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Winner Determination Algorithms for Colored Arc Kayles

Kanae Yoshiwatari1,a) Hironori Kiya2,b) Tesshu Hanaka2,c) Hirotaka Ono1,d)

Abstract: Cram, Domineering, and Arc Kayles are well-studied combinatorial games. They are interpreted as edge-
selecting-type games on graphs, and the selected edges during a game form a matching. In this paper, we define a
generalized game called Colored Arc Kayles, which includes these games. Colored Arc Kayles is played on a graph
whose edges are colored in black, white, or gray, and black (resp., white) edges can be selected only by the black
(resp., white) player, although gray edges can be selected by both black and white players. BW-Arc Kayles and Arc
Kayles are restrictions of Colored Arc Kayles, where We first observe that the winner determination for Colored Arc
Kayles can be done in O∗(2n) time by a simple algorithm, where n is the order of a graph. We then focus on the vertex
cover number, which is linearly related to the number of turns, and show that Colored Arc Kayles, BW-Arc Kayles,
and Arc Kayles are solved in time O∗(1.4143τ

2+3.17τ), O∗(1.3161τ
2+4τ), and O∗(1.1893τ

2+6.34τ), respectively, where τ
is the vertex cover number. Furthermore, we present an O∗((n/ν + 1)ν)-time algorithm for Arc Kayles, where ν is
neighborhood diversity. We finally show that Arc Kayles on trees can be solved in O∗(2n/2)(= O(1.4143n)) time, which
improves O∗(3n/3)(= O(1.4423n)) by a direct adjustment of the analysis of Bodlaender et al.’s O∗(3n/3)-time algorithm
for Node Kayles.
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1. Introduction
1.1 Background and Motivation

Cram, Domineering, and Arc Kayles are well-studied two-
player mathematical games and interpreted as combinatorial
games on graphs. Domineering (also called Stop-Gate) was in-
troduced by Göran Andersson around 1973 under the name of
Crosscram [6], [8]. Domineering is usually played on a checker-
board. The two players are denoted by Vertical and Horizon-
tal. Vertical (resp., Horizontal) player is only allowed to place its
dominoes vertically (resp., horizontally) on the board. Note that
placed dominoes are not allowed to overlap. If no place is left
to place a domino, the player in the turn loses the game. Dom-
ineering is a partisan game, where players use different pieces.
The impartial version of the game is Cram, where two players
can place dominoes both vertically and horizontally.

An analogous game played on an undirected graph G is Arc
Kayles. In Arc Kayles, the action of a player in a turn is to se-
lect an edge of G, and then the selected edge and its neighboring
edges are removed from G. If no edge remains in the resulting
graph, the player in the turn loses the game. Figure 1 is a play
example of Arc Kayles. In this example, the first player selects
edge e1, and then the second player selects edge e2. By the first
player selecting edge e3, no edge is left; the second player loses.
Note that the edges selected throughout a play form a maximal
matching on the graph.
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Similarly, we can define BW-Arc Kayles, which is played on an
undirected graph with black and white edges. The rule is the same
as the ordinary Arc Kayles except that the black (resp., white)
player can select only black (resp., white) edges. Note that Cram
and Domineering are respectively interpreted as Arc Kayles and
BW-Arc Kayles on a two-dimensional grid graph, which is the
graph Cartesian product of two path graphs.

To focus on the common nature of such games with matching
structures, we newly define Colored Arc Kayles. Colored Arc
Kayles is played on a graph whose edges are colored in black,
white, or gray, and black (resp., white) edges can be selected only
by the black (resp., white) player, though grey edges can be se-
lected by both black and white players. BW-Arc Kayles and ordi-
nary Arc Kayles are special cases of Colored Arc Kayles. In this
paper, we investigate Colored Arc Kayles from the algorithmic
point of view.

1.2 Related work
1.2.1 Cram and Domineering

Cram and Domineering are well studied in the field of combi-
natorial game theory. In [8], Gardner gives winning strategies for
some simple cases. For Cram on a × b board, the second player
can always win if both a and b are even, and the first player can al-
ways win if one of a and b is even and the other is odd. This can
be easily shown by the so-called Tweedledum and Tweedledee
strategy. For specific sizes of boards, computational studies have
been conducted [17]. In [16], Cram’s endgame databases for all
board sizes with at most 30 squares are constructed. As far as the
authors know, the complexity to determine the winner for Cram
on general boards still remains open.

