V7 by =7 L% 106-11
(1995. 9. 8)

TOL R - EF) VL EEEE AT A

2 4 KGR Yong Sun
shaoying@cs.hiroshima-cu.ac.jp y.sun@qub.ac.uk
ohba@cs.hiroshima-cu.ac.jp Department of Computer Science
I B RE, HHREHER The Queen’s University of Belfast
T 731-31 [B RERXBHITAK 151-5 Belfast BT7 1NN
U.K.
Eg

V777 TRICBV T, BRAMLHFEOGHRRERE Y A FA0RBIEFICEFAET
b5, LHPLSHET, BRUEFECET W TOEINER NI EIEAHESIN TV
Ve ERX T, 7UXX - 7)Y 7O— R G HEEEAILT, BEEEI X TLERAE
T 50O RM e FEICET VA BENEER I RET S/ 97774 TRR /0L A% R
F¥ 5,

Process Modelling and Safety Critical Systems

Shaoying Liu and Mitsuru Ohba Yong Sun
Faculty of Information Sciences Department of Computer Science
Hiroshima City University The Queen’s University of Belfast
151-5, Asaminami-ku, Hiroshima 731-31 Belfast BT7 1NN
Japan U.K.

Formal methods have been recognized to be extremely useful for development of safety critical
systems. However, there are so far no mature processes for developing safety critical systems us-
ing formal methods. In this paper, we investigate most popular techniques in process modelling,
and proposes a function-safety interactive development process for developing safety critical

systems using formal methods.

1 Introduction

Our major concern is how to incorporate formal
methods and safety analysis techniques into the
software process (i.e. the process of software de-
velopment) in order to produce a software devel-
opment methodology for safety critical system.
Several software process models exist, such as
Waterfall model, Spiral model, and formal de-
velopment model, but none of them clearly in-
dicates how to carry out both the functional
and safety analysis during the development of
a safety critical system. Since formal meth-
ods have been recognized by the community
as a way of increasing confidence in software
for safety critical systems, we believe that es-
tablishing a methodology for safety-critical sys-
tems development based on the formal software
development model will facilitate and encour-
age the application of formal methods in safety-
critical systems.

In this paper, we first analysize the existing
software process models, and then propose a
function-safety interactive development process
for developing safety-critical systems using for-
mal methods. At this moment, our ideas re-
flected by this proposal have not been converted
into specific techniques, nor have they been
applied to a practical project. In this sense,
the work presented in this paper is premature.
However, we hope that our proposal will lead
to a technical progress in the field.

The remainder of this paper is organized as fol-
lows. Section 2 describes several existing soft-
ware process models. In section 3, we present a
function-safety interactive analysis process for
development of safety critical systems. Finally,
conclusions and future research are given in sec-
tion 4.

2 Software Development Pro-
cess Models

Several software development process models
exist. They include Waterfall Model, Spiral
Model, Successive Process Model and Succes-
sive Refinement Model. The first two have been
popular for the development of large software

project in industry, while the latter two are only
under research. In this section, we review all
these four models, respectively.

2.1 Waterfall Model

The waterfall model presents a transfor-
mational process for software development
and maintenance from System requirements,
through Software requirements, Analysis, Pro-
gram design, Coding, Testing, to Operations and
maintenance [Royce 70], as shown in Figure 1.

Apart from the transformational process in the
waterfall model, the interactions between the
various phases are encouraged. The intention
is that the process remains under control if all
rework needs only to go back one step for the
team to retrieve the situation and then to have
a basis for further progress. This model of the
process of working makes good sense when the
software is developed by an individual, or by a
team acting cohesively as an individual. How-
ever, for a large project involving more people,
organizations and managements, this process is
generally not easily controllable. Design itera-
tions may not be confined to successive stages,
leading to the sort of situation that every two
stages are likely interactive.

2.2 Spiral Model

The spiral model has been developed over a
number of years, based on experience on large
government software projects [Boehm 88]. It
can be used to discuss the principles of processes
to fit a wide variety of circumstances and pro-
vides guidance as to which sequence of phases
best fits a given software situation. Compared
with the waterfall model, the spiral model advo-
cates prototyping during the development pro-
cess and considers cost as an important element,
as shown in Figure 2.

There are two dimensions in the spiral model,
radial and angular dimensions. The radial di-
mension represents the cumulative cost incurred
in accomplishing the steps to date; the angular
dimension represents the progress made in com-
pleting each cycle of the spiral. The model holds
that each cycle involves a progression through

Figure 1: Waterfall model of software development

the same sequence of steps, for each portion of
the product and for each of its levels of elabora-
tion, from an overall concept of operation paper
down to the coding of each individual program.

The development of a software product within
the spiral model starts with the determination
of the objectives of the product being elabo-
rated (performance, functionality, ability to ac-
commodate change, etc.), the alternative means
of implementing this product, and the con-
straints imposed on the application of the al-
ternatives (cost, schedule, interface, etc.). Then
the evaluation of the alternatives with respect
to the objectives and constraints is carried
out. This evaluation must identify any ar-
eas of uncertainty which are significant sources
of project risk, and formulate a cost-effective
strategy for dealing with the sources of risk.
This may involve prototyping, simulation, ques-
tioning users, analytic modelling, or combina-
tions of these and other risk-resolution tech-
niques. Once the risk is evaluated, the next step
is determined by the relative balance of the per-
ceived risks and further development is carried
out.

