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Abstract: Recently, with the proliferation of IoT devices, network technologies have also rapidly developed to serve
the rising needs of users. IoT devices are often complemented by cloud computing technology to provide better ser-
vices. Fog computing was introduced as a method to bring cloud applications closer to IoT devices so that end-users
could avoid communication latency. An edge device at the fog node could use Network Functions Virtualization to
optimize its performance and resource management. However, recent research has shown that certain fundamental vir-
tual switch settings can be misused to carry out cyberattacks. In previous research, we proposed Slow-port-exhaustion
DoS Attack, an attack that targets virtual switches using the Port Address Translation mechanism for communication
between virtual machines and the physical network. In this attack, an attacker with a low amount of attack bandwidth
can sabotage the virtual switch by occupying all of the host machine’s ports for a long period of time. In this paper,
we introduce some methods for exploiting IoT devices to leverage this attack. We also perform experimental attacks
with new methods and compare the results with the old methods. Finally, we suggest some countermeasures against
this kind of attack.
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1. Introduction

The emergence of the Internet of Things (IoT) has been rapidly
changing the network industry. The concept of the IoT network,
which allows all things to connect to the Internet, is an intelli-
gence network that can exchange information and communicate
through information sensing devices by using agreed upon proto-
cols [1]. To optimize production efficiency and help minimize en-
vironmental impact and downtime, the data from the IoT devices
are often transferred to cloud server for process[2]. However,
with a myriad of IoT devices such as mobile phones, cars, sen-
sors connecting to the cloud, this transmission faces many chal-
lenges like unpredictable latency and privacy gaps. As an alter-
native solution, fog computing was proposed to address some of
the limitations of cloud computing.

Fog computing is defined as a highly virtual platform that pro-
vides computing, storage, and networking services at the edge
of the network [3]. Fog computing model has been recognized
as edge computing including Multi-Access Edge Computing [4],
cloudlets [5], and Vehicular Ad Hoc NETworks (VANET) [6].
The principal idea in all these architecture is to make it possi-
ble to run applications on virtualized hardware devices that are
near to the end-users. The key component of fog computing is
the fog nodes, which are edge devices that can provide process-

I National Defense Academy of Japan, Yokosuka, Kanagawa 239-0811,

Japan
¥ ed19006@nda.ac.jp
Y mim@nda.ac.jp
©  hidema@nda.ac.jp

© 2022 Information Processing Society of Japan

ing and storage capabilities at the edge of the network [7]. A
basic edge device contains the physical hardware of CPU, mem-
ory units, and network interface, which operates along with its
corresponding OS system. However, edge devices often utilize
virtualization to extend their capability in resource management
for better performance.

Marin-Tordera et al. summarize edge device virtualization sys-
tem into 3 types [8]. The virtualization can be handled by a native
hypervisor such as VMWare ESXi [9], or by a hosted hypervisor
like VirtualBox [10]. Another approach is virtualization on the
operating system level by using a known platform called Docker
to provide virtual images and containers [11]. Each virtualization
type has its own advantages and drawbacks. Apparently, a down-
side of virtualization is that if the hypervisor or the virtualization
software is broken down by an adversary, all of the applications
and virtual machines running on that host will become unavail-
able to users. Recent research shows that virtualized systems
are vulnerable against side-channel attacks or Denial-of-Service
(DoS) attacks [12], [13], [14].

DoS attack is a well-known type of cyberattack that makes the
targeted machine or network unavailable to its users. Common
DoS attack methods are flooding the target’s network layer by
sending overwhelming amounts of network traffic [15]. Another
DoS approach is using a small stream of very slow traffic to oc-
cupy the target’s resources. These methods are called Slow DoS
attacks and they are difficult to detect because they generate traf-
fic that is seemingly legitimate ordinary traffic [16]. To mitigate
these attacks, it is essential to understand and discover vulnerabil-
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ities that can lead to a DoS attack. However, there appears to be a
lack of academic research regarding Slow DoS attacks, especially
Slow Dos attacks that target virtualized systems.

