IPSJ SIG Technical Report

Vol.2022-HPC-185 No.25
2022/7/29

A Parallel-in-Time Method for Compressible Fluid
Explicit Simulation

YEN-CHEN CHEN!»®

KENGO NAKAJIMA

1,b)

Abstract: High-Performance Computing (HPC) methods for time-dependent problems reach an ac-
celeration in space as the problem size grows. This restriction leads to the development of parallel-in-
time (PinT) methods. Despite many PinT methods have been introduced, very few PinT methods
have been tested with explicit schemes to our best knowledge. This research introduces a PinT
method that works with explicit schemes. This research constructs a multi-layer hierarchy in time
and space and solves it through coarse to fine layers. The proposed Cascadic Parareal method is
optimized based on the number of available cores to improve the efficiency of parallel-in-time solvers
with a limited number of processors. The numerical experiment solves for a compressible fluid simu-
lation around a cylinder. The research result shows that the proposed parallel-in-space/time (PinST)
method could solve faster than traditional spatial parallelization with less than 100 cores.

Keywords: PinT, parallel-in-time, parareal, explicit time-marching scheme

1. Introduction

Parallel-in-Time (PinT) studies have received growing at-
tention recently. PinT methods are methods that were used
to achieve further parallel acceleration after spatial par-
allelization saturates. So far, many PinT methods have
been proposed[l]. PinT methods such as parareal[2] and
MGRIT][3], [5] are popular PinT methods that are commonly
used. These methods have been shown to work on various
applications from simple equations like Poisson’s equation
and advection equation to computational fluid dynamics
simulation[4], [5], [9], [10], [11]. However, it is also observed
that PinT methods with explicit time-marching schemes
converge slower and require a large number of cores to
achieve faster computation time[6]. Cascadic Parareal|7] is
a PinT method developed to optimize the parallel efficiency
of PinT methods with explicit time-marching schemes.

Computational Fluid Dynamics (CFD) has been a chal-
lenging application for PinT methods. CFD simulations in-
volve solving multiple differential equations and variables.
One has to solve four governing equations by finite volume
method (FVM), for example, for the compressible fluid sim-
ulation. The instability of CFD with coarse meshes makes
it even harder to apply PinT methods. So far the following
works[6], [9], [10], [11], [17] have PinT methods on differ-
ent CFD applications. Falgout et al.(2015)[10] achieves 7.5
times computation acceleration with 4096 cores for a com-
pressible fluid simulation by MGRIT. Howse et al.(2019)

1 The University of Tokyo, Bunkyo-ku, Tokyo 133-8656, Japan
2 chen-yenchen842@g.ecc.u-tokyo.ac.jp
b) nakajima@cc.u-tokyo.ac.jp

(© 2022 Information Processing Society of Japan

achieve computation faster than spatial parallelization with
4096 to 16384 cores for the Burger’s equation. Christopher
et al.(2019) shows the convergence of MGRIT method for
Transient Couette flow application. These researches all
require a large number of cores for PinT acceleration and
cannot compete with the parallel efficiency of spatial paral-
lelization for explicit methods.

Cascadic Parareal shows better parallel efficiency than the
existing PinT method with explicit time-stepping schemes.
This paper will show that Cascadic Parareal converges well
for subsonic compressible flow. Moreover, the accuracy for
supersonic flow can be improved by applying adaptive mesh
refinement on coarse meshes. Details will be explained in
the result section.

Existing method parareal will be overviewed in section 2.
Based on parareal, section 3 explains the Cascadic Parareal
method. An experimental result for subsonic compressible
flow will then be provided in section 4. Section 5 discusses
the convergence of supersonic flow and how to improve its
accuracy. Finally, the conclusion and future works are sum-
marized in Section 6.

2. Pararael

The Cascadic Parareal method is based on the parareal
method. This section introduces the parareal method and
the Cascadic Parareal method will be explained in the next

section.

