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多人数の量子通信複雑性にける新しい手法

ルガル フランソワ1,a) 駿河 大樹1,b)

概要：The main conceptual contribution of this technical report is investigating quantum multiparty
communication complexity in the setting where communication is oblivious. This requirement, which
to our knowledge is satisfied by all quantum multiparty protocols in the literature, means that the
communication pattern, and in particular the amount of communication exchanged between each
pair of players at each round is fixed independently of the input before the execution of the proto-
col. We show, for a wide class of functions, how to prove strong lower bounds on their oblivious
quantum k-party communication complexity using lower bounds on their two-party communication
complexity. We apply this technique to prove tight lower bounds for all symmetric functions, and in
particular obtain an optimal Ω(k

√
n) lower bound on the oblivious quantum k-party communication

complexity of the n-bit Set-Disjointness function. We also obtain (nearly) matching upper bounds
by examining the optimal protocols for each function. In this technical report, we overview these
results and do not give most of the technical proofs.

Bounds on oblivious multiparty quantum communication complexity

1. Introduction

1.1 Background
1.1.1 Communication complexity.

Communication complexity, first introduced by Yao
in a seminal paper [30] to investigate circuit complexity,
has become a central concept in theoretical computer
science with a wide range of applications (see [16], [22]
for examples). In its most basic version, called two-
party (classical) communication complexity, two play-
ers, usually called Alice and Bob, exchange (classical)
messages in order to compute a function of their in-
puts. More precisely, Alice and Bob are given inputs
x1 ∈ {0, 1}n and x2 ∈ {0, 1}n, respectively, and their
goal is to compute a function f : (x1, x2) 7→ {0, 1} by
communicating with each other, with as few communi-
cation as possible.

There are two important ways of generalizing the
classical two-party communication complexity: one is
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to consider classical multiparty communication com-
plexity and the other one is to consider quantum two-
party communication complexity. In (classical) mul-
tiparty communication complexity, there are k play-
ers P1, P2, . . ., Pk, each player Pi is given an input
xi ∈ {0, 1}n. The players seek to compute a given func-
tion f : (x1, . . . , xk) 7→ {0, 1} using as few (classical)
communication as possible.*1 The other way of gen-
eralizing the classical two-party communication com-
plexity is quantum two-party communication complex-
ity, where Alice and Bob are allowed to use quantum
communication, i.e., they can exchange messages con-
sisting of quantum bits. Since its introduction by Yao
[29], the notion of quantum two-party communication
complexity has been the subject of intensive research in
the past thirty years, which lead to several significant
achievements, e.g., [4], [5], [10], [11], [28], [29].

In this paper, we consider both generalizations simul-
taneously: we consider quantum multiparty communi-

*1 This way of distributing inputs is called the number-in-hand
model. There exists another model, called the number-on-
the-forehead model, which we do not consider in this paper.
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cation complexity for k > 2 parties. This generalization
has been the subject of several works [6], [17], [18], [27]
but, compared to the two-party case, is still poorly un-
derstood.
1.1.2 Set-Disjointness.

One of the most studied functions in communica-
tion complexity is Set-Disjointness. For any k ≥ 2 and
any n ≥ 1, the k-party n-bit Set-Disjointness function,
written DISJn,k, has for input a k-tuple (x1, . . . , xk),
where xi ∈ {0, 1}n for each i ∈ {1, . . . , k}. The out-
put is 1 if there exists an index j ∈ {1, . . . , n} such that
x1[j] = x2[j] = · · · = xk[j] = 1, where xi[j] denotes the
j-th bit of the string xi, and 0 otherwise. The output
can thus be written as

DISJn,k(x1, . . . , xk) =

n∨
j=1

(x1[j] ∧ · · · ∧ xk[j]).

Set-Disjointness plays a central role in communica-
tion complexity since a multitude of problems can be
analyzed via a reduction from or to this function (see
[9] for a good survey). In the two party classical set-
ting, the communication complexity of Set-Disjointness

is Θ(n): while the upper bound O(n) is trivial, the proof
of the lower bound Ω(n), which holds even in the ran-
domized setting, is highly non-trivial [15], [23]. The k-
party Set-Disjointness function with k > 2 has received
much attention as well, especially since it has deep ap-
plications to distributed computing [12]. Proving strong
lower bounds on multiparty communication complex-
ity, however, is significantly more challenging than in
the two-party model. After much effort, a tight lower
bound for k-party Set-Disjointness was nevertheless ob-
tained in the classical setting: recent works [2], [25] were
able to show a lower bound Ω(kn) for DISJn,k, which is
(trivially) tight.