In our initial work, we proposed a Slow-port-exhaustion (SPE)
attack, a Slow DoS attack type that targets hosted hypervisor im-
plementing Port Address Translation (PAT) for its network con-
nection [17]. The SPE attack can occupy all of the hypervisor’s
available ports and thereby prevent users from connecting to their
VM. We also proposed 2 different methods, which are called
keepalive-type and closewait-type, to maintain the connections
for a long time. Our experimental attack results on VMware
Workstation Pro v14.1.2 hypervisor [19] showed that these at-
tacks can sabotage the virtual switch for a long time and prevent
legitimate virtual machines from establishing a new connection
with the physical network.

Our recent work however, reveals that the proposed methods
have certain drawbacks and might not work on recent hypervisor
versions [18]. Particularly, some recent hypervisors have time-
out settings to terminate half-open TCP sessions created by the
prior attack methods. Therefore, in this paper, we introduce novel
methods to address the problems. By misusing some [oT devices
with abnormal network settings discovered in [18], we propose a
new attack scenario by which the attacker can easily take over a
large number of TCP connections for a long period of time. We
also propose another novel scenario of using Docker containers
to assist in SPE attacks. Our testing results on VMware Worksta-
tion Pro version 16.1.2 show that our new methods are superior
to the older SPE methods.

In summary, we make the following contributions:

(1) We investigate IoT devices that allow TCP connection hang-
ing for a long time and propose a method for using them for
the SPE attack.

(2) We show abnormal behavior in the network transmission of
the Docker containers and use it for a novel SPE attack sce-
nario.

(3) We show experimental attack results on a recent hypervisor
and analyze the results.

This paper is organized as follows: Section 2 reviews the re-
search and technology relating to this research. Section 3 de-
scribes all of our SPE attack methods from the older methods
to the novel idea. Section 4 shows our testing experiments on
the recent version of the VMware Workstation hypervisor and
discusses the results. We suggest some countermeasures in Sec-
tion 5. Finally, Section 6 summarizes our findings and discusses
future work.

2. Related Work and Technology

2.1 Virtual Switch with Port Address Translation

A hypervisor is the software or firmware that creates and man-
ages virtual machines. Native (or bare-metal) hypervisors oper-
ate directly on the hardware of the host machine while hosted
hypervisors are installed as a virtualization software on the host
machine OS [20]. The hosted hypervisor provides its virtual ma-
chines an operating platform and supervises the execution of
the virtual machines. While native hypervisors are widely used
in large companies and cloud computing, small instituions and
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workgroups often use hosted hypervisors because of their sim-
plicity in building and managing virtual machines without requir-
ing another management machine. Some notable examples of
hosted hypervisors are Oracle VirtualBox [10], VMware Work-
station [19], Parallels Desktop for Mac [21], and QEMU [22].

In this research, we focus on the Network Functions Virtualiza-
tion (NFV) of the hypervisors. Generally, the hypervisor utilizes
a virtual switch to manage its network connection. The virtual
switch is a software application that is embedded within the hy-
pervisor and performs checking and transmitting network pack-
ets. The virtual switch can communicate with other devices on
the physical network through a single or multiple physical net-
work interface cards (NICs). The virtual switch also assigns vir-
tual network adapters to the virtual machines. The virtual net-
work adapters are responsible for sending and receiving network
packets from their corresponding virtual machines.

The virtual switch often has 2 configurations for network con-
nections between the virtual machines and the physical network.
One configuration is called Bridge mode while the other is called
NAT mode. Figure 1 illustrates these configurations. In the
Bridge mode, the virtual switch utilizes a virtual bridge function
to directly connect the virtual machines to the physical network.
In this mode, the virtual machines in the virtual network can get
their IP addresses from the DHCP server in the physical network.

The NAT mode on the other hand uses a virtual DHCP server
embedding with the hypervisor to assign the virtual machine’s
IP addresses. For communication with the external physical net-
work, the virtual switch utilizes Port Address Translation (PAT),
which is an extension of the Network Address Translation (NAT)
technology [23]. In this configuration, when a virtual machine
sends a network packet to a physical machine in the external net-
work, the virtual switch translates the virtual machine’s IP ad-
dress to the hosted machine’s IP and allocates a port number used
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Table 1 Example of PAT translation table.