Finding the winning strategies of Domineering for specific
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Fig. 1 A play example of Arc Kayles

sizes of boards by using computer programs is well studied. For
example, the cases of 8 × 8 and 10 × 10 are solved in 2000 [3]
and 2002 [4], respectively. The first player wins in both cases.
Currently, the status of boards up to 11 × 11 is known [15]. In
[18], endgame databases for all single-component positions up to
15 squares for Domineering are constructed. The complexity of
Domineering on general boards also remains open. Lachmann,
Moore, and Rapaport show that the winner and a winning strat-
egy Domineering on m× n board can be computed in polynomial
time for m ∈ {1, 2, 3, 4, 5, 7, 9, 11} and all n [11].

1.2.2 Kayles, Node Kayles, and Arc Kayles
Kayles is a simple impartial game, introduced by Henry Du-

deney in 1908 [7]. The name “Kayles” derives from French word
“quilles”, meaning “bowling”. The rule of Kayles is as follows.
Given bowling pins equally spaced in a line, players take turns to
knock out either one pin or two adjacent pins, until all the pins are
gone. As graph generalizations, Node Kayles and Arc Kayles are
introduced by Schaefer [14]. Node Kayles is the vertex version of
Arc Kayles. Namely, the action of a player is to select a vertex in-
stead of an edge, and then the selected vertex and its neighboring
vertices are removed. Note that both generalizations can describe
the original Kayles; Kayles is represented as Node Kayles on se-
quentially linked triangles or as Arc Kayles on a caterpillar graph.

Node Kayles is known to be PSPACE-complete [14], whereas
the winner determination is solvable in polynomial time on
graphs of bounded asteroidal numbers such as cocomparability
graphs and cographs by using Sprague-Grundy theory [1]. For
general graphs, Bodlaender et al. propose an O(1.6031n)-time
algorithm [2]. Furthermore, they show that the winner of Node
Kayles can be determined in time O(1.4423n) on trees. In [10],
Kobayashi sophisticates the analysis of the algorithm in [2] from
the perspective of the parameterized complexity and shows that
it can be solved in time O∗(1.6031μ), where μ is the modular
width of an input graph*1. He also gives an O∗(3τ)-time algo-
rithm, where τ is the vertex cover number, and a linear kernel
when parameterized by neighborhood diversity.

Different from Node Kayles, the complexity of Arc Kayles has
remained open for more than 30 years. Even for subclasses of
trees, not much is known. For example, Huggans and Stevens
study Arc-Kayles on subdivided stars with three paths [9]. To our
best knowledge, no exponential-time algorithm for Arc Kayles is
presented except for an O∗(4τ2

)-time algorithm proposed in [13].

1.3 Our contribution
In this paper, we address winner determination algorithms for

*1 The O∗(·) notation suppresses polynomial factors in the input size.

Colored Arc Kayles. We first propose an O∗(2n)-time algorithm
for Colored Arc Kayles. Note that this is generally faster than ap-
plying the Node Kayles algorithm to the line graph of an instance
of Arc Kayles; it takes time O(1.6031m), where m is the number
of the original edges. We then focus on algorithms based on graph
parameters. We present an O∗(1.4143τ

2+3.17τ)-time algorithm for
Colored Arc Kayles, where τ is the vertex cover number. The
algorithm runs in time O∗(1.3161τ

2+4τ) and O∗(1.1893τ
2+6.34τ) for

BW-Arc Kayles, and Arc Kayles, respectively. This is faster than
the previously known time complexity O∗(4τ2

) in [13].
On the other hand, we give a bad instance for the proposed

algorithm, which implies the running time analysis is asymptoti-
cally tight. Furthermore, we show that the winner of Arc Kayles
can be determined in time O∗((n/ν+1)ν), where ν is the neighbor-
hood diversity of an input graph. This analysis is also asymptoti-
cally tight, because there is an instance having (n/ν−o(1))ν(1−o(1)).
We finally show that the winner determination of Arc Kayles
on trees can be solved in O∗(2n/2) = O(1.4143n) time, which
improves O∗(3n/3)(= O(1.4423n)) by a direct adjustment of the
analysis of Bodlaender et al.’s O∗(3n/3)-time algorithm for Node
Kayles.