In the quantum setting, Buhrman et al. [5] showed
that the two-party quantum communication complex-
ity of the Set-Disjointness function is O(

√
n log n), which

gives a nearly quadratic improvement over the clas-
sical case. The logarithmic factor was then removed
by Aaronson and Ambainis [1], who thus obtained an
O(

√
n) upper bound. A matching lower bound Ω(

√
n)

was then proved by Razborov [24]. For k-party quan-
tum communication complexity, an O(k

√
n log n) up-

per bound is easy to obtain from the two-party upper
bound from [5].*2 An important open problem, which is
*2 We showed (in Theorem 3 in Section 5) how to obtain an

improved O(k
√
n) upper bound based on the protocol from

[1].

fundamental to understand the power of quantum dis-
tributed computing, is showing the tightness of this up-
per bound. In view of the difficulty in proving the Ω(kn)

lower bound in the classical setting, proving a Ω(k
√
n)

lower bound in the quantum setting is expected to be
challenging.

1.2 Our contributions
1.2.1 Our model.

The main conceptual contribution of this paper is
investigating quantum multiparty communication com-
plexity in the setting where communication is oblivious.
This requirement means that the communication pat-
tern, and in particular the amount of communication
exchanged between each pair of players at each round
is fixed independently of the input before the execu-
tion of the protocol. This requirement is widely used
in classical networking systems (e.g., [13], [19], [21])
and classical distributed algorithms (e.g., [7]), and to
our knowledge is satisfied by all known quantum com-
munication protocols that have been designed so far.
It has also been considered in the quantum setting by
Jain et al. [14], Result 3, who gave an Ω(n/r2) bound
on the quantum communication complexity of r-round
k-party oblivious protocols for a promise version of
Set-Disjointness.
1.2.2 Our results.

The main result of this paper holds for a class of
functions which has a property that we call two-party-
reduction. We say that a k-player function fk has a
two-party-reduction to a two-party function f2 if the
function f2 can be “embedded” in fk by embedding the
inputs of f2 in any position among the inputs of fk.
Many important functions such as any k-party sym-
metric function (including as important special cases
the Set Disjointness function DISJn,k and the k-party
inner product function) or the k-party equality func-
tion have this property. For a formal definition of the
reduction property, we refer to Definition 2 in Section
3. Our main result is as follows.

Theorem 1 (informal) Let fk be a k-party function
that has a two-party-reduction to a two-party function
f2. Then the oblivious k-party quantum communication
complexity of fk is at least k times the two-party quan-
tum communication complexity of f2.

Theorem 1 enables us to prove strong lower bounds on
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oblivious quantum k-party communication complexity
using the quantum two-party communication complex-
ity.*3 This is useful since two-party quantum commu-
nication complexity is a much more investigated topic
than k-party quantum communication complexity, and
several tight bounds are known is this setting. For ex-
ample, we show how to use Theorem 1 to analyze the
oblivious quantum k-party communication complexity
of DISJn,k and obtain a tight Ω(k

√
n) bound:

Corollary 1. The oblivious k-party quantum commu-
nication complexity of DISJn,k is Ω(k

√
n).

More generally, Theorem 1 enables us to derive tight
bounds for the oblivious quantum k-party communica-
tion complexity of arbitrary symmetric functions. Since
symmetric functions play an important role in com-
munication complexity [8], [20], [24], [26], [31], our re-
sults might thus have broad applications. Additionally,
we also give lower bounds for non-symmetric functions
that have the two-party reduction property, such as the
equality function. Our results are summarized in Ta-
ble 1.

To complement our lower bounds, we show tight (up
to possible polylogarithmic factors) upper bounds for
these functions. The upper bounds are summarized
in Table 1 as well. Note that if we apply our generic
O(k log n ·Gn(f)) bound to DISJn,k, we only get the up-
per bound O(k log n ·

√
n). We thus prove directly an

optimal O(k
√
n) upper bound (Theorem 3) by showing

how to adapt the optimal two-party protocol from [1]
to the k-party setting.

2. Models of Quantum Communication

Notations: All logarithms are base 2 in this paper.
We denote [k] = {1, . . . , k}. For any set X and k ≥ 1,
X k := X × · · · × X︸ ︷︷ ︸

k

.