Protocol | Inside Local Inside Global Outside Local Outside Global
IP : Port IP : Port IP : Port IP : Port

TCP 192.168.76.129:10000 | 10.35.3.95:30124 | 10.35.2.234:80 10.35.2.234:80

TCP 192.168.76.129:11000 | 10.35.3.95:31436 | 10.35.2.234:80 10.35.2.234:80

TCP 192.168.76.129:12000 | 10.35.3.95:46527 | 10.35.2.234:80 10.35.2.234:80

TCP 192.168.76.129:10000 | 10.35.3.95:24634 | 10.35.2.234:515 | 10.35.2.234:515

TCP 192.168.76.129:10000 | 10.35.3.95:52261 10.35.1.192:80 10.35.1.192:80

for this connection. The host machine then creates a new packet
with the source port as the allocated port number and sends it to
the destination machine. Therefore, the virtual switch in NAT
mode can be considered as an intermediary server between the
virtual machines and the physical network [17].

Table 1 shows an example of the PAT translation table when a
virtual machine attempts to connect with different physical TCP
servers. In this table, the inside local IP is the virtual machine’s
IP address, while the inside global IP is the hosted machine’s IP
address. On the other hand, the outside local IP and the out-
side global IP are the IP addresses of the destination machines
in the physical network. When a virtual machine establishes a
connection with a physical machine, PAT checks the Inside Lo-
cal IP address and source port combination, and then assigns a
corresponding private port number used for packet transmissions
from and to the Outside Global IP. The assigned port number
is randomly selected from an ephemeral port numbers pool that
the hypervisor is authorized to use. Those ephemeral port num-
bers must not be configured for any particular protocol by the
hosted machine. PAT allows the virtual switch to easily identify
the corresponding virtual machine for returning packets from the
physical servers. In this way, many virtual machines can share
one hosted machine’s IP address for connections with the physi-
cal network [17].

However, a noticeable drawback to PAT is the limited num-
ber of ports. Since the port number is 16 bits, theoretically there
are 65,535 ports available for network communication [24]. In
a NAT mode virtual switch, if all ports in the ephemeral port
numbers pool are being used, then no more ports are available
for translation of a new connection. We called this event port
exhaustion [17]. However, this is very rare because each con-
nection usually has a timeout and automatically closes after the
timeout is reached. Window’s default TCP connection timeout
is 72 seconds but the timeout could be configured differently in
each network system [25].

2.2 DoS Attack on Virtual Systems

In 2012, Shea and Liu demonstrated that DoS attacks can do
more damage to a virtual network than a physical network [14].
Their test results show that a simple TCP SYN Flood attack can
cause a 50% of the performance degradation of a virtual server
when compared to a physical server using the same resources.
Somani et al. discovered another effect of DoS attacks on cloud
computing. When the resources of a virtual machine were over-
whelmed by a DoS attack, they observed that all other VMs and
servers in the same cloud were also affected by the DoS attack.
They also demonstrated that some basic features of cloud com-
puting such as multi-tenancy, auto-scaling, and isolation mul-
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tiplied the impact of a DoS attack in the targeted cloud[12].
Ristenpart et al. exposed a new threat scenario when attackers try
to place their malicious virtual machine on the same host machine
as their target in the cloud. Their testing on Amazon’s EC2 shows
that once attackers achieve that co-residence state, they can per-
form a number of cross-VM attacks such as side-channel or DoS
attacks [13].

In 2017, we discovered that attackers could abuse some anoma-
lies in the default network implementation of the virtual switch
for DoS attacks [26]. In particular, the tested virtual switch had
a relatively high TCP retransmission frequency. Furthermore,
in some conditions, the virtual switch kept retransmitting TCP
packets without a timeout interval. To utilize those two irregu-
lar retransmissions, we proposed two DoS attack schemes. One
is an amplification DoS attack that uses a malicious virtual ma-
chine inside the virtual network and the other is a collaboration
attack using both insider virtual machine and Man-in-the-Middle
method [27]. These works showed that some improper settings of
the virtual switch could become possible vulnerabilities for DoS
attacks.

We continued this line of work by introducing a novel Slow
DoS attack method called Slow-Port-Exhaustion (SPE) attack
that targets NAT mode virtual switch [17]. This attack is unlike
the previous amplification attacks because it uses a very small
stream of data instead of flooding the victim with a traffic occu-
pying a large bandwidth. As a result, the SPE attack is harder to
detect than the previous amplification attacks.

