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Abstract: Physical exercise is essential for living a healthy life since it has substantial physical and mental
health benefits. For this purpose, wearable equipment and sensing devices have exploded in popularity in
recent years for monitoring physical activity, whether for well-being, sports monitoring, or medical rehabil-
itation. In this regard, this paper focuses on introducing sensor-based punch detection and classification
methods toward the boxing supporting system which is popular not only as a competitive sport but also as
a fitness standard. The proposed method is evaluated on 10 participants where we achieved 98.8% detection
accuracy, 98.9% classification accuracy with SVM in-person-dependent (PD) cases, and 91.1% classification
accuracy with SVM in person-independent (PI) cases. In addition, we conducted a preliminary experiment
for classifying 6 different types of punches performed from both hands for two different sensor positions
(right wrist and upper back). The result suggested that using an IMU on the upper back is more suited for
classifying both hand punches than an IMU on the right wrist.

1. Introduction

Encouraging people to perform physical exercise regularly

plays a key role in maintaining our health and quality of life.

In fact, Hammer et al. found out that frequent physical ex-

ercise in a week reduce the risk of psychological distress [1].

However, in practice, maintaining a regular physical exer-

cise a lifelong habit is challenging [2], [3]. As a result many

people failed to maintain the recommended levels of exercise

[4]. Some hindrances include location and time constraints,

a lack of knowledge on appropriate exercise intensity, and

poor performance and motivation due to monotony and fa-

tigue. To solve these issues, wearable technologies can help.

In recent years, the number of wearable devices available at

a reasonable cost have increased including smartphones and

smartwatches. This promoted the development of applica-

tions for tracking exercise to support people’s health.The

most used wearable device for people today is without a

doubt smartphones. The smartwatch is also a wearable com-

puting device that runs various applications to tracking exer-

cise. In recent years, due to the growth in technologies such

as the long-lasting rechargeable battery, high-performance

central unit (CPU) and graphic processing unit (GPU), it

has become possible to embed high-performance computers

in watches making the demand of smartwatches increased.

The smartwatch is also embedded with sensors that pro-

vide fitness or healthcare-related functionality, e.g., exercise

tracking such as swimming, running, and cycling. Although

the state of the art exercise tracking applications in smart-

watches and smartphones and other wearable technologies

can track exercise intensity from pedometer and heart rate
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monitor, there are only a limited types of exercise motion

that smartwatch applications can detect, classify the activ-

ities. In this paper, we focused on boxing for punch de-

tection. We propose a method for detecting and classifying

shadow-boxing punches using multiple IMUs.

To validate the proposed method, we hired 10 partici-

pants and detect and classify 3 different basic punches of

boxing (straights, hooks and uppercuts) using several al-

gorithms. As a result, we achieved 98.8% detection ac-

curacy, 98.9% classification accuracy with SVM in-person-

dependent (PD) cases, and 91.1% classification accuracy

with SVM in person-independent (PI) cases. In addition,

we conducted a preliminary experiment with 1 participant

to see the difference in classification accuracy between an

IMU worn on the right wrist and upper part of the back

for classifying 6 different types of punches performed from

both hands. The result suggested that using an IMU on the

upper part of the back is more suited for classifying both

hand punches than an IMU on the right wrist.

2. Related Work

The most relevant previous work for punch recognition is

that of Ovalle et al.[5], who classified 4 different taekwondo

punches from IMU sensors attached to a right-hand wrist

and a microphone. Their purpose of the research was to

investigate if it is possible to recognize punches with bare

hands and increase the recognition rate by adding audio

input that is produced by hitting the mitt. They achieve

94.4% accuracy when using only the IMU sensor. How-

ever, the audio signal did not improve its performance. Even

though they achieved high accuracy, they only had 3 partici-

pants and did not investigate person dependent case. There-

fore, their research lacks credibility in punch recognition ac-
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curacy. They also did not test different sensor locations.