Here we formally define the quantum multiparty com-
munication model. As mentioned in Section 1.2, this
communication model satisfies the oblivious routing
condition, meaning that the number of (classical or
quantum) bits used in communication at each round
is predetermined (independent of inputs, private ran-
domness, public randomness and outcome of quantum
measurements). Since details of the model are impor-

*3 Note that in the two-party setting, the notions of oblivious
communication complexity and non-oblivious communication
complexity essentially coincide, since any non-oblivious com-
munication protocol can be converted into an oblivious com-
munication protocol by increasing the complexity by a factor
at most two.

tant especially when proving lower bounds, we explain
the model in detail below.

2.1 Quantum multiparty communication model
In k-party quantum communication model, at each

round, players are allowed to send classical or quan-
tum messages to all of the players but the number of
(classical or quantum) bits used in communication is
predetermined. Therefore for any k-player M -round
protocol Π, we define the functions CPi→Pj

: [M ] →
N ∪ {0} (i, j ∈ [k]) which represent the number of bits
CPi→Pj

(m) transmitted at m-th round from i-th player
to j-th player.

Procedure: Before the execution of the protocol,
all players P1, . . . , Pk share an entangled state or public
randomness if needed. Each player Pi is then given an
input. At each round m ≤ M , every player Pi performs
some operations onto Pi’s register and send CPi→P1

(m)

bits to the player P1, CPi→P2
(m) bits to the player P2,

· · · , and CPi→Pk
(m) bits to the player Pk. All messages

from all players are sent simultaneously. This contin-
ues until M -th round is finished. Finally, each player Pi

output the answer based on the contents of Pi’s register.
We define the communication cost of this protocol as

QCC(Π) :=
∑

m∈[M ]

∑
i,j∈[k]
i̸=j

CPi→Pj
(m).

2.2 Protocol for computing a function
We define a protocol computing a function as follows.

Definition 1. We say a protocol Π computes f :

X1 × · · · × Xk → Y with error ε ∈ [0, 1/2) if for any
i ∈ [k] and any x = (x1, . . . , xk) ∈ X1 × · · · × Xk,
Pr(Πi

out(x) 6= f(x)) ≤ ε holds where Πi
out(x) denotes

Pi’s output of the protocol on input x.
We denote by Pk(f, ε) the set of k-party protocols

computing a function f with error ε in the quantum
multiparty communication model. The quantum com-
munication complexity of function f with error ε in the
model is defined as QCC(f, ε):= minΠ∈Pk(f,ε) QCC(Π).

We also define the bounded round communica-
tion complexity of function f as QCCM (f, ε) :=

minΠ∈PM
k (f,ε) QCC(Π) where we use the super-

script M to denote the set of M -round protocols
PM
k (f, ε). Regarding the coordinator model, we define

Pk(f, ε)Co,QCCCo(f, ε),PM
k (f, ε)Co, and QCCM

Co(f, ε) in
similar manners as above.
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Functions 2-party protocols k-party oblivious protocols

Lower Upper Lower Upper

Symmetric functions
Ω(Gn(f)) O(logn ·Gn(f)) Ω(k ·Gn(f)) O(k logn ·Gn(f))

in [24] in [24] Proposition 3 Theorem 4

Set-Disjointness
Ω(

√
n) O(

√
n) Ω(k

√
n) O(k

√
n)

in [24] in [1] Corollary 1 Theorem 3

Set-Disjointness
Ω̃(n/M) O(n/M) Ω̃(k · n/M) O(k · n/M)

in M -round

(M ≤
√
n/2) in [3] (folklore) Proposition 5 Corollary 2

Equality function
Ω(1) O(1) Ω(k) O(k)

(trivial) e.g., [16] Proposition 4 Proposition 6

表 1 Our results for oblivious quantum k-party communication complexity, along with

known bounds for the two-party setting. For a symmetric function f , the notation

Gn(f) refers to the quantity defined in Equation (1).

2.3 Symmetric functions
A function f : {0, 1}n × {0, 1}n → {0, 1} is symmetric

if there exists a function Df : [n]∪{0} → {0, 1} such that
f(x, y) = Df (|x ∩ y|), where x ∩ y is the intersection of
the two sets x, y ⊆ [n] corresponding to the strings x, y.
This means that the function f depends only on the
Hamming weight of (the intersection of) the inputs. For
any symmetric function f : {0, 1}n×{0, 1}n → {0, 1}, let
us write

Gn(f) =
√
nl0(Df ) + l1(Df ), (1)

where

l0(Df ) = max
1≤l≤n/2

{
l |Df (l) 6= Df (l − 1)

}
,

l1(Df ) = max
n/2≤l<n

{
n− l |Df (l) 6= Df (l + 1)

}
.