2.1 Parareal Method
Parareal|2] is an iterative PinT method with two levels of
time resolution. Consider a general PDE.

IPSJ SIG Technical Report

ou

ot

Parareal solves in parallel on time subintervals

[T™, T"*', n=0,1,2,...,N — 1. Within each time subin-

terval, the PDE is solved by a fine solver Fg; (uﬁ, ", 77
in parallel.

= f(u7 t) NS [07T] (1)

Un+1 = fdt(un,TnaTn+1) (2)

Because the time subintervals are solved independently,
the values at T™ are discontinuous. The Errors at T
are propagated from the start time by a coarse solver
GAT (Un, T™, T™ 1Y), where AT = T™"! — T™. Repeating
the previous steps iteratively is the parareal method. The
general equation of parareal can be written as follows.

uiill :gAT (u7’2,+1 3 Tn7 Tn+1)
+Fae(uk, ™ T (3)
~Gar(uy, T", T")

where fine solvers F are solved in parallel and coarse
solvers G are solved sequentially. Algorithm 1 summarizes
the parareal method.

The fine and coarse solvers in parareal can be any solvers
for the time-dependent problem, either explicit or implicit.
This research focuses on explicit methods for all fine and

coarse solvers.

Algorithm 1: parareal

- Initialize with coarse solver u,+1 = Gar (un, T™,T7H1)

for iterations k =0,1,... do
In parallel:

- Solve with the fine solver Fuy (un, T™, T"1)

- Result from last iteration Gar (un, T™, T™11)

Sequentially:

- Update from the first time segment to the last

ultl = Gar(uktt, T, T + Fap(ul, TP, T FY) —
Gar(uk, Tm, T+1)

end

2.2 Spatial Coarsening

When solving a time-dependent problem with an ex-
plicit method, it is essential that the time step satisfies
the Courant-Friedrichs-Lewy (CFL) condition[12]. The CFL
condition is a necessary condition of stability for explicit
methods while solving certain PDEs. For example, an ad-
vection equation % = ,a% has to satisify the following
CFL condition to solve stably with an explicit method.

C= Z—A; < Crax (4)

where a is the flow speed, At is the time step size, and Ax
is the mesh size. Cax is the maximum courant number,

which depends on the explicit method.

(© 2022 Information Processing Society of Japan

Vol.2022-HPC-185 No.25

2022/7/29
A R
we we we we
1 R+t

core 0 1 2 S N

Fig. 1: The whole time interval is divided by the number of
cores N. The coarse time step At is defined by coarsening
from the fine time grid. The coarse and fine solver solves
sequentially in each time subinterval.

Because most PinT methods involves coarse time-
steppings (solvers with larger time step size), CFL condition
is important for PinT methods with explicit methods. Spa-
tial coarsening is a commonly used technique for explicit
PinT methods to make sure that the results with coarse
time steps are stable. When the mesh size is coarsened by
the same ratio as the time step, the courant number remains
the same. Therefore, suppose that the same explicit method
is used for all PinT levels, the coarse time-stepping will be
stable if the fine time-stepping is stable.

AT mdt dt
— =g — =a— < max
aAX amdm adw S Cma)

Ccoarse =

3. Cascadic Parareal

For a conventional parareal implementation, cores of the
number of the coarse time steps are used to give the best
efficiency of the parallelization. However, Cascadic Parareal
maximizes the parallel efficiency by dividing the time subin-
tervals base on the available cores. Unlike implicit schemes,
which are often solved by iterative methods, explicit schemes
solve for each time step directly. Thus, we argue that in-
stead of distributing all works of a predefined algorithm to
available cores, it is more efficient to divide the time dimen-
sion by the number of available cores N. Each core solves
sequentially on both coarse and fine grids in the assigned
time interval ([T7, 7", n =0,1,..., N — 1) so that the
limited computational resource is best used. Assume that
there are m time steps in each time interval, for some explicit
fine solver ® and coarse solver ¥, equation (3) is written as
follows.

ufTh = V)) - 0wl (0)

where x is the number of coarse time steps in each time
subinterval. Because the coarse/fine ratio is m, there are
ma fine steps in each time subinterval and the total time
step T'=mNz.