For the Boxercise related work, a Spanish start-up com-

pany VOLAVA [6] released Fitness Boxing kit in 2020 which

includes a punching bag, gloves, an exercise mat, and an

IMU sensor kit. The company made sensors that connect

to the Volava boxing mobile app to analyze real-time data

such as, number of punches, punch force, calories, and heart

rate in order to connect sensor metrics with social interac-

tion leaderboard. Their kit, however, includes 3 IMU sen-

sors and requires boxing pieces of equipment which may be

too expensive for some people. Their system also did not

recognize the type of punches which may be significant in-

formation to evaluate the punching technique when creating

mobile personal trainers in the future.

Another Boxercise related work is an exergame, Fitness

Boxing [7] released by Nintendo Switch in 2018. They uti-

lized Nintendo’s Joy-Con motion Controllers for a player to

perform punching and dodging maneuvers. In their game,

players can personalize the workouts sessions by setting up

their fitness goals. By making progress in the game, hit

songs for background music and new personal trainers can

be gradually unlocked. They can also estimate daily calories

burn so that players can track their progress. However, the

game only recognizes shadow-boxing punches when the con-

trollers detected a certain motion threshold, and the type of

the punch is not identified.

To sum up, the remaining problems of existing literature

are poor credibility of punch recognition accuracy, lack of re-

search comparing sensor position for punch recognition when

applying real-world application, none of real-world applica-

tion for boxercise identifying the type of punch. To solve

these problems, our research utilized a single IMU sensor em-

bedded in a smartwatch to achieve wireless communication

and investigated if it is possible to recognize shadow-boxing

movements and achieve high accuracy by testing person de-

pendent cases with 10 participants.

3. Proposed Methods to Detect and

Classify Punches

3.1 Overview

The end goal of this research is to build a sensor-based

boxercise personal supporting system that can provide in-

struction, feedback, and gamified experience from boxercise

motion and heart rate monitor. To achieve this, we first

focused on the detection and recognition of boxercise move-

ments in both real-time and non-real-time.

3.2 Target Activities

Although there are various types of exercise done in box-

ercise classes, shadow-boxing usually plays an important

role for the class. Therefore, we focused on shadow-boxing

punches first. According to Kasiri et al.[8] who recognized 6

different punches by using depth image, there are two type

of boxer’s stance (orthodox or southpaw) and 6 basic type of

shadow-boxing punches shown in Figure 1. They includes

straight, hook, uppercut for both lead and rear hands re-

Fig. 1 The six basic boxing punches captured using overhead
depth and visible cameras. This includes the straight,
hook, and uppercut punches thrown from both the lead
and rear hands (quoted from [8])

spectively. In this paper, we only focused on orthodox as

the stance because it is the most commonly used stance in

boxing. Thus, lead hand and rear hand means left hand

and right hand respectively in this paper. We targeted the

6 types of the punches thrown from orthodox stance and

described them below.

( 1 ) Lead Straight (LS) —Lead Straight is also known as

jab and it is thrown with the lead hand from the guard

position.

( 2 ) Lead Hook (LH) —Lead Hook is a side power punch

thrown with the lead hand from the guard position.

( 3 ) Lead Uppercut (LU) —Lead Uppercut is a swinging

upward power punch thrown with the lead hand.

( 4 ) Rear Straight (RS) —Rear Straight is also known

as cross and it is thrown with the rear hand from the

guard position.

( 5 ) Rear Hook (RH)—Rear Hook is a side power punch

thrown with the rear hand from the guard position.

( 6 ) Rear Uppercut (RU)—Rear Uppercut is a swinging

upward power punch thrown with the rear hand.

In this paper, we first focused on recognizing three types

of rear hand punches with an IMU embedded inside a smart-

watch on rear hand wrist. In addition to this, we also tar-

geted all six types of punches performed by both lead hand

and rear hand for preliminary experiment.

3.3 Activity Detection

To detect the punching activity, the process of detection

process is shown in Figure 2. The algorithm starts with

a 3-D acceleration signal collected from an accelerometer.

