
A Lightweight Development Environment for Embedded
System with Go Language

Sari Orioka1 Hiroyuki Okamura1,a) Tadashi Dohi1,b)

Abstract: This paper presents a Go-language-based lightweight development environment for embedded system. The
features of our tools are (i) open source license, (ii) generating source codes from state machine diagrams, (iii) concur-
rent simulations for system verification. In particular, by combining existing tools, we also realize the functionalities
for drawing state machine diagrams, compiling binaries for embedded system and writing binaries into hardware.

1. Introduction
Embedded systems are computer systems that are equipped in

electrical appliances and automobiles to control themselves. The
development of embedded system is generally divided into five
phases: system design, software design, program implementa-
tion, software testing, and system verification. Since the embed-
ded system interacts our daily lives through the physical devices,
it requires high reliability and safety. Also, the embedded sys-
tem runs on the specific physical devices, and thus it is not easy
to remove bugs in the system testing phase. Therefore, to ensure
high reliability and safety, it is important to remove defects and
faults in the early phase of system development. In particular, it is
known that it is effective to build a model representing the system
behavior in the system design phase, and the model also enables
us to verify the system meets requirements or not.

A state machine (SM) is one of the modeling approaches to
represent the system behavior. The SM consists of state and tran-
sitions. The state determines the action that should be done, and
the transition provides the conditions to change the state. The
SM diagram is the representation that defines states and transi-
tions of an SM, and is also included in SysML (systems modeling
language). Since the SM diagram helps us to verify the system
behavior well, it is commonly used in the system design of em-
bedded system [1].

This paper presents a lightweight integrated development envi-
ronment with Go language for embedded systems. In particular,
we provide the tools to generate source codes from a given SM
diagram, and to simulate the system behavior in software.

2. Overview of tools
Our tools support the following processes in the development

of embedded system;

1 Graduate School of Advanced Science and Engineering, Hiroshima
Uniersity, 1–4–1 Kagamiyama, Higashi Hiroshima, 7398527, Japan

a) okamu@hiroshima-u.ac.jp
b) dohi@hiroshima-u.ac.jp

drawing SM diagrams

by draw.io / diagrams.net

our tools

state transition definitions testing hardware

input XML file for the SM diagram

verify the codes
by the simulation

implement the codes
into the hardware

(using TinyGo)

tools generate the codes of golang

Fig. 1 the flow of the system development with our tools

(i) drawing SM diagrams,
(ii) implementation of software codes,
(iii) verification of software codes; and
(iv) implementation to hardware.

Figure 1 shows the flow of the system development with our tools.
In the figure, the red rectangle presents the processes (ii) and (iii)
that are related to the tools developed by ourselves. The other
processes (i) and (iv) are realized with the existing tools ’dia-
grams.net’ and ’tinyGo’.

(i) drawing SM diagrams
The SM diagram is created by an existing application called di-

agrams.net/draw.io. The diagrams.net/draw.io is an open source
for building diagramming applications, and provides a browser-
based software. The diagram in application is an XML-based
document. We provide a template for diagrams.net/draw.io to
create the SM diagram. The template includes the information
to convert it to the source code beforehand. By using the tem-
plate, we can draw the diagrams that can generate the codes with
our tool.

(ii) implementation of software codes
From the XML file for the SM diagram in (i), we can generate

the codes of Go language (golang). The golang is a programming
language by Google. The tool parses the XML file, and gener-

ソフトウェアエンジニアリングシンポジウム 2022
IPSJ/SIGSE Software Engineering Symposium (SES2022)

c⃝ 2022 Information Processing Society of Japan 155



Table 1 Comparison with existing tools.

astah* professional Enterprise Architect Our tools
Languages C++, Java, C#, etc C, C++, Java, C#, VB.NET golang
Simulation Static state transition paths Dynamic state transitions Concurrent simulation

Lisence Commercial Commercial Open license

ates (a) state transition, (b) definitions and (c) testing. The state
transition (a) provides the codes to change the state by triggering
transitions. The actions on state and the conditions for transitions
are defined in (b) definitions. The tool provides a skeleton for the
action and condition codes. The concrete codes will be written
according to the skeleton by hands. The testing (c) is the exam-
ple code to run the simulation according to the SM diagram. In
particular, the definitions of actions follow the SysML manner,
i.e., each state has the actions called entry, do, and exit, and these
actions are executed by state transitions. The entry action is the
program running on the beginning of state once, the exit action is
the program running on the ending of state once. The do action is
the program running during the state continuously.