In this technical report, all proofs of theorems and lemmas are
omitted. For more details, see [19].

2. Preliminaries
2.1 Notations and terminology

Let G = (V, E) be an undirected graph. We denote n = |V |
and m = |E|, respectively. For an edge e = {u, v} ∈ E, we define
Γ(e) = {e′ | e ∩ e′ � ∅}. For a graph G = (V, E) and a vertex
subset V ′ ⊆ V , we denote by G[V ′] the subgraph induced by V ′.
For simplicity, we denote G − v instead of G[V \ {v}]. For an edge
subset E′, we also denote by G − E′ the subgraph obtained from
G by removing all edges in E′ from G. A vertex set S is called a
vertex cover if e ∩ S � ∅ for every edge e ∈ E. We denote by τ
the size of a minimum vertex cover of G. Two vertices u, v ∈ V
are called twins if N(u) \ {v} = N(v) \ {u}.
Definition 1. The neighborhood diversity ν(G) of G = (V, E) is
defined as the minimum number w such that V can be partitioned
into w vertex sets of twins.

In the following, we simply write ν instead of ν(G) if no con-
fusion arises. We can compute the neighborhood diversity of G
and the corresponding partition in polynomial time [12]. For any
graph G, ν ≤ 2τ + τ holds.

2.2 Colored Arc Kayles
Colored Arc Kayles is played on a graph G = (V, EG∪EB∪EW),

where EG, EB, EW are mutually disjoint. The subscripts G, B, and
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W of EG, EB, EW respectively, stand for gray, black, and white.
For every edge e ∈ EG ∪ EB ∪ EW, let c(e) be the color of e,
that is, c(e) = G if e ∈ EG, B if e ∈ EB, and W if e ∈ EW. If
{u, v} < EG∪EB∪EW, we set c({u, v}) = ∅ for convenience. As ex-
plained below, the first (black or B) player can choose only gray
or black edges, and the second (white or W) player can choose
only gray or white edges.

Two players alternatively choose an edge of G. Player B can
choose an edge in EG ∪ EB and player W can choose an edge in
EG ∪ EW. That is, there are three types of edges; EB is the set of
edges that only the first player can choose, EW is the set of edges
that only the second player can choose, and EG is the set of edges
that both the first and second players can choose. Once an edge
e is selected, the edge and its neighboring edges (i.e., Γ(e)) are
removed from the graph, and the next player chooses an edge of
G − Γ(e). The player that can take no edge loses the game. Since
(Colored) Arc Kayles is a two-person zero-sum perfect informa-
tion game and ties are impossible, one of the players always has
a winning strategy. We call the player having a winning strategy
the definite winner, or simply winner.

The problem that we consider in this paper is defined as fol-
lows:

Input: G = (V, EG ∪ EB ∪ EW), active player in {B,W}.
Question: Suppose that players B and W play Colored Arc

Kayles on G from the active player’s turn. Which player is
the winner?

Remark that if EB = EW = ∅, Colored Arc Kayles is equivalent
to Arc Kayles and if EG = ∅, it is equivalent to BW-Arc Kayles.

To simply represent the definite winner of Colored Arc Kayles,
we introduce two Boolean functions fB and fW. The fB(G) is de-
fined such that fB(G) = 1 if and only if the winner of Colored Arc
Kayles on G from player B’s turn is player B. Similarly, fW(G) is
the function such that fW(G) = 1 if and only if the winner of Col-
ored Arc Kayles on G from player W’s turn is the player W. If two
graphs G and G′ satisfy that fB(G) = fB(G′) and fW(G) = fW(G′),
we say that G and G′ have the same game value on Colored Arc
Kayles.

3. Basic Algorithm
In this section, we show that the winner of Colored Arc Kayles

on G can be determined in time O∗(2n). We first observe that the
following lemma holds by the definition of the game.
Lemma 1. Suppose that Colored Arc Kayles is played on G =
(V, EG ∪ EW ∪ EB). Then, player B (resp., W) wins on G
with player B’s (resp., W’s) turn if and only if there is an edge
{u, v} ∈ EG ∪ EB (resp., {u, v} ∈ EG ∪ EW) such that player W
(resp., B) loses on G − u − v with player B’s (resp., W’s) turn.

