we model the FPGA-based accelerator execution

time, following the same approach in the baseline we repre-

sent the total execution time Tacc as follows

Tacc = n̂chargethw + n̂charge t̂ckpt + n̂charge t̂charge

+ nrectrec (8)

Where t̂ckpt and t̂charge are the accelerator checkpoint-

ing and charging costs respectively. Following the same ap-

proach as the baseline, the total number of charges is given

by

n̂charge =
Eacc

ϵacc
(9)

Additionally, trec is the time required to configure the

FPGA and can be given as

Trec = Area× Latency (10)

Where the Area represents the resources provided per a
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Fig. 4 Speedup and area for FPGA, non-volatile FPGA and CPU
Fig. 5 Reconfiguration latency and the effects on speedup

for volatile and non-volatile FPGA

Fig. 6 Speedup with variable values of λ Fig. 7 Effect of the accelerator checkpointing overhead
on the speedup

unit area of the FPGA and the Latency is the the time re-

quired by the interface to configure a single unit area of the

FPGA. nrec is the reconfiguration time during the execution

of a single phase of the program, for a non-volatile FPGA,

this value is always equal to one.

Tacc = n̂charge

(
thw + t̂ckpt + t̂charge +

nrect

n̂charge
trec

)
(11)

Tacc = n̂chargethw
(
1 +

t̂ckpt
thw

+

nrec

n̂charge
trec

thw
+

t̂charge
thw

)
(12)

Finally, we assume that thw, the pure execution time of the

accelerator is

thw =
tsw
λ

(13)

That is λ is the acceleration provided by the accelerator.

For FPGA we assume that this value is linearly proportional

to the FPGA area. Then, the final equation is given as

speedup = λ
ncharge

n̂charge

(
1 +

tckpt

tsw
+

tcharge

tsw

)
(
1 +

t̂ckpt

thw
+

nrec
n̂charge

trec

thw
+

tcharge

thw

)
(14)

4.2 Evaluation

In this section we analyse the previous model to under-

stand how different parameters affect the speedup.

4.2.1 Speedup with Lambda for non-volatile

FPGA

First we study the effects of the speedup and λ in the non-

volatile FPGA. We investigate a situation when high supply

power is available. We assume a single-backup approach

similar to [2] and refer to it as Just-in-time checkpointing.

We assume checkpointing overhead of 25% of the the exe-

cution time (tcktp = tsw × 0.25) for the baseline and that

for the accelerator (t̂cktp = thw × 0.25). Similarly, we as-

sume a maximum latency overhead of 50% of the execution

time (t̂rec = thw × 0.50) at λ = 4. Additionally, we assume

a constant high supply power value during the execution

of the phase of the program which is reasonable assump-

tion for EH sources with small rapid changes. The number
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Table 2 Parameters for CPU, VFPGA, NVFPGA Comparison

CPU VFPGA NVFPGA
trec 0 area× latency area× latency
λ

√
area area area

nrec 0 ncharge 1

of charges are calculated from the total Ebl and Eacc for

the baseline and the accelerator respectively. Their values

are calculated from their respective execution times. We

compare with the total program execution time in the con-

tinuous case to obtain these values. We also assume the

same power for the different values of λ. We report the

overall speedup in a single phase of the program execution

when increasing the accelerator performance λ. We model

λ to be linearly proportional to the resources provided per

a unit area, hence increase in lambda will increase the re-

configuration time. Figure 6 shows the speedup under these

conditions. The break even point occurs at a λ of 1.2. This

is due to reduction in the number of power cycles since any

reduction in the number of power cycles result in a reduction

in overheads. Since we are assuming the same checkpoint-

ing overhead, and since reconfiguration is a one time cost,

i.e., in a one charging cycle only, the reduced charging cycles

due to the accelerator result in speedup. However, since we

are assuming the same power for different values of λ for

the porpose of investigation, these values serve as an upper

bound for the speedup.

4.2.2 Speedup with Checkpointing Overhead

We also investigate the effect of the accelerator check-

pointing overhead on the overall speedup. We follow the

same conditions in Section 4.2.1 with varying checkpointing

overhead.

Although Just-in-time approaches are simpler to imple-

ment, they are application-agnostic which means their over-

heads can still be reduced when considering application spe-

cific behaviour. Figure 7 shows the potential of checkpoint-

ing overhead reduction in the accelerator at a λ of 1.2, i.e.,

the break-even point for the conditions in Section 4.2.1.

4.2.3 Quantitative Comparison of Volatile

FPGA, Non Volatile FPGA and CPU

In this section we compare between three platforms,

namely a non volatile FPGA, volatile FPGA and CPU for

acceleration. To perform this comparison we set the param-

eters shown in Table 2. Since our focus is on these platforms

specific parameters we assume an ideal checkpointing over-

heads of 8%. Figure 4 shows the comparison results. The

Volatile FPGA has to be reconfigured with each power cycle,

so with a small reconfiguration overhead of 10% per area,

it shows a comparable performance to the CPU. However,

as the area increases the overhead dominates the execution

time per a charging cycle and it limits the program forward

progress. The non-volatile FPGA offers larger speed up than

the CPU due to the linear relation between λ and area. This

shows FPGA benefits gain over a bigger core. Additionally,

the reconfiguration overhead is a one time cost that appears

in the first charging cycle only.

We further investigate this gap between the volatile and

non-volatile FPGA in Figure 5. We start with a low letency

overhead of 9% and examine the effects on a λ of 2. Even at

a small reconfiguration latency the gap between the volatile

and non-volatile FPGA is noticeable. For the same area,

the volatile FPGA reconfiguration latency occurs in every

power cycle since it has to be reconfigured with every power

loss. The gap expands further with little increase in latency.

We note that for the case of the volatile FPGA, it is pos-

sible to maintain the reconfiguration at the cost of saving

some energy budget for maintaining the volatile FPGA state

during charging time. This requires introducing new param-

eters to our model and we leave this for future work.

5. Conclusions

In this work, we investigated the potential of FPGA-based

acceleration in an intermittent system. We propose a model

for the acceleration in a single phase of an intermittent pro-

gram based on available power at a time. We also performed

quantitative analysis to compare between two non-volatile

FPGA and volatile FPGA models. Our analysis showed

that it is possible to achieve significant speedups with non-

volatile FPGAs. Achieving up to 10× times speedups with

a non-volatile FPGA-based accelerator requires optimizing

the reconfiguration and checkpointing overheads. To achieve

this, future work should prioritize investigating the interface

and memory architecture of the non volatile FPGA-based

intermittent acceleration system in addition to devising a

power-aware reconfiguration mechanism.
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