(iii) verification of software codes
The verification of codes is done by the simulation. The sim-

ulation means the execution of SM based on some scenarios in
software. By monitoring simulation paths, we can verify whether
the SM correctly runs or not. In our environment, the simula-
tion execution is given by a test code of golang. By following
golang-based testing manner, the simulation runs with one com-
mand ’go test’ simply. Also, the simulation for the embedded
system consists of user behavior and system behavior, and these
behaviors are parallel in real situation. To simulate such situation,
our environment utilizes Goroutine. Goroutines are lightweight
threads managed by golang. Compared to the ordinary threads,
they have the features; low memory usage and low switching cost
(overhead). In addition, Goroutine can easily be used in golang
programs. By using this functionality, our environment can easily
create threads to simulate system and user behaviors concurrently.

(iv) implementation to hardware
To implement the codes into the hardware, we use TinyGo [3].

TinyGo is an open source project to compile binaries from golang
source codes for embedded systems such as Arduino. In addition,
TinyGo includes a tool set to write the binary into such hardware.
TinyGo is a subset version of the original golang for embedded
systems. The original golang depends heavily on POSIX-OS and
requires a rich runtime, and thus it is not suitable for embedded
system. On the other hand, TinyGo is a compiler of the golang
that supports embedded architectures using LLVM (a framework
for creating compilers) while substituting POSIX-OS-dependent
functions with a simple implementation. It can run programs on
more than 85 microcontrollers, including the BBC micro:bit, Ar-
duino Uno and so on.

3. Related tools
The significant features of our tools are (i) creating source

codes from SM diagrams, (ii) running concurrent simulations.
From these points of view, we compare our tools to existing
tools. There are two commercial tools to create source codes

from SM diagrams; astah* professional [4] and Enterprise Ar-
chitect (EA) [5]. Table 1 presents the comparative results for the
functionalities in these tools.

astah* professional can generate code templates for a number
of programming languages via plug-ins. On the other hand, it
does not support the simulation run of the SM diagram. Instead
of that, astah* professional can output static state transition paths
of SM diagrams by the plug-in.

EA can also generate code templates for several programming
languages from SM diagrams, and can output the state transition
paths of SM diagrams dynamically. This is similar to the simula-
tion provided by our tools. However, this is not exactly same as
our tools, because user interactions cannot be handled in EA. To
verify whether the system meets some requirements, the user be-
havior should be considered. The state transition simulation is not
enough for the system verification, but the concurrent simulation
with user and system behaviors is needed.

4. Conclusion
This paper presented the development environment for embed-

ded system with golang. In our tools, by combining existing open
source software, we provide an integrated development environ-
ment from creating SM diagrams to writing compiled binaries.
In particular, it has advantages on the automatic generation of
source codes from SM diagrams and the concurrent simulation
frameworks for system verification. This is expected to enable us
to develop highly-reliable embedded systems with low efforts.

In the current version, the tool can handle the code generation
from the SM diagrams without composite states and orthogonal
states. In future, we plan to enhance our tools so that it can handle
SM diagrams with composite states and orthogonal states. In ad-
dition, under our testing framework, the system verification is not
automatic but we have to check the behaviors by hands. Thus we
implement the automatic verification by combining model check-
ing techniques.

References
[1] Takayuki, M.: State Transition Design Methodology for Embedded

Engineers, TechShare Corporation(2016).
[2] diagrams.net, https://app.diagrams.net/
[3] TinyGo, https://tinygo.org/
[4] astah* professional, https://astah.change-vision.com/ja/product/astah-

professional.html
[5] Enterprise Architect, https://www.sparxsystems.jp/

ソフトウェアエンジニアリングシンポジウム 2022
IPSJ/SIGSE Software Engineering Symposium (SES2022)

c⃝ 2022 Information Processing Society of Japan 156