This lemma is interpreted by the following two recursive for-
mulas:

fB(G) =
∨

{u,v}∈EG∪EB

¬ ( fW(G − u − v)) , (1)

fW(G) =
∨

{u,v}∈EG∪EW

¬ ( fB(G − u − v)) . (2)

By these formulas, we can determine the winner of G with ei-
ther first or second player’s turn by computing fB(G) and fW(G)

for all induced subgraphs of G. Since the number of all induced
subgraphs of G is 2n, it can be done in time O∗(2n) by a standard
dynamic programming algorithm.
Theorem 1. The winner of Colored Arc Kayles can be deter-
mined in time O∗(2n).

4. Parameterization by vertex cover
In this section, we propose winner determination algorithms

for Colored Arc Kayles parameterized by the vertex cover num-
ber. As mentioned in Introduction, the selected edges in a play of
Colored Arc Kayles form a matching. This implies that the num-
ber of turns is bounded above by the maximum matching size of
G and thus by the vertex cover number. Furthermore, the vertex
cover number of the input graph is bounded by twice of the num-
ber r of turns of Arc Kayles. Intuitively, we may consider that a
game taking longer turns is harder to analyze than games taking
shorter turns. In that sense, the parameterization by the vertex
cover number is quite natural.

In this section, we propose an O∗(1.4143τ
2+3.17τ)-time algo-

rithm for Colored Arc Kayles, where τ is the vertex cover number
of the input graph. It utilizes similar recursive relations shown in
the previous section, but we avoid to enumerate all possible posi-
tions by utilizing equivalence classification.

Before explaining the equivalence classification, we give a sim-
ple observation based on isomorphism. The isomorphism on
edge-colored graphs is defined as follows.
Definition 2. Let G = (V, E) and G′ = (V ′, E′) be edge-colored
graphs where E =

∪r
i=1 Ei and E′ =

∪r
i=1 E′i . Then G and G′ are

called isomorphic if for any pair of u, v ∈ V there is a bijection
f : V → V ′ such that {u, v} ∈ Ei if and only if { f (u), f (v)} ∈ E′i .

The following proposition is obvious.
Proposition 1. If edge-colored graphs G and G′ are isomorphic,
G and G′ have the same game value for Colored Arc Kayles.

Let S be a vertex cover of G = (V, EG ∪ EW ∪ EB), that is, any
e = {u, v} ∈ EG ∪ EW ∪ EB satisfies that {u, v} ∩ S , ∅. Note
that for v ∈ V \ S , N(v) ⊆ S holds. We say that two vertices
v, v′ ∈ V \ S are equivalent with respect to S in G if N(v) = N(v′)
and c({u, v}) = c({u, v′}) holds for ∀u ∈ N(v). If two vertices
v, v′ ∈ V \ S are equivalent with respect to S in G, G − u − v and
G−u− v′ are isomorphic because the bijective function swapping
only v and v′ satisfies the isomorphic condition. Thus, we have
the following lemma.
Lemma 2. Suppose that two vertices v, v′ ∈ V \ S are equivalent
with respect to S in G. Then, for any u ∈ N(v), G − u − v and
G − u − v′ have the same game value.

By the equivalence with respect to S , we can split V \ S into
equivalence classes. Note here that the number of equivalence
classes is at most 4|S |, because for each u ∈ S and v ∈ V \ S , edge
{u, v} does not exist, or it can be colored with one of three colors if
exists; we can identify an equivalent class with x ∈ {∅,G,B,W}S ,
a 4-ary vector with length |S |. For S ′ ⊆ S , let x[S ′] denotes the
vector by dropping the components of x except the ones corre-
sponding to S ′. Also for u ∈ S , x[u] denotes the component
corresponding to u in x. Then, V is partitioned into V (x)

S ’s, where
V (x)

S = {v ∈ V \ S | ∀u ∈ S : c({v, u}) = x[u]}. We arbitrarily
define the representative of non-empty V (x)

S (e.g., the vertex with
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the smallest ID), which is denoted by ρ(V (x)
S ). By using ρ, we

also define the representative edge set by

ER(S ) =
⋃

x∈{∅,G,B,W}S
{{u, ρ(V (x)

S )} ∈ EG ∪ EB ∪ EW | u ∈ S }.