Since boxing punches contain both longitudinal and trans-

verse motion, we calculated the synthetic acceleration, which

is the norm of the 3-D signal. As shown in the second plot of

Figure 2, the calculated norm contains noise. Thus, a low-
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Table 1 Extracted Features for each ax of raw 3-D acceleration
and 3-D angular velocity

Type of features
mean
median

standard deviation
min
max

25% percentile
75% percentile

pass butterworth filter (order: 2 , cut-off frequency 1hz) is

applied to smooth and emphasize the rapid change of punch-

ing motion. Finally, segmentation algorithms are applied to

the preprocessed data.

Two kinds of thresholds are defined for segmentation

shown as the horizontal line of the third plot in Figure 2.

The lower threshold is set for detecting the starting point

and ending point of an event. We set the value to 9.8 to

ignore acceleration caused by gravity. The upper threshold

is set to detect the rapid sensor motion. In this paper, we

defined that any values above the threshold are a punch.

The segmentation algorithm starts with detecting the

starting point every time preprocessed sensor value exceeds

the lower threshold and saves the index of the data. Af-

ter detecting the starting point, the algorithm looks for the

sensor value to exceeds the upper threshold. If it did ex-

ceeds it, we set boolean value true, representing that up-

coming sensor data is produced by a punch motion. If the

boolean value is true and the preprocessed sensor value be-

comes lower than the lower threshold, the data point will

be recognized as an endpoint of the punch, and the data be-

tween the saved starting point and endpoint is segmented as

a punch. If the boolean value is false and the preprocessed

sensor value becomes lower than the lower threshold, the

starting point is simply deleted from memory which implies

no punching event is detected. After segmenting a punch,

the saved starting point and endpoint are also deleted from

memory.

3.4 Activity Classification

We chose to use machine learning methods for classifica-

tion and extracted statistical features from both raw 3-D

acceleration and 3-D angular velocity for each axis within

the segment. The features we extracted are shown in Ta-

ble 1. We extracted 7 features for each axis, mean, median,

standard deviation, min, max, 25% percentile, and 75% per-

centile in a total of 42 features for each segment. We also

labeled each segment as a corresponding punch type. In this

work, we compared three types of classifiers, multi-class Sup-

port Vector Machine (SVM), Random Forest (RF), K Near-

est Neighbors (KNN) from scikit-learn a machine learning

library for python. We chose to set all of the parameters

of machine learning models to default values of scikit-learn.

Before training data with classifiers we chose, for RF and

KNN classifiers which calculate distances between different

points in their algorithm, we normalized extracted features

between [0; 1] to maintain proportional distances.

4. Validation of Proposed Method

4.1 Data Collection Method

To collect data for targeted activities, we set up two dif-

ferent configurations of sensors as follows:

• Sensor Configuration 1

– Sensor position: Right Wrist (RW)

– Measuring device: Smartwatch polar m600

∗ Data: 3-D acceleration and 3-D angular velocity

∗ Sampling frequency: 100hz

∗ Target activities: 3 classes (RS, RH, RU)

– Participants: 10 people (8 male and 2 female, age 27.8

± 12.8)

• Sensor Configuration 2

– Sensor position: Right Wrist (RW) and Upper Back

(UB)

– Measuring device for RW: Smartwatch polar m600 [9]

∗ Data: 3-D acceleration

∗ Sampling frequency: 100hz

∗ Target activities: 6 classes (LS, LH, LU, RS, RH,

RU)

– Measuring device for UB: Movesense Sensor [10]

∗ Data: 3-D acceleration

∗ Sampling frequency: 26hz

∗ Target activities: 6 classes (LS, LH, LU, RS, RH,

RU)

Fig. 2 Example of punch detection processing flow applied to a
3D acceleration signal gathered during the execution of
four consecutive lead hooks.
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– Participant: 1 person (age 22)

For the sensor configuration 1, we chose an IMU sensor

embedded in smartwatch polar m600[9] and developed a

wear OS application. The app is used to collect accelera-

tion and angular velocity of shadow-boxing punches from a

smartwatch worn on a right hand wrist. When a user starts

the application the user is asked to type their ID. After

typing ID, the start button can be pressed whenever they

are ready to start recording the sensor values. The user can

press the stop button to stop recording and save sensor data

as a comma-separated values format inside the device.