To satisify the CFL condition, spatial coarsening is ap-
plied. Coarse solvers for parareal are performed on coarse
meshes, as shown in Figure 2. Coarse mesh U is coarsened
from the original fine mesh u and restriction operator R and
prolongation operator P are defined to pass data between
different mesh resolutions.

IPSJ SIG Technical Report

Fine grid

Restriction \(}Prolongation

X time

A]izaﬁon

Fig. 2: Spatial coarsening stabilizes the coarse grid result by

Coarse grid

coarsening both the time grid and the x grid.

U=Ru, u=PU (7)

The equation (6) with spatial coarsening can be written
as follows.

ub Ty = PUS(UNTY) + @™ (uyy) — P (UR) (8)

Cascadic Parareal applies the cascadic multigrid[14]
method on these time meshes using parareal, and always use
the coarsest mesh as the coarse solver. The cascadic multi-
grid method is a multigrid method that only moves from
coarse to fine grids. The parareal method is iterated at each
multigrid level until the error is reduced to the same order
as the discretization error, and then the converged result is
moved to the next finer level.

Because Cascadic Parareal uses more than two levels of
refinement, we define results at the spatial grid on level £ as
follows, where L levels £ = 0,1,...,L — 1 are from fine to

coarse.

l—1
Up—1 :Pe Uy,

Ve=1,2,...,L—1

¢
ug = Ry_qup—1,

9)

where up = u is the finest grid and ur_1 = U is the coars-
est grid. Rﬁ_l is the restriction operation that interpolates
from the grid of level £ — 1 to that of level ¢ and Pffl is
the prolongation operation that interpolates from the grid
of level £ to that of level £ — 1.

Cascadic Parareal uses the coarsest level U as the coarse
solver for the parareal algorithm at each level. Therefore,
we can write the Cascadic Parareal algorithm at level ¢ and
at iteration k, as follows.

ko1 0 ko+1
wg i =PL U (U
L—-1—¢
P ()
—PL ¥ (U)
YW=L-2L—-3,...,0

(10)

The converged result at coarser level £ are prolonged to
the next finer level £ — 1 as an initial guess of the parareal
algorithm in the next level.

ug,lm = fﬁlulz’[n Vn=0,1,...,N -1 (11)

(© 2022 Information Processing Society of Japan

Vol.2022-HPC-185 No.25
2022/7/29

—> parareal —> prolongation
level

? i
2 T/ 7 7]
/777

ko iterations k1 iterations
ko iterations

Fig. 3: Cascadic Parareal solves from coarse levels to fine
levels. The result is prolonged into a finer level as an ini-
tial guess after convergence of the parareal method at the
current level. Each red arrow represents an iteration of the
parareal algorithm between the two levels. Each blue arrow
represents the prolongation operator that gets the initial
guess for the finer level.

suppose that the parareal algorithm converges at level ¢ with
k, iterations.

Different from parareal, instead of solving on two levels
of grids with fine and coarse solvers accordingly, Cascadic
Parareal construct more than two levels of coarsening grids,
each solves with the same explicit schemes but with a differ-
ent size of the time step. Figure 3 shows the solving process
of Cascadic Parareal of three levels. The red arrows indi-
cates a iteration of parareal with the head as fine level and
the tail as coarse level. After convergence at each coarse
level £, the blue arrow interpolates the converged values to
the upper level £ — 1 as an initial guess for the next level
of parareal. The cascadic multigrid structure enables the
Cascadic Parareal method to reduce the required iteration
number at the finest level as much as possible. Therefore
achieve better parallel efficiency. Algorithm 2 is the sum-
mary of Cascadic Parareal.

Algorithm 2: Cascadic Parareal

Explicit time-marching on the coarsest level L.
Un, :Ré’flun forn=0,...,N

Upy1 =9%U,) forn=0,...,N—1

for level | = L-2 to 0 do

Take initial values from level £ + 1.