By Lemma 2, we can assume that both players choose an edge
only in ER(S ), which enables to modify the recursive equations
(1) and (2) as follows: For a vertex cover S of G, we have

fB(G) =
∨

{u,v}∈(EG∪EB)∩(ER(S )∪S×S )

¬ ( fW (G − u − v))) , (3)

fW (G) =
∨

{u,v}∈(EG∪EW)∩(ER(S )∪S×S )

¬ ( fB(G − u − v))) . (4)

Note that this recursive formulas imply that the winner of Col-
ored Arc Kayles can be determined in time O∗((τ2 + τ · 4τ)τ) =
O∗((4τ+log4 τ)τ) = O∗(4τ2+τ log4 τ) = O∗(5.6569τ

2
), because the re-

cursions are called at most |S | times and τ + log4 τ ≤ 1.25τ for
τ ≥ 1.

In the following, we give a better estimation of the number of
induced subgraphs appearing in the recursion. Once such sub-
graphs are listed up, we can apply a standard dynamic program-
ming to decide the necessary function values, or we can compute
fB and fW according to the recursive formulas with memoriza-
tion, by which we can skip redundant recursive calls. In order to
estimate the number of induced subgraphs appearing in the recur-
sion, we focus on the fact that the position of a play in progress
corresponds to the subgraph induced by a matching.

Lemma 3. The number of nodes in recursion trees of equations
(3) and (4) for Colored Arc Kayles is O((r+1)|S |2/43|S | |S |2), where
r is the used colors.

The proof of Lemma 3 is omitted. The following theorem im-
mediately holds by Lemma 3 and the fact that a minimum vertex
cover of G can be found in time O∗(1.2738τ), where τ is the vertex
cover number of G [5].

Theorem 2. The winners of Colored Arc Kayles, BW-Arc Kayles,
and Arc Kayles can be determined in time O∗(1.4143τ

2+3.17τ),
O∗(1.3161τ

2+4τ), and O∗(1.1893τ
2+6.34τ), respectively, where τ is

the vertex cover number of a graph.

We have shown that the winner of Arc Kayles can be deter-
mined in time O∗(1.1893τ

2+6.34τ). The following theorem shows
that the analysis is asymptotically tight, which implies that for
further improvement, we need additional techniques apart from
ignoring vertex-cover-based isomorphic positions. We here give
such an example in Figure 2.
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Fig. 2 The constructed graph G = (U ∪ V ∪ X, E).

Theorem 3. There is a graph for which the algorithm requires
2τ

2/2 recursive calls for Colored Arc Kayles.

The proof of Theorem 3 is omitted. By the similar construc-
tion, we can show the following theorem.

Theorem 4. There is a graph for which the algorithm requires
1.3161τ

2
and 1.1893τ

2
recursive calls for BW-Arc Kayles and Arc

Kayles, respectively.

Remark 1. Although Theorems 3 and 4 give lower bounds on
the running time of the vertex cover-based algorithms, the proof
implies a stronger result. In the proof of Theorem 3, we use ID’s
of the vertices in U. By connecting 2i pendant vertices to ui, we
can regard them as ID of ui. Furthermore, we make U a clique
by adding edges. These make the graphs not automorphic, which
implies that the time complexity of an algorithm utilizing only
isomorphism is at least the value shown in Theorems 3 or 4.

5. Parameterization by neighborhood diver-
sity

In this section, we deal with neighborhood diversity ν, which is
a more general parameter than vertex cover number. We first give
an O∗((n/ν)O(ν))-time algorithm for Arc Kayles. This is an XP
algorithm parameterized by neighborhood diversity. On the other
hand, we show that there is a graph having at least O∗((n/ν)Ω(ν))
non-isomorphic induced subgraphs, which implies the analysis of
the proposed algorithm is asymptotically tight.

By Proposition 1, if we list up all non-isomorphic induced sub-
graphs, the winner of Arc Kayles can be determined by using re-
cursive formulas (1) and (2). LetM = {M1,M2, . . . ,Mν} be a par-
tition such that

⋃
i Mi = V and vertices of Mi are twins each other.

We call each Mi a module. It is easily seen that non-isomorphic
induced subgraphs of G are identified by how many vertices are
selected from which module.

Lemma 4. The number of non-isomorphic induced subgraphs of
a graph of neighborhood diversity ν is at most (n/ν + 1)ν.