For the sensor configuration 2, we chose two types of IMUs

for two different sensor locations shown in Figure 3 which

are the right hand wrist and upper back to collect 3-D ac-

celeration from the participant. There are two reasons why

we chose the upper part of the back as the second sensor po-

sition. The first reason is that it is a more practical location

when it comes to real boxing matches or sparring because

the chance of getting hit to the upper back in boxing is low.

The second reason is that we aim to compare the classifi-

cation accuracy of different types of punches performed by

both hands between the right wrist and upper back.

We assumed that it is more difficult to classify other hand

punches from the sensor on the wrist than the sensor on the

upper back. We also assumed that sensor on the wrist will

score better than the upper back when it comes to classifying

single hand punches because it is closer to the fist which in-

cludes more dynamic movement of the punch. For the right

wrist, we used the same measuring device as configuration 1,

and for the upper back, we used Movesense Sensor [10] which

embeds an accelerometer with 26Hz sampling frequency. An

android tablet was used to receive streaming sensor data via

Bluetooth from the Movesense Sensor. We used Movesense

Showcase Application [11] to collect data and converted it

into comma-separated values format.

4.2 Experiment

For both of the sensor configurations, the participants

were instructed to punch from a static boxing orthodox

stance every 4 seconds. Participants were asked to take

breaks every 30 punches to avoid degrading the quality of

the punches due to fatigue. In this experiment, we excluded

Fig. 3 Sensors used for the experiments and their positioning
(An IMU on right hand wrist and upper part of back)

boxing actions other than punches such as stepping forward

or backward, slipping, and ducking by asking the participant

to stay still while not performing punches.

The created dataset for sensor configuration 1 contains

924 punches with 3 types of rear hand punches (RS: 307

punches, RH: 308 punches, RU: 309 punches) performed by

10 participants. The participants’ ages range from 17 to 53

years (8 male and 2 female, age 27.8 ± 12.8) and include 3

martial art experienced and 7 inexperienced persons. The

ratio of created dataset for the punch classes and partici-

pants are shown in Figure 4.

The created dataset for sensor configuration 2 contains

212 punches with 6 types of punches (LS,LU,RS,RH,RU:

35 punches, LH: 37 punches) performed by one participant

who has a year of experience in boxing. The ratio of created

dataset for the punch classes and participants are shown in

Figure 5.

Fig. 4 Ratio of the created dataset of sensor configuration 1
for the three types of punches (left) and the participants
(right).

Fig. 5 Ratio of the created dataset of sensor configuration 2 for
the six types of punch punches

4.3 Activity Detection Result

For sensor configuration 1, out of 924 (307 rear hand

straights, 308 rear hand hooks, 309 rear hand uppercut)

detected punches, 913 punches were actual punches mean-

ing that the overall accuracy was 98.8%. We had 1 false

negative (predicted that the segment is not punched but ac-

tually it is) and we had 11 false positives (predicted that the

― 1621 ―
© 2022 Information Processing Society of Japan



segment is punch but actually it is not). Therefore, the pre-

cision of all punches detection was 98.8% and the recall of

all punches was 99.9%. The accuracy, precision, and recall

of each punch are shown in Table 4.

The result of detection method for sensor configuration 1

showed that it is possible to detect punches with high accu-

racy with the proposed method. Many of the false positives

were caused by the participant’s arm lowering movement

when the experiment is done and they are asked to press

and stop button of the data collection application. For the

detection result on the right wrist of sensor configuration 2,

we had 1 mistook error on LH resulting f1-score of 99.54%.

For upper back as a sensor location, we had 1 mistook er-

ror on LH, LU, RS, RH resulting f1-score of 98.85%. The

result of detection result on sensor configuration 2 is shown

in Table 5.

