1BEERALIE S

>%7 Vol.15 No.4 3 (Sep. 2022)

RRBE

B SNBSS % i A 72 SN — 2 Java SaBD 21

FeD < FERITT T

LSS AN = b At OV S (L A N
2022%3A 18 A %%

C SREILHELRIE S AN — 20k C SRE & HE C SR ~NOLARICED Z TR L L72b 0T, CF
m@%ﬁ1777$uﬁéﬁvﬁLE®¢@®@“®*&%77%X%%1ﬁéﬁﬁﬁﬁﬁﬁﬁﬁﬁf%
FEHTEL, ANTHBOEEEZ LA, 70—V 3 2ERL, TNAORA V7 % v CEENIC
NTEAZZFOHT I &T, 70— v ERBEOBEC aiﬂ%“ﬂ“@??kX#Tbk&%.ﬁﬂ—
T v LR A B MR 2 AL L 7oA D (B IIZIRIE R E 2 A P OREDS RO o 7208, AT
B % BN ONH LIE A~ O — i 2 B8 /SOIRBBENIC DT, BIAMLERZ W5 2 & TRIFRILT & 5 W hE
P d 5. AW, BIAVLEOFIARLEEEEY HME LT, #7212 S A= A Java SEEULHELR % %
fiELCTWA, Java SiETIE, b= 7 2B T LD, final THWERZEHIEHZSICE S B2 UL, &
BIRBER R L LT 2 VD FIHTE 5. mzf IR T 2 Z & KBy BT 2O E
B & L7 F R BB LIRS % 3 72 e TR RE D ST IR RS & L CREH L T B, RZEERTIE, S
i 272 S A= ZDOYLIE Java SEED Java :.a’é DM HD L %%%Q‘%k%ﬁ_% AR & DI
O LIEOZERDENDO T 7 2 A % BT L A5 #R ERERMREE 2 5.

e

Presentation Abstract

Towards Transformation-based Implementations of an

Stack Access

TOMOHIRO NISHIDAY'® MASAHIRO YASUGIZ?) TASUKU HIRAISHI®

Presented: March 18, 2022

The SC language system supports transformation-based implementations of S-expression-based extended
C languages by translating them into the standard C language. Mechanisms for legitimate execution stack
access (LESA for short) are the most important applications of the SC language system; LESA mechanisms
provide legitimate access to values of callers’ variables slept deeply in C’s execution stack. When a nested
function is employed as an LESA mechanism, a closure is created, and a pointer to it is used to indirectly call
the nested function, we can access variables in an environment closed in the closure at the creation time. The
previous study reveals that the delay judgment costs are considerable in transformation-based implementa-
tions which employ lazy initialization of closures and delayed maintenance of variable values; among the delay
judgment costs, costs for temporary control transfer (with context restoration) to a caller that owns a nested
function may be reduced by using exception handling. In this study, we are newly developing an S-expression-
based Java language system for the use of exception handling and high reliability. In Java, although the heap
is consumed, we can employ lambda expressions as LESA mechanisms if non-final variables are replaced with
array elements or fields. In addition, we are designing restartable exception handling mechanisms as new
LESA mechanisms where exception handlers can be called without non-local exits. In this presentation, we
propose techniques for a transformation-based implementation of an S-expression-based Java language that
features LESA mechanisms by translating it into the standard Java language. LESA mechanisms enable
dynamic load balancing which requires legitimate access to values of callers’ variables.

HirosHI KOIDE*

—
-

S-expression-based Java Language That Features Legitimate Execution

This is the abstract of an unrefereed presentation, and it

should not preclude subsequent publication.

1

TN LR REEBENE L1

Graduate School of Computer Science and Systems Engi-
neering, Kyushu Institute of Technology, lizuka, Fukuoka
820-8502, Japan

UM SRR BE s i L2 7e e

Department of Computer Science and Networks, Kyushu In-
stitute of Technology, lizuka, Fukuoka 820-8502, Japan

© 2022 Information Processing Society of Japan

a)

b)

e NE RS R e

Department of Information and Computer Science, Faculty
of Engineering, Kyoto Tachibana University, Kyoto 607—
8175, Japan

7LLJI]7L7—| IR TR S > 7 —

Research Institute for Information Technology, Kyushu Uni-
versity, Fukuoka 819-0395, Japan
nishida@pl.ai.kyutech.ac.jp

yasugi@csn.kyutech.ac.jp