Razborov [24] showed the lower bound Ω(Gn(f)) on
the quantum two-party communication complexity of
any symmetric function f , and also obtained a nearly
matching upper bound O(Gn(f) log n). We also note
that for any function Df , this function is constant on the
interval [l0(Df ), n− l1(Df )] by the definitions of l0(Df )

and l1(Df ). We use this fact to prove a nearly match-
ing upper bound on the oblivious quantum multiparty
communication model.

Analogously, a k-party function f : {0, 1}n·k →
{0, 1} is symmetric when represented as f(x1, . . . , xk) =

Df (|x1 ∩ · · · ∩ xk|) using some function Df : [n] ∪ {0} →
{0, 1}. The k-party n-bit Set-Disjointness function
DISJn,k defined in Section 1 is a symmetric function.
The k-party n-bit equality function IPn,k, defined for
any x1, . . . , xk ∈ {0, 1}n as

IPn,k(x1, . . . , xk) =(x1[1] ∧ · · · ∧ xk[1])⊕ · · ·

· · · ⊕ (x1[n] ∧ · · · ∧ xk[n])

is also symmetric. On the other hand, the k-party
n-bit equality function Equalityn,k, defined for any
x1, . . . , xk ∈ {0, 1}n as

Equalityn,k(x1, . . . , xk) =

1 if x1 = x2 = · · · = xk,

0 otherwise,

is not symmetric.

3. Lower bounds

Here we show Proposition 1, which relates the com-
munication complexity of a k-party function fk : X k →
Y to the communication complexity of a two-party func-
tion f̃2 : X × X → Y when f2 is a two-party-reduction
from f̃k in the following sense.
Definition 2. A function f̃2 : X × X → Y is a two-
party-reduction from fk : X k → Y if for any i ∈ [k],
there is a map x−i : X → X k−1 such that

∀x1, x2 ∈ X f̃2(x1, x2) = fk([x−i(x2), i, x1])

holds, where [y, i, x] := (y1 . . . , yi−1, x, yi, . . . , yk−1) for
y = (yi)i≤k−1 ∈ X k−1 and x ∈ X .

For example, DISJn,2 is a two-party-reduction from
DISJn,k (k ≥ 2) because we can take X = {0, 1}n,
Y = {0, 1}n and x−i(x) = (x, 1n, . . . , 1n).

Using this definition, we show the following proposi-
tion.
Proposition 1. Let fk : X k → Y be a function and
suppose f̃2 : X × X → Y is a two-party-reduction of fk.
For any protocol Πk ∈ Pk(fk, ε), there is a two-party
protocol Π̃ ∈ P2(f̃2, ε) such that QCC(Π̃) ≤ 2QCC(Πk)

k

holds.
We also show a proposition which considers the

bounded round setting.
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Proposition 2. Let fk and f̃2 be the same as in Propo-
sition 1. For any protocol Πk ∈ PM

k (fk, ε), there is a
protocol Π̃ ∈ PM

2 (f̃2, ε) such that QCC(Π̃) ≤ QCC(Πk)
k

holds.
Using Proposition 1, we next show the following the-

orem.
Theorem 1 (formal version). Let fn,k : {0, 1}n·k →
{0, 1} be a function and f̃n be a two-party-reduction of
fn,k. Then

∀n, k, QCC(fn,k, ε) ≥
k

2
·QCC(f̃n, ε).

We can also prove a similar proposition in the
bounded round scenario using Proposition 2:
Theorem 2. Let fn,k and f̃n be the same as Theorem 1.
Then for any n, k, QCCM (fn,k, ε) ≥ k

2 · QCCM (f̃n, ε)

holds.

4. Applications

Here we investigate the lower bounds of some im-
portant functions such as Symmetric functions, Set-
disjointness and Equality.

We first apply Theorem 1 to symmetric functions.
Recall that any k-party symmetric function f can be
represented as f(x1, . . . , xk) = Df (|x1 ∩ · · · ∩ xk|) (each
player is given xi(1 ≤ i ≤ k) as input) using some func-
tion Df : [n] ∪ {0} → {0, 1}.
Proposition 3. For any k-party n-bit sym-
metric function fn,k, QCC(fn,k, 1/3) ∈
Ω
(
k{

√
nl0(Dfn,k

) + l1(Dfn,k
)}
)
.

Proof. For i ∈ [k], define x−i : {0, 1}n →
{0, 1}n·(k−1) as x−i(x) = (x, 1n, . . . , 1n). Then we
have that for any i ∈ [k] and any x1, x2 ∈ {0, 1}n,
fn,2(x1, x2) = fn,k([x−i(x2), i, x1]). This implies fn,2

is a two-party-reduction of fn,k. Therefore, Theo-
rem 1 yields QCC(fn,k, 1/3) ∈ Ω(k · QCC(fn,2, 1/3)).