Without loss of generality, we select an edge whose endpoints
are the minimum indices of vertices in the corresponding module.
By Proposition 1, the algorithm in Section 3 can be modified to
run in time O∗((n/ν + 1)ν).

Theorem 5. There is an O∗((n/ν + 1)ν)-time algorithm for Arc
Kayles.

The idea can be extended to Colored Arc Kayles and BW-Arc
Kayles. In G = (V, EG ∪ EB ∪ EW), two vertices u, v ∈ V are
called colored twins if c({u, w}) = c({v, w}) holds ∀w ∈ V \ {u, v}.
We then define the notion of colored neighborhood diversity.

Definition 3. The colored neighborhood diversity of G = (V, E)
is defined as minimum ν′ such that V can be partitioned into ν′

vertex sets of colored twins.

In Colored Arc Kayles or BW-Arc Kayles, we can utilize a par-
tition of V into modules each of which consists of colored twins.
If we are given a partition of the vertices into colored modules, we
can decide the winner of Colored Arc Kayles or BW-Arc Kayles
like Theorem 5. Different from ordinary neighborhood diversity,
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Fig. 3 The constructed graph G with neighborhood diversity ν = k +
2 log2(k + 1).

it might be hard to compute colored neighborhood diversity in
polynomial time.

Theorem 6. Given a graph G = (V, EG ∪ EB ∪ EW) with a par-
tition of V into ν′ modules of colored twins, we can compute the
winner of Colored Arc Kayles on G in time O∗((n/ν′ + 1)ν

′
).

In the rest of this section, we give a bad instance for the pro-
posed algorithm as shown in Figure 3, although the detailed proof
is omitted. The result implies that the analysis of Theorem 5 is
asymptotically tight.

Theorem 7. There is a graph having at least (n/ν + 1 −
o(1))ν(1−o(1)) non-isomorphic positions of Arc Kayles.

6. Arc Kayles for Trees
In [2], Bodlaender et al. show that the winner of Node Kayles

on trees can be determined in time O∗(3n/3) = O(1.4423n). It is
easy to show by a similar argument that the winner of Arc Kayles
can also be determined in time O(1.4423n). It is also mentioned
that the analysis is sharp apart from a polynomial factor because
there is a tree for which the algorithm takes Ω(3n/3) time. The
example is also available for Arc Kayles; namely, as long as we
use the same algorithm, the running time cannot be improved.

In this section, we present that the winners of Arc Kayles on
trees can be determined in time O∗(2n/2) = O(1.4143n), which is
attained by considering a tree (so-called) unordered. Since a sim-
ilar analysis can be applied to Node Kayles on trees, the winner
of Node Kayles on trees can be determined in time O∗(2n/2). We
omit the proof for Node Kayles to avoid repetition.

Let us consider a tree T = (V, E). By Sprague–Grundy theory,
if all connected subtrees of T are enumerated, one can determine
the winner of Arc Kayles. Furthermore, by Proposition 1, once a
connected subtree T ′ is listed, we can ignore subtrees isomorphic
to T ′. Here we adopt isomorphism of rooted trees.

Definition 4. Let T = (V, E, r) and T ′ = (V ′, E′, r′) be trees
rooted at r and r′, respectively. Then, T and T ′ are called isomor-
phic if for any pair of u, v ∈ V there is a bijection f : V → V ′ such
that {u, v} ∈ Ei if and only if { f (u), f (v)} ∈ E′i and f (r) = f (r′).

In the following, we estimate the number of non-isomorphic
connected subgraphs of T based on isomorphism of rooted trees.
For T = (V, E) rooted at r, a connected subtree T ′ rooted at r
is called an AK-rooted subtree of T , if there exists a matching
M ⊆ E such that T [V \ M] consists of T ′ and isolated vertices.
Note that M can be empty, AK-rooted subtree T ′ must contain
root r of T , and the graph consisting of only vertex r can be an
AK-rooted subtree.

Lemma 5. Any tree rooted at r has O∗(2n/2)(= O(1.4143n)) non-
isomorphic AK-rooted subtrees rooted at r.

We omit the proof here.

Theorem 8. The winner of Arc Kayles on a tree with n vertices
can be determined in time O∗(2n/2) = O(1.4143n).
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