2.3 Sockstress Attack

Our SPE attack methods are inspired by a slow DoS method
known as the Sockstress attack. This attack is developed by Louis
from abnormalities discovered while performing network testings
in 2008 [28]. The Sockstress attack abuses TCP Servers with long
TCP timeouts to generate indefinite TCP connections.

Figure 2 describes the Sockstress attack sequence. This attack

contains 4 steps:

e Step I: the attacker establishes a normal TCP connection
with the target server.

e Step 2: the attacker sets the TCP Window size of the last
ACK packet to 0 and sends it to the server. The TCP window
size signifies how much data the client is willing to receive
at that moment. A zero TCP window size packet suggests
that the client’s buffer is full and that the server must stop
sending more data until further notice.

e Step 3: the server initiates queries to check if the client can
accept new data. The attacker keeps replying to the queries
with the zero TCP window size packets, which suggest that
the client is not ready to take any new data. This creates an
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indefinite TCP connection that does not close after a timeout
interval.

e Step 4: the attacker generates a large number of indefinite
TCP connections to flood the target’s resources and prevent
legitimate users from establishing a new connection with the
targeted server.

This attack relies on a flaw in the implementation of the TCP
specification to create indefinite TCP connections. This concept
inspires us to find other methods to generate such TCP connec-
tions. In 2017, we developed the SPE attack, which used 2 differ-
ent methods to create indefinite TCP connections and consume
the targeted virtual switch’s resources [17].

3. SPE Attack Methods

3.1 Attack Model

The SPE attack aims to use a very limited amount of attack
bandwidth to occupy all available ports that the hosted hypervisor
is able to use for its network connection. Since it is very different
from the common DoS attacks approach which is rapidly flood-
ing the victim’s network with high bandwidth traffic, the SPE at-
tack can be considered as a Slow DoS Attack [17]. However, the
attacker needs a compromised virtual machine in the target’s vir-
tual network. In this paper, we consider the attacker is a user of
one virtual machine in the targeted virtual network. An example
of our attack scenario is organizations using Virtual Desktop In-
frastructure (VDI) to manage the virtual desktops and utilize the
thin clients in their network. Since our methods specifically work
on hosted hypervisors using NAT-mode virtual switch, the attack
scenario is restricted to organizations using such hypervisors in
their servers. In this scenario, we consider the attacker as an in-
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Fig. 3 SPE Attack model.

sider of the targeted organization. In the real-world scenario, this
refers to the threat of an insider attack. A survey conducted in
2018 shows that 53% of surveyed organizations had confirmed
insider attacks against their systems [30].

We present our attacker model in Fig. 3. In our attack scenario,
the attacker possesses an available virtual machine in the targeted
system. In the VDI scenario, the insiders can access their own vir-
tual machines that were registered with their ID. If the attacker
wants to create a new virtual machine for attack purposes, they
need to have access to the hypervisor in the targeted server. The
attacker might not care about whether the attacking virtual ma-
chine is identified after the attack if the attacker could manage
to use the IDs of the attacker’s colleagues to login into their vir-
tual machines and initiate the attack. The attacker’s purpose is
to prevent all other virtual machines from connecting to the ex-
ternal network. The main approach of the attacker is to force the
hypervisor to use up all of its available ports by keeping a large
number of TCP connections running indefinitely. The attack se-
quence is divided into 2 stages. Stage 1 is generating a large
number of established TCP connections. Stage 2 is maintaining
the TCP connections and not allow the virtual switch to terminate
the connections [17].

3.2 Establishing TCP Connections

The attacker establishes the TCP connections with the normal
TCP three-way handshake. First, from the compromised virtual
machine, the attacker sends SYN packets to the listening TCP
hosts. The TCP Hosts then respond with SYN/ACK packets. After
received the SYN/ACK, the attacker sends ACK packets to the TCP
hosts. This sequence will establish the TCP connections [17]. As
mentioned in Section 2.1, by changing the source port number
or the destination IP address in the SYN packet, the attacker can
avoid duplication of the port being assigned for translation, thus
forcing the virtual switch to use different ephemeral port num-
bers.