Uy = Pf+1ug+1

for iterate until residual tolerance do

On current processor:

Solve on the current level un41 = ™% (uy,).

for Processor p = 1 to P do
Solve on the coarsest level

kotl e kot1
u =P U (URTT) +

op e) = PL_y Ut (U
Update values to level 1 with prolongation
end
end
end
4. Result

A two-dimensional simulation of the compressible fluid
flow around a cylinder is used as a numerical example for
Cascadic Parareal.

IPSJ SIG Technical Report

Fig. 4: X-velocity distribution of flow around cylinder stable
result with initial velocity 0.3 Mach.

4.1 Two-dimensional compressible subsonic flow
around cylinder
This experiment solves the compressible flow from a uni-
form velocity to a steady state around a cylinder obstacle
without perturbation. Figure 4 shows a sample result of a
steady-state with initial flow velocity 0.3 Mach to the right,
where the color indicates the value of the rightward velocity
of the flow. A two-dimensional compressible compressible
fluid dynamics (CFD) can be solved by solving the follow-
ing governing equations.|[15]
aU o ~ o 3
§+v-(Fz+G‘7):v-(Rz+SJ (12)
where the state vector U, convective flux vector F', G and
viscous flux vector R, S can be written as following.

p pu pv
U — pu C F= pu2+p C G= p2vu
pv puv pv° +p
E Eu+ pu Ev+ pv
0 0
R— Txx S = Txy
Txy Tyy

UTzz + VTay — Qx UTzy + UTyy — Gy

where p is density, u, v are velocities in x and y directions, F
is total energy, T, Tzy, Tyy are viscous stresses and ¢z, gy
are heat fluxes.

There are five unknowns p,u, v, E, and P. For a perfect
gas, equation 13 is included to solve with the four governing
equations.

p
E= -1

The four coupled equations (12) are solved with the finite
volume method (FVM)[15] with artificial dissipation to im-
prove its stability[16]. FVM solves on dual meshes Qn with

S0l +0%) (13)

each grid point N in the center.

/QN (%,)dQJF/QN (V'ﬁ—v-ﬁ)dﬁzo (14)

Two-dimensional Lax-Wendroff method is chosen as the
explicit method to solve the governing equations.

(© 2022 Information Processing Society of Japan

Vol.2022-HPC-185 No.25

2022/7/29
Uttt =un + (8%)" At + % <%27>n At?
() =v-@-p. (55) =v*a-5
. . _ T, (15)
G F = (Fiy1, = 2Fi; + Fio1) N (Fij1 = 2Fi; + Fij1)

. R Ar2 R R r2A02
where ' = Fi1+ Gj, R= Ri+ Sj.

Second-order and fourth-order artificial dissipations are
added to the governing equations with a pressure switch
AP.

im1Pi + Do (16)
U=U+ ApeaUP + (1 — Ap)eaU™

Ap=

Grid points are taken on the polar coordinates. Grid
points for each coarsening level are defined such that the
height is the same as the lower width. Ar = rA6.

Both restriction and prolongation should be defined by in-
terpolation for the space dimension. Spatial restriction and
prolongation are performed using bicubic interpolation|8].
Bicubic interpolation approximates a value point in a grid
mesh using a cubic equation of r and 6.

3 3
Fr,0)=>"> ayr'®’ V(r,0)€Q (17)
i=0 j=0

The parameters a;; of the cubic is solved with values
f(r,0) and derivatives fr, fo, fro on the four corners of the
mesh). The solved cubic function is then used to derive
internal points. In this experiment, both restriction and
prolongation use bicubic interpolation on polar coordinate
to get coarse and fine grid point values.