Applying the well known lower bound Ω(
√

nl0(Dfn,2)+

l1(Dfn,2
)) of the two-party function fn,2 [24], we obtain

QCC(fn,k, 1/3) ∈ Ω
(
k{

√
nl0(Dfn,k

) + l1(Dfn,k
)}
)
.

This lower bound is so strong that we get the op-
timal Ω(n · k) bound for Inner-product function (as
l0(Dfn,k

) = l1(Dfn,k
) = Θ(n) holds) and Ω(k

√
n) lower

bound for Set-disjointness function (as l0(Dfn,k
) = 1

and l1(Dfn,k
) = 0 holds), which turns out to be optimal

in our setting as listed in Section 5.
Next, we examine the lower bound of Equality func-

tion.

Proposition 4. For any k-party protocol for
Equalityn,k, QCC(Equalityn,k, 1/3) ∈ Ω(k).

Proof. For i ∈ [k], define x−i : {0, 1}n →
{0, 1}n·(k−1) as x−i(x) = (x, x, . . . , x) (i.e., making
k − 1 copies of x). Then we have that for any
i ∈ [k], any x1, x2 ∈ {0, 1}n, Equalityn,2(x1, x2) =

Equalityn,k([x−i(x2), i, x1]). Therefore by Theorem 1,
the trivial lower bound Ω(1) of two-party n-bit Equality
function yields QCC(Equalityn,k, 1/3) ∈ Ω(k).

We also prove a lower bound in bounded round sce-
nario using Theorem 2.
Proposition 5. QCCM (DISJn,k, 1/3) ∈ Ω

(
n·k

M log8 M

)
.

Proof. Using Ω
(
n/(M log8 M)

)
lower bound of two-

party M -round Set-disjointness function [3], we obtain
QCCM (DISJn,k, 1/3) ∈ Ω

(
n · k/(M log8 M)

)
which is

nearly tight as listed in Section 5.

5. Matching upper bounds

In this section, we list the upper bound O(k
√
n) for

DISJn,k, the upper bound O(k log n(
√

nl0(Df )+l1(Df )))

for symmetric functions and the upper bound O(k log n)

for Equalityn,k. Without being noted explicitly, all of
the optimal protocols satisfy the oblivious routing con-
dition. These are (sometimes nearly) matching upper
bounds since we have the same lower bounds in Sec-
tion 4.

5.1 Optimal protocol for DISJn,k

Adopting the arguments from [1], Section 7, which
gives a two-party protocol for DISJ with O(

√
n)-

communication cost, we obtain the protocol with O(k ·
√
n) cost. This gives the following theorem.

Theorem 3. QCC(DISJn,k, 1/3) ∈ O(k
√
n).

Using the protocol used in Theorem 3, we can create
M -round protocol for DISJn,k with O(n · k/M) commu-
nication cost when M ≤

√
n. The important fact here

is that in the protocol with O(k
√
n) cost, the coordi-

nator and players interact only for O(
√
n) rounds. To

create the desired protocol, let us now divide the input
x ∈ {0, 1}n into n/M2 sub-inputs, each contains M2

elements. We next apply the above protocol in paral-
lel with the n/M2 sub-inputs where each of sub-inputs
uses O(M) rounds and O(kM) communication. The
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new protocol still uses O(M) rounds although the com-
munication cost grows up to n

M2O(kM) = O(n · k/M).
The success probability is still the same since the orig-
inal protocol is a one-sided error protocol.

Therefore, this protocol has M -round and the com-
munication cost O(n · k/M) which nearly matches
the lower bound Ω

(
n · k/(M log8 M)

)
described in Sec-

tion 4. Therefore we obtain the following corollary:
Corollary 2. QCCM (DISJn,k, 1/3) ∈ O(n · k/M) when
M ≤

√
n.

5.2 Symmetric functions
The following theorem is shown by generalizing Sec-

tion 4 of [24] which investigates only the two-player set-
ting.
Theorem 4. For any k-party n-bit symmetric function
fn,k,
QCC(fn,k, 1/3) ∈ O

(
k log n{

√
nl0(Dfn,k

) + l1(Dfn,k
)}
)
.

5.3 Optimal protocol for Equalityn,k

By a standard argument of hash functions (see, e.g.,
[16]), we obtain the following proposition.
Proposition 6. QCC(Equalityn,k, 1/3) ∈ O(k).
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