DoS detection methods are normally based on the difference
between attack traffic and legitimate traffic [29]. However, it is
difficult to distinguish the attack traffic from the normal traffic
if the bandwidth of attack traffic is significantly small. Because
the SPE attack’s goal is to stealthily establish a large number of
TCP connections, the amount of SYN packets sent to the TCP
hosts must be considered small in terms of the “small amount of
bytes sent per second”. Therefore, our strategy is dividing the
SYN packets into waves. In each wave, the attacker establishes
a constant number of connections by sending a fixed number of
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SYN packets using different combinations of source port numbers
and destination IP addresses simultaneously.

3.3 Maintaining the Connections
3.3.1 The Old Methods

In this attack model, the attacker could not use the Sockstress
method to keep the TCP connections alive because the hosted
hypervisor replaces the TCP window size value in the packet
to match its own data processing capacity. In our previous re-
search, we proposed 2 different methods to replace the Sockstress
method, which we named keepalive-type and closewait-type at-
tacks [17].

Figure 4 demonstrates the older methods. In the keepalive-
type method, the attacker uses TCP keepalive packets to maintain
the established TCP connections. The TCP keepalive is a special
probe packet that is used to check whether the TCP connection
is still working or if it has dropped. A TCP server that enables
the keepalive feature usually sets a timer after a connection is es-
tablished. This timer also resets after the server received a new
packet from the other end. After an amount of time depending on
the settings of the server, it sends an ACK packet with no data in it
to the other end. If the connection is still alive, the other end will
also respond with a no data ACK packet. If the other end does not
return any packets or sends a RST packet, the server decides that
the connection is dropped and terminates this section [31].

In this SPE attack method, after established the TCP connec-
tions, the attacker continuously sends keepalive packets to the ex-
ternal physical TCP hosts connecting to the attacker’s VM [17].
Because a TCP host could have the option to allow the keepalive
feature or not, the attacker must select the physical TCP hosts
having their keepalive features enabled.

The closewait-type method to keep the TCP connection alive
is putting it in an indefinite CLOSE_WAIT state. This method is
based on an unspecified rule about closing the connection in the
TCP specification. When the client sends a FIN packet to perform
an active close, the server replies with an ACK packet. The server’s
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TCP state will change from ESTABLISHED state to CLOSE_WAIT
state. After waiting for the local application to terminate the cor-
responding process, the server then sends its own FIN packet and
moves to LAST_ACK state. However, if the local application does
not send the FIN packet, the server will stay on this CLOSE_WAIT
state until the connection is forced to close [32]. However, since
RFC 793 does not specify the CLOSE_WAIT timeout, the server
can remain in this state indefinitely [17].

To exploit this flaw, after receiving the FIN/ACK packets from
the TCP hosts, the compromised virtual machine responds with
an ACK packet but does not send back its own FIN packet. If the
hosted machine does not automatically terminate the process, the
sockets will stay in the CLOSE_WAIT state for a long time [17].
Although the sockets are not in the ESTABLISHED state, the ports
are still being occupied and the virtual switch can not use those
ports to establish new connections.

3.3.2 The New Methods

Both of the older methods have their own drawbacks. The
keepalive-type method has to continuously send TCP keepalive
packets to maintain the connections. The keepalive-type is fea-
sible with a hosted hypervisor having an average low number of
ports the virtual switch can use. In our previous research, we
observed that the maximum number of ports that the VMware
Workstation version 14.1.2 hosted hypervisor can use is 3,300.
As a consequence, our keepalive-type SPE attack only needed to
send a low keepalive bandwidth, which is smaller than 1 KBps,
and therefore was able to maintain its stealth ability [17]. How-
ever, in the scenario of the hosted hypervisor that is allowed to use
over 10,000 ports, the keepalive traffic can be detected as attack
traffic and the attack is therefore exposed.

The closewait-type method’s drawback is that it has to rely
on the hosted hypervisor implementing a default TCP configu-
ration without the CLOSE_WAIT timeout. Although RFC 793 does
not specifically specify about the CLOSE_WAIT timeout, servers
should have stricter TCP settings so that indefinite TCP connec-
tion should not occur. In that scenario, the closewait-type SPE
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Table 2 Notable TCP hosts and services keeping the ESTABLISHED con-
nection after 24 hour.

Device | Port service (number)

printer http(80), printer(515), ipp(631)

server sunrpc(111), printer(515)

server finger(79), http(8081)

PC msrpe(135), vmrdp(2179), rdp(3389)
server echo(7), http(80), sunrpc(111), https(443)
NAS applications(8200, 10000)

attack will fail since the hosted hypervisor will automatically ter-
minate the hanging CLOSE_WAIT connections after a timeout in-
terval. In our preceeding work, we confirmed that this method
fails on the recent hypervisor [18].