With this explicit two-dimensional scheme, the experi-
ment compares the runtime for spatial parallelization and
parallel-in-space/time. For this numerical simulation, the
problem has 32,000 space grid points and computes for
100,000 time steps. This experiment is conducted on the
Oakbridge-CX cluster at the University of Tokyo. Figure 5
shows the execution time comparison of Cascadic Parareal to
spatial parallelization. The figure shows that even with only
2 time subintervals, Cascadic Parareal can execute faster
than spatial parallelization after 64 cores. This result re-
quires much less cores than existing researches on CFD sim-
ulations.[6], [9], [10]

5. Supersonic Flow

5.1 Convergence of Supersonic flow

Supersonic flow is nonlinear and creates shock wave in
front of the cylinder. Figure 6 shows an example of super-
sonic flow around a cylinder. Table 1 shows the finest con-
verge iteration of Cascadic Parareal for compressible flow of
different flow speed. The table shows that Cascadic Parareal
does not converge well for supersonic flow.

The diverged Cascadic Parareal results for supersonic flow
are due to unstable solving at coarse levels. The values
around shock wave is unstable on coarse meshes. One simple

IPSJ SIG Technical Report

® Parallel-in-sapce @ Parallel-in-space and time (2) Parallel-in-space and time(4)
® Parallel-in-space and time(8) @ Parallel-in-space and time(16)

10000
5000

1000

@
S
15}

Execution Time (s)

100

50
1 2 4 8 16 32 64 128 256 512

No. of cores

Fig. 5: Execution time of the CFD example with 32,000
grid points and solves for 100,000 time steps.The blue curve
represents parallelization only in the space dimension. The
parallel-in-space and time result used 2 to 16 cores in time
the domain (P; = 2,4,8,16).

828
Eo 16116

= 3,759 01

Fig. 6: Result of compressible fluid flow around a cylinder
with shock wave. The flow speed is 1.4 Mach.

Table 1: Convergence of parallel-in-time algorithm for 2D
compressible flow example using 64 cores. (number only
shows the iteration number at the finest level, X means di-
verge)

Flow speed (Mach) | 0.3 | 0.7 | 1.0 | 1.4
500000 time steps 3 4 5 6
1000000 time steps 3 4 5 5+
2000000 time steps | 3+ | 3+ | 3+ X

e

solution to improve the stability is to increase the artificial
dissipation coefficients for coarse meshes. However, the con-
verged Cascadic Parareal, affect by the coarse level, shows
smooth values around the shock wave, as shown in Figure 7.

This paper consider using adaptive mesh refinement at
coarse grids to improve the accuracy of Cascadic Parareal
as another solution for the convergence problem.

5.2 Cascadic Parareal with AMR

Adaptive mesh refinement (AMR) is a mesh refinement
method that was used to reduce the computation for large-
scale computations with non-uniform smoothness. On the
contrary, AMR can improve CFD stability for supersonic
flow by refining near the shock wave and the inner bound-
ary. Figure 8 is an example of sequential solving with AMR
around the cylinder.

Define AMR coarse mesh U and Prolongation operator

(© 2022 Information Processing Society of Japan

Vol.2022-HPC-185 No.25
2022/7/29

Fig. 7: Cascadic Parareal result of supersonic flow with large
dissipation. The flow speed is 1.4 Mach.

Fig. 8: Adaptive mesh refinement refines smaller meshes
where value gradients are large.

for AMR mesh P, The Cascadic Parareal equation (10) can
be written as follows.

Ugn = AM Rpine,) (UR=°)
s = PO (O + 0 () — PYU (Ten)
uft il = PO ey wg,) - P (OF,)
Vke=1,2,...,ke,..
(18)
Because we are solving with explicit methods, the solver
on the AMR-refined mesh ¥ also has to satisfy the CFL
condition. For smaller cells in the AMR mesh, we apply
an explicit method with smaller time steps for more time
steps. Suppose that a cell O is divided into four smaller
cells B by AMR. The mesh size h in =z and y directions
are both reduced to half. Therefore we apply an explicit
time-marching scheme twice with the half time step on these
smaller cells 2¢a¢/2. Fig. 9 shows the explicit solving on a
one-dimensional non-uniformed grid. When doing spatial
parallelization, we have to keep in mind that small cells do
two times more computation, or the load balancing will be
bad. The same goes for even smaller cells refined by AMR.
Suppose that the AMR-refined mesh U has points Ui, we
write the solver ¥ as follows.