Table 2 The detection result for Sensor configuration 1

RS RH RU Total Punches
Accuracy 99.0% 98.7% 98.7% 98.8%
Precision 100.0% 100.0% 98.4% 98.8%
Recall 99.0% 99.0% 99.7% 99.9%

4.4 Activity Classification Result

For sensor configuration 1, we evaluated the three types of

classifiers (SVM, KNN, RF) by two cases person-dependent

case (PD) and person-independent case (PI). In the PD case,

we conducted 10 fold cross-validation which shuffles the data

randomly in each holds. This splits 25% of the data to test-

ing data and 75% of the data to training data. The training

data is used to train classifiers, and the trained classifiers

are used to predict against the testing data. This process

of splitting data and predicting is repeated 10 times and

average accuracy is calculated. As shown in Table 6, we

achieved 97.8% of f1-score (97.8% of accuracy) with RF,

99.0% of f1-score (99.0% of accuracy) with SVM, 98.5% of

f1-score (98.5% of accuracy) with KNN. Therefore, in the

PD case, we confirmed the SVM is the best classifier. The

confusion matrix of the best classifier is shown in Figure 6.

In the PI case, we conducted leave-one-person-out cross-

validation, wherein each fold, 9 participants are used for

training, and the remaining one participant was used for

testing. After calculating classification accuracy for each

person. The average classification accuracy of 10 partici-

pants was calculated. As shown in Table 7, we achieved

85.9% f1-score (86.1% accuracy) for RF, 90.6% f1-score

(91.1% accuracy) for SVM, and 85.8 f1-score (86.3% accu-

racy) for KNN. Therefore, in the PI case, we confirmed that

the best classifier was the SVM. The confusion matrix of the

best classifier is shown in Figure 7. The confusion matrix

shows that the rear hook has the least true positive rate. It

also shows the most confusion occurs when the model acci-

dentally predicted the uppercut but the true label was the

rear hook.

The result of the PD case showed that it is possible to

Table 3 The detection result of each sensor location for Sensor
configuration 2 (RW=Right Wrist, UB=Upper Back)

Precision Recall F1-score
RW 100% 99.1% 99.5%
UB 100% 97.7% 98.9%

Fig. 6 The confusion matrix of the best classifier (SVM) in per-
son dependent case

Fig. 7 The confusion matrix of the best classifier (SVM) in per-
son independent case

classify the 3 types of rear hand punches with high accu-

racy close to 100% in PD cases. The result of the PI case

showed in table 6 that it is possible to classify the punches

slightly over 90% despite a variety of the participant’s age

and gender.

Table 4 The detection result for Sensor configuration 1

RS RH RU Total Punches
Accuracy 99.0% 98.7% 98.7% 98.8%
Precision 100.0% 100.0% 98.4% 98.8%
Recall 99.0% 99.0% 99.7% 99.9%

For sensor configuration 2, we evaluated the three types

of classifiers (SVM, KNN, RF) by conducting 5 fold cross

validation which shuffles the data randomly in each holds
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Table 5 The detection result of each sensor location for Sensor
configuration 2 (RW=Right Wrist, UB=Upper Back)

Precision Recall F1-score
RW 100% 99.1% 99.5%
UB 100% 97.7% 98.9%

Table 6 Classification results of each models in PD case (sensor
configuration 1)

Method Activity Precision Recall F1-score

RF

Rear Straight 97.5% 99.7% 98.6%
Rear Hook 97.7% 96.4% 97.1%
Rear Upper 98.4% 97.4% 97.9%

Macro Average 97.8% 97.8% 97.8%

KNN

Rear Straight 99.0% 99.4% 99.2%
Rear Hook 98.1% 98.1% 98.2%
Rear Upper 98.4% 98.1% 98.2%

Macro Average 98.5% 98.5% 98.5%

SVM

Rear Straight 99.4% 99.7% 99.5%
Rear Hook 98.7% 98.4% 98.5%
Rear Upper 99.9% 99.0% 99.0%

Macro Average 99.0% 99.0% 99.0%

Table 7 Classification results of each models in PI case (sensor
configuration 1)

Method Activity Precision Recall F1-score

RF

Rear Straight 92.6% 91.1% 89.6%
Rear Hook 84.6% 81.1% 79.0%
Rear Upper 93.1% 89.3% 88.9%