To address these drawbacks, we proposed two different meth-
ods to maintain the TCP connections. The first method is ex-
ploiting IoT devices that have simple network settings. While
performing scanning in our local network, we discovered some
TCP services that maintain TCP connections in ESTABLISHED
state without sending or receiving TCP keepalive packet. These
unusual TCP connections come from printers, network-attached
storage, mini server, and personal computers. After 1 hour, we
observed that these TCP hosts still let the TCP connections hang
in the ESTABLISHED state. This type of TCP host behavior ob-
viously assists the SPE attack because the attacker does not have
to send the keepalive packets to maintain the connection. The
attacker only needs to establish connections with the TCP hosts
possessing this unusual setting and let the TCP connections hang
in the ESTABLISHED state. We called this method simpleloT-type.

We defined an IoT device as abnormal when it has a TCP ser-
vice maintaining the connection in ESTABLISHED state after 24
hours. To identify all of these abnormal IoT devices in our local
subnet, we first used Zenmap, which is the well known nmap tool
with GUI[39], to conduct SYN scans for available TCP hosts in
our subnet. We performed the scans at the same time of day for 5
days. Then we picked up and identified the IoT devices with TCP
services that are always available at that time. From the available
devices pool, we performed another scan with a self-made Python
tool to identify the targeted TCP hosts that have a long established
TCP connection. The scan method is simply establishing a TCP
connection with each of the TCP services in our subnet and does
not initiate active close. We used TCPView, which is a program
that shows detailed listings of all TCP and UDP endpoints on the
host machine [33], to monitor all of the TCP states generated by
our scanner. After 24 hours, we recorded all of the TCP hosts that
still keeping the TCP connection in ESTABLISHED state.

Surprisingly, with over 99 physical devices available in our lo-
cal network, there are 58 devices possessing the abnormal TCP
connection, which is 58%. On the other hand, there are 117 TCP
services having this setting over a total of 484 TCP services avail-
able in our subnet. Table 2 shows some notable TCP hosts and
services from our scan result that keep the ESTABLISHED state
connection after 24 hours. For instance, some specific printers
connecting to our subnet provide HTTP and internet printer ser-
vice. In addition, multiple servers, network-attached storage, and
personal computers opening their TCP ports allow the indefinite
ESTABLISHED connection.

The second novel method to maintain the connection is exploit-
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ing TCP servers from Docker containers. We called this method
container-type. Figure 5 demonstrates the packets transfer be-
tween the attacker’s virtual machine, the hypervisor, and the TCP
server from a Docker container while using this method. Docker
is another virtualization platform that provides the environment
to run applications in packages called containers [11]. The con-
tainers are more lightweight and more efficient than VMs since
they only virtualize the operating system instead of the entire
physical hardware [34]. In this SPE method, we created a default
TCP server by using the nginx image from the Docker hub [35].
The attack sequence is the same with the closewait-type method.
However, after the TCP server received an ACK from the hypervi-
sor and went to the FIN_WAIT_2 state, it still keeps sending TCP
Keepalive packets to the hypervisor. This behavior is abnormal
because in this state, the TCP server should not send any further
packets. After a timeout interval, the server should automatically
terminate its connection, even though it did not receive the FIN
packet from the other end.

We assume that the TCP server operated by Docker nginx im-
age has a setting that keeps sending probe packets to query the
hypervisor about the FIN packet so that it could finish the hand-
shake. Since the hypervisor did not receive any FIN packet from
the attacker’s virtual machine, it could only send an ACK to re-
spond to the Docker container’s query. This keeps the port of the
occupied hypervisor in CLOSE _WAIT state for a long time, while
the port from the Docker container is also stuck in FIN_WAIT_2
state. After 24 hours, we observed that both ends were still main-
taining in that state.

4. Attack Experiments

4.1 Experimental Environment

We conducted experimental tests on the recent version of
VMware Workstation Pro v16.1.2. We performed all 4 attack
methods presented in Chapter 3 to evaluate the feasibility of each
attack on the recent hosted hypervisor. We chose VMware Work-
station Pro because it is a well-known hosted hypervisor and it has
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Table 3 Experimental attack results on VMware Workstation 16.1.2.