- . U4r (U;) iisin a refined cell
2

Uar(U;) otherwise

IPSJ SIG Technical Report

NS LN LN

t

Fig. 9: Smaller time steps are applied on smaller cells on the
AMR mesh.

(a) Tter = 1 (b) Iter = 2 (c) Iter = 3
Fig. 10: Error of two-level Cascadic Parareal with double
dissipation at uniform coarser level.

(b) Iter = 2 (c) Tter = 3

(a) Tter =1
Fig. 11: Error of two-level Cascadic Parareal with AMR
coarse level. The dissipation coefficient remains the same.

Consider a two level Cascadic Parareal with 4 time inter-
vals. Figure 10 and Figure 11 are the values of the Cascadic
Parareal results without and with AMR at each iteration
substracted by the last iteration. The supersonic flow prob-
lem size is 2112 grid points with 2000 time steps. For Cas-
cadic Parareal without AMR, two times larger dissipation
is applied on the coarse level to improve stability. The fig-
ures shows that not only does Cascadic Parareal with AMR
converges faster, the converged result is also more accurate.

However, because AMR coarse mesh computes with
smaller time steps at refined meshes, AMR solver is nat-
urally more expensive than the uniform coarse solver. Fig-
ure 12 compares the computation time of Cascadic Parareal
with and without AMR coarse grid. Although Cascadic
Parareal converges faster as shown in Table 2, the total com-
putation time is larger than Cascadic Parareal with uniform
coarse grid.

For supersonic flow simulation that requires higher accu-
racy, we use AMR coarse grid for Cascadic Parareal. For
smooth functions, Cascadic Parareal with uniform coarse
grid has the best parallel efficiency.

(© 2022 Information Processing Society of Japan

Vol.2022-HPC-185 No.25

2022/7/29
® AMR coarse Pt=4 ® AMR coarse P{=8
® Uniform coarse Pt=4 ® Uniform coarse Pi=8

50

40
w
@
E
" ® \\‘\i

0

8 16 32 64 128

MNumber of cores

Fig. 12: Execution time comparison with and without AMR
as coarse level.

Table 2: Number of iteration until convergence of supersonic
flow by two-level Cascadic Parareal with and without AMR
coarse level.

Coarse level 4 time subintervals | 8 time subintervals
Uniform grid 3 6
AMR grid 2 4

6. Conclusion and Future Work

This paper applies Cascadic Parareal for compressible
flow simulation with explicit methods. Cascadic Parareal
is mainly based on parareal but has many layer hierarchies
with a cascadic multigrid solving process. Cascadic Parareal
has shown to provide great acceleration for subsonic flow.
With only 64 cores, parallel-in-space and time by Cascadic
Parareal could provide better parallel performance than that
of pure spatial parallelization.

Experiments also show that using AMR coarse grid helps
increasing accuracy for Cascadic Parareal for supersonic
flow simulation. However, using AMR slightly increases
the computation time. We conclude that the original Cas-
cadic Parareal with spatial coarsening is the most efficient
PinT method with explicit time-marching schemes to our
best knowledge. When the target function is nonlinear and
higher accuracy is required, Cascadic Parareal with AMR is
a better choice.

For future work, Cascadic Parareal with AMR could be
further experimented. For example, Cascadic Parareal with
AMR at both fine and coarse grids. More complicated simu-
lations such as vortex after the cylinder is also left as future
work.

References

[1] M. J. Gander, “50 years of time parallel time integration,” in
Multiple shooting and time domain decomposition methods.
Springer, 2015, pp. 69-113.

[2] J.L. Lions, Y. Maday, and G. Turinici, “Résolution d’EDP
par un schéma en temps «pararéel »,” Comptes Rendus de
I’Academie des Sciences - Series I: Mathematics, vol. 332,
no. 7, pp. 661-668, 2001.