Macro Average 90.1% 87.1% 85.9%

KNN

Rear Straight 91.0% 93.4% 90.3%
Rear Hook 85.6% 79.0% 81.6%
Rear Upper 88.6% 86.5% 85.6%

Macro Average 88.4% 86.3% 85.8%

SVM

Rear Straight 96.5% 93.1% 93.4%
Rear Hook 91.4% 84.8% 85.3%
Rear Upper 92.2% 95.5% 92.9%

Macro Average 93.4% 91.1% 90.6%

for both sensor position of right wrist and upper back. As a

result for the right wrist, we achieved the best accuracy of

96.7% with KNN when k = 5 (SVM=94.9%, RF=95.8%).

As the best result for the upper back, we achieved an accu-

racy of 96.3% with SVM (KNN=95.4%, RF=94.9%). As the

best result for a combination of the right wrist and upper

back, we achieved 99.0% accuracy with KNN (SVM=98.6%,

RF=98.1%) when k = 5. To compare the results by different

sensor positions, the result of classification accuracy for sen-

sor configuration 2 is shown in Figure 8. This figure implies

that there is no much of a difference between the right wrist

and upper back for classification accuracy when classifying

punches from both hands. The confusion matrix of the best

classifier (KNN) for the Six-Class punch activity classifica-

tion result using features from an IMU on the Right Wrist

(RW) is shown in Figure 9. The confusion matrix of the best

classifier (SVM) for the Six-Class punch activity classifica-

tion result using features from an IMU on the Upper Back

(UB) is shown in Figure 10. The numbers of miss classified

punches for rear (right) hands of Figure 9 and 10 supported

our assumption that predicting single hand punches from

wrist sensor score better than the sensor on the upper back.

The numbers of miss classified punches for lead (left) hands

of Figure 9 and 10 supported our assumption that predict-

ing other hand punch from the wrist sensor will be more

difficult than the sensor on the upper back. Thus, it can

be suggested that using an IMU on the upper back is more

suited for classifying both hand punches than an IMU on

the right wrist, and using the wrist are more suited for sin-

gle hand punches. We will test this on more participants for

our future work.

Fig. 8 Six-Class punch activity classification result (sensor con-
figuration 2) by accuracy for each IMU position and Ma-
chine learning algorithm (RW=Right Wrist, UB=Upper
Back)

Fig. 9 The confusion matrix of the best classifier (KNN) for Six-
Class punch activity classification result (sensor configura-
tion 2) using features from an IMU on Right Wrist (RW).

Fig. 10 The confusion matrix of the best classifier (SVM) for
Six-Class punch activity classification result (sensor con-
figuration 2) using features from an IMU on Upper Back
(UB).

5. Conclusion and Future Work

In this paper, we focused on boxing and proposed punch

activity detection and classification methods using accel-

eration and angular velocity signals obtained by an IMU.

The proposed method is evaluated on 10 participants aged

between 17 and 53 years old (8 male and 2 female, age

27.8 ± 12.8). As a result, we achieved 98.8% detection ac-

curacy, 98.9% classification accuracy with SVM in-person-

dependent (PD) case, and 91.1% classification accuracy with

SVM in person-independent (PI) case. In addition, we con-

ducted a preliminary experiment for classifying 6 different

types of punches performed from both hands for two differ-

ent sensor positions. Furthermore, to develop our research

― 1623 ―
© 2022 Information Processing Society of Japan



into a boxing personal supporting system in future work, we

estimated the real-time performance of classification meth-

ods. From the result of the experiment with 10 participants,

we showed that it is possible to automatically detect a single

punch with high accuracy and classify three basic types of

punches in high accuracy with a machine learning approach.

The result of the preliminary experiment suggested that us-

ing an IMU on the upper back is more suited for classifying

both hand punches than an IMU on the right wrist.

Our aim for the future is to detect and classify boxing

movements in real-time to give feedback to the user through

the boxing supporting system. To achieve this, we will first

investigate the best position of a single sensor by extend-

ing the preliminary experiment in this paper. Then, we will

build a system that can run the methods in real-time on

that sensor position and test their real-time validity by con-

ducting the actual trial.
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