SPE Method | Port Exhaustion? | SYN Packets Sent | Keepalive Packets Sent | Keepalive Packets Received | Drawbacks

(packets/min) (packets/min)
keepalive Yes 4,700 15,200 0 | Must send keepalive packets
closewait No 4,700 0 0 | Failed because of timeout (180 s)
simpleiot Yes 4,700 0 0 | Must find appropriate hosts beforehand
container Yes 4,700 0 15,200 | Receive keepalive packets

Hosted Hypervisor
Hosted IP

el ey (B =

//\""m“fﬂ
T
[ RARAA

DHCP
Server

Physical TCP Hosts

DHCP IP

Virtual Virtual

Machine Machine
N /N

\ \
N !

Checking | | Malicious !
} } : < ——» Attacker Traffic
i |

—> Checking Traffic

Host Machine

Fig. 6 Experimental model.

the NAT mode virtual switch for network communication [19].
Figure 6 shows our experimental model. We set up a virtual
machine running on Linux Ubuntu 18.04 OS as the attacker’s
compromised virtual machine. We also set up a different vir-
tual machine running on Windows 10 OS as a checking virtual
machine. We used iperf3, a tool for active measurements of the
maximum achievable bandwidth on IP networks [36], on this vir-
tual machine to check the connection status of the virtual net-
work. We also used Wireshark [38] to capture the packet transfer
in both the virtual switch and the host machine’s network inter-
face card. Our host machine is a modern mid-range PC with an
Intel Core 17-4790 core processor running at 3.60 GHz. The net-
work interface is a 1 Gbps Ethernet adapter attached to the PCI-E
bus. The host used Windows 8.1 64 bit as its operating system.

4.2 Attacks Execution

As mentioned in Section 3.1, we only established a constant
number of TCP connections for each wave. Since a SYN packet
is 60 Bytes, we chose to establish 15 connections each second so
that we could create an attack stream lower than 1 KB/s. After
the port exhaustion state, the attacker still keeps sending 15 new
SYN packets per minute for 1 hour to ensure the attack would
succeed.

For the keepalive-type, we used normal TCP hosts in our sub-
net supporting TCP keepalive feature. As described in Sec-
tion 3.3.1, for each established connection, the attacker sends a
TCP keepalive packet to the server after 15 seconds since the
last ACK was received in order to keep the socket open. For the
closewait-type attack, we chose normal TCP hosts that can per-
form active close and sends their FIN packet to the hypervisor.

For the simpleloT-type attack, we establish connections with
the abnormal TCP services that we found in Section 3.3.2. For
the container-type attack, we used Docker nginx image to create
15 containers running http TCP server on each container.

For each SPE method, we conducted our attack experiment for
24 hours since we estimate that period would cause serious dam-
age to the targeted system. We also setup an IPS program called
Snort with default community rules [37] to verify that the sent and
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received packets will not be detected as a DoS attack.

4.3 Tesing Results and Analysis

First, we can observe that the maximum number of ephemeral
ports that VMware Workstation can use for communication has
been upgraded from 3,300 in version 14.1.2[17] to 3,800 in this
recent version 16.1.2. Table 3 summarizes the result from our
experiments. The keepalive, simpleloT, and container-type meth-
ods succeed in occupying all of the available ports after 254 sec-
onds and maintained that state until we stopped the experiments.
Because the checking virtual machine could not establish a new
connection to the external network, we consider these 3 methods
as able to reach the port-exhaustion state.

The closewait-type on the other hand, failed to reach the port-
exhaustion state. As we observed through TCPView, the hyper-
visor terminated the CLOSE_WAIT state after a timeout of 180
seconds. Therefore, we could conclude that the closewait-type
method is not feasible anymore in the recent version of VMware
Workstation Pro. However, by combining the closewait-type
method with Docker container TCP servers, the attacker could
avoid the CLOSE_WAIT timeout and successfully maintain the TCP
connections as shown in the container-type attack results.