[3] R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLach-
lan, and J. B. Schroder, “Parallel time integration with
multigrid,” SIAM Journal on Scientific Computing, vol. 36,
no. 6, pp. C635-C661, 2014.

IP IG Technical R Vol.2022-HPC-185 No.25
SJ SIG Technical Report 185 No.23

[4] O. A. Krzysik, H. De Sterck, S. P. MacLachlan, and
S. Friedhoff, “On selecting coarse-grid operators for parareal
and mgrit applied to linear advection,” arXiv preprint
arXiw:1902.07757, 2019.

[5] H. De Sterck, R. D. Falgout, S. Friedhoff, O. A. Krzysik,
and S. P. MacLachlan, “Optimizing mgrit and parareal
coarse-grid operators for linear advection,” arXiv preprint
arXiw:1910.03726, 2019.

[6] A. J. Howse, H. D. Sterck, R. D. Falgout, S. MacLach-
lan, and J. Schroder, “Parallel-in-time multigrid with adap-
tive spatial coarsening for the linear advection and inviscid
burgers equations,” SIAM Journal on Scientific Comput-
ing, vol. 41, no. 1, pp. A538-A565, 2019.

[7l Y.-C. Chen and K. Nakajima, “Optimized Cascadic Multi-
grid Parareal Method for Explicit Time-Marching Schemes”
2021 12th Workshop on Latest Advances in Scalable Algo-
rithms for Large-Scale Systems (ScalA), IEEE, pp. 9-18,
2021. DOI: 10.1109/ScalA54577.2021.00007

[8] Keys, R.: Cubic convolution interpolation for digital im-
age processing. IEEE Transactions on Acoustics, Speech,
and Signal Processing 29(6), 1153-1160 (1981). DOI:
10.1109/TASSP.1981.1163711

[9] J. Christopher, R. D. Falgout, J. B. Schroder, S. M. Guzik,
and X. Gao, “A space-time parallel algorithm with adaptive
mesh refinement for computational fluid dynamics,” Com-
puting and Visualization in Science, vol. 23, no. 1, pp. 1-20,
2020.

[10] R. D. Falgout, A. Katz, T. V. Kolev, J. B. Schroder,
A. Wissink, and U. M. Yang, “Parallel time integration
with multigrid reduction for a compressible fluid dynam-
ics application,” Lawrence Livermore National Laboratory
Technical Report, LLNL-JRNL-663416, 2015.

[11] M. von Danwitz, V. Karyofylli, N. Hosters, and M. Behr,
“Simplex space-time meshes in compressible flow simula-
tions,” International Journal for Numerical Methods in
Fluids, vol. 91, no. 1, pp. 29-48, 2019.

[12] H. Lewy, K. Friedrichs, and R. Courant, “Uber die par-
tiellen differenzengleichungen der mathematischen physik,”
Mathematische annalen, vol. 100, pp. 32-74, 1928.

[13] D. Ruprecht, “Convergence of parareal with spatial coars-
ening,” PAMM, vol. 14, no. 1, pp. 1031-1034, 2014.

[14] F. A. Bornemann and P. Deuflhard, “The cascadic multigrid
method for elliptic problems”, Numerische Mathematik, vol.
75, No. 2, pp 135-152, 1996, DOI: 10.1007 /002110050234

[15] V. Parthasarathy, Y. Kallinderis, and K. Nakajima, “Hybrid
adaptation method and directional viscous multigrid with
prismatic-tetrahedral meshes,” in 33rd Aerospace Sciences
Meeting and Exhibit, 1995, p. 670.

[16] T. H. Pulliam, “Artificial dissipation models for the Euler
equations”;, ATAA journal, vol. 24, no. 12, pp 1931-1940,
1986, DOI: 10.2514/3.9550

[17] Cortes Garcia, 1., Kulchytska-Ruchka, I., Clemens, M.,
Schops, S.: Parallel-in-time solution of eddy current prob-
lems using implicit and explicit time-stepping methods.
arXiv e-prints pp. arXiv-2012 (2020)

(© 2022 Information Processing Society of Japan 7