Among the 3 successful attack methods, the simpleloT-type
method has a lot of advantages over the other two methods. The
attacker only needs to slowly send 7,600 packets within 254 sec-
onds to establish the connections and achieve the port-exhaustion
state. On the other hand, the keepalive-type must continuously
sends a total of 3,800 keepalive packets every 15 seconds after
connecting to the TCP hosts to maintain the connection. The
container-type method does not have to send any packet after
establishing the connections but still has to receive keepalive
packets from the Docker containers and therefore might lose the
stealth element of this attack.

5. Discussion

5.1 Limitations

Under the default community rules of Snort, the sent and re-
ceived packets were not detected as DoS attacks. It is also hard
to initially create a rule to identify these packets since the sent
and received packets are basically normal TCP packets. We tried
to implement a rule to alert the system if there are any incoming
and outgoing keepalive packet, which are ACK packets not hold-
ing any data. As a result, this rule also alerted the systems when
any legitimate keepalive packet is transmitted. However, the TCP
hosts used for the keepalive-type and container-type can be eas-
ily detected when the system administrator investigates the traffic
after port exhaustion state.

Although the simpleloT-type is superior, the attacker has to
find the appropriate IoT devices. If such IoT devices are not
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found, the attack cannot be executed. However, the attacker can
still use the container-type or keepalive-type method but those
methods can be detected as mentioned above.

5.2 Countermeasures

Although the two newly proposed attack methods are supe-
rior to the old methods, these still have to rely on the abnor-
mal physical 10T devices and Docker containers. Therfore, an
active countermeasure against simpleloT-type attack is to check
whether there are too many ESTABLISHED TCP connections that
have the same remote IP address in the PAT table. If there are
such connections, the host machine can close the corresponding
ports and block the TCP host causing the abnormal connections.
The same countermeasure can be used for the container-type at-
tack, but this time the abnormal CLOSE_WAIT connections should
be terminated. On the newest version of VMware Workstation
Pro (v.16.2.3), the CLOSE_WAIT connections are terminated after
a timeout interval even while receiving keepalive packets from
the container. This proves that the container-type method will be
failed in a strict setting of the virtual switch.

Another countermeasure against the simpleloT-type attack is
that the hosted hypervisor should actively perform the close hand-
shake after a timeout interval. For the keepalive-type and the
container-type attack, an upbound number of keepalive packets
that the hypervisor sends or receives per connection should be
set. If the number of TCP keepalive packets in a TCP session
reaches the upbound number, the hosted hypervisor must actively
terminate that connection and close the corresponding port.

5.3 Ethical Consideration

We were careful to execute the experimental attacks within the
established legal and ethical boundaries. In particular, we only
executed the attack on our customed virtual network created from
our local machine. In addition, we slowly sent a small amount of
harmless traffic to the entrusted TCP hosts used for research ac-
tivities in our local network. As a result, our experiments are
harmless to other users and the Internet.

We have also reported the potential threat to VMware Inc. and
suggested some changes in their virtual switch configuration in
order to defend against future attacks in May 2021. In Jan-
uary 2022, we confirmed that the updated version of VMware
Workstation Pro (v16.2.2) could prevent container-type method
attacks. We contacted the vendor against about the indefinitely
ESTABLISHED TCP state that could lead to simpleloT-type at-
tack. In Febuary 2022, the vendor answered that they do not con-
sider this state as an exploitable issue according to RFC 2663.
However, they will review our observations and suggestions.

On the other hand, the requirements for the simpleloT-type
method is very hard to archive since the attacker has to search
for IoT devices that able to maintain such connections. There-
fore, we believe the impact from disclosing this abnormal state is
minor.

6. Conclusions

Because edge devices in the fog nodes might use hosted hy-
pervisor to virtualize their resources, an adversary could use SPE
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attacks to sabotage the virtual switch of the hosted hypervisor
and make the edge device’s application unavailable to end-users.
In this paper, we introduce two new SPE methods to address
the drawbacks of our old methods. We also perform experi-
mental attacks on a recent hosted hypervisor that implements
NAT mode virtual switch for network connection. Testing re-
sults showed that our new SPE methods succeed in reaching the
port-exhaustion state and corrupt the targeted virtual switch.

We consider that the novel SPE attack scenarios along with the
old methods might be feasible for any intermediary gateway that
shares the same method of handling TCP connections as the NAT
mode virtual switches. Future work will revise the nature of this
attack and investigate the feasibility of this attack on VPN servers
O Proxy servers.
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