2.3 Successive Process Model

Although both the waterfall and the spiral mod-
els provide the principles for software develop-
ment and a easy way for project managements,

there are many defficiencies. First, the princi-
ples only indicate a set of informal guidelines
on system development. Second, there is no
precise obligations defined for the activities at
each development stage. Third, it is difficult in
practice to decide the boundaries between dif-
ferent development stages (e.g. when should the
requirements analysis end? when should the de-
sign stops?) so the project management in fact
is more difficult than it is expected. In order
to improve the capacity of the existing models,
a successive process model is proposed [Salter
1993], as shown in Figure 3.

According to the successive process model, a
software development consists of a sequence
of software processes, each of which accepting
some input information and producing some
output information as the input information to
a successive process. Processes can be either
parallel or sequential during development.

In fact, the successive process model is the re-
sult of detailing the waterfall model, but it rep-
resents a more general principle for software de-
velopment. The process of a software devel-
opment is not divided into several stages but
processes which gradually transform the user’s
requirements into a final software product.

However, the successive process model provide
no precise principle of how to divide a develop-
ment into processes, no precise relationship be-
tween successive processes, and no precise obli-

Cumulative
cost
Progress through steps Evaluate alicrnatives;
identify, resolve risks
N .
:lb' li}(es.
rmalives, Risk analysis
Risk analysis
Risk .
analysis Operational
A Prolot; rotol
RA! Proto- Prototype ype 3| prowope
Commitment :(YP‘ !
Review — .
Partition Rﬂp"“‘"““" Concept of Soft
. of n ware
Life cyeie pernion cauiremens sottw Detailed
are N
product design
. 171, TS S
irements
Development ReginToe [
! Unit! Code
)test |
Integration Design validation Vo
o test and verification HE
plan ‘ H
: b
) I
'
Develop,
H verify ¥
' next-ievel
Pian product
next phases

Figure 2: Spiral model of software development

gations for the development of each process. A
major reason for the limitation is because the
input and output information of each process
is not required to be expressed in formal nota-
tions.

2.4 Successive Refinement Model

The successive refinement model for software
development is based on formal methods. Ac-
cording to this model, software development
is a process of successive refinements from ab-
stract specifications into concrete specifications,
as shown in Figure 4. The top level abstract
specification is derived from the user require-
ments by means of formalisation and its correct-
ness must be checked in agreement with the user
through validation. This specification is then
transformed into a real system (i.e. program)
by a sequence of refinements. Each refinement
transforms an abstract specification (which in-
cludes more information on what to do but less
information on how to do it) into a concrete
specification (which includes more information
on how to do it). Formal proof demonstrates

statically that the refined concrete specifica-
tion satisfies the corresponding abstract spec-
ification, and testing demonstrates dynamically
that the program satisfies the user’s true re-
quirements.

Based on the model of the software life-cycle
the process described in Figure 4 can be under-
stood as follows. The ‘User Requirements’is the
result of requirements analysis and is normally
described in informal language (e.g. English).
‘Specification,’ corresponds to the stage of func-
tional specification, and from ‘Specification,’ to
‘Specification,,’ corresponds to the stage of de-
sign. The refinement from ‘Specification,,’ into
‘Program’ corresponds to the stage of imple-
mentation. If the desired system is safety criti-
cal, the process of software development should
involve the activity of safety analysis. In princi-
ple, safety analysis should be enforced in every
stage of the software development process be-
cause the specification (or program) produced
in every stage expresses the potential functional
behaviour of the current system, which must
not violate the corresponding safety require-
ments. Ways of achieving this are not currently

Input
Product

Process
activity

Process
activity

Process
activity

Output
Product

Figure 3: Successive process model of software development

well understood.

Compared with successive process model, the
successive refinement model is an improvement
in the sense that a precise relationship between
different level specifications and a precise obli-
gation for each refinement are clearly specified.

3 Function-Safety Interactive
Development Process

Although the successive refinement model has
many problems to be addressed in order to be
suitable for large and complex software devel-
opment, it seems to be the most solid founda-
tion for our purpose of modelling formal soft-
ware process for safety critical systems.

Based on the successive refinement model, we
propose a function-safety interactive develop-
ment process for developing safety critical sys-
tems, as shown in Figure 5. The user require-
ments are first formalised into the abstract for-
mal specification;. Then a safety analysis is
conducted based on this specification. The pur-
pose of the safety analysis is to identify more

safety requirements for the system to implement
and to discover whether the current specifica-
tion is qualified for the safety constraints of the
system. The techniques for safety analysis can
vary, but we prefer fault tree techniques to oth-
ers because the former has been used in industry
for over a decade and has proved to be effective.

After safety analysis of the specification;, a re-
finement of the specification can be carried out.
During this process, both the functional re-
quirements expressed in specification; and the
safety requirements expressed by a group of
fault trees must be considered as the basis of
the refinement. After the refined specifica-
tion is produced, the same procedure as for
specification; should be performed until the fi-
nal program is derived. Then test of the pro-
gram against the user requirements must be
conducted to dynamically confirm that the de-
veloped system satisfies the user’s real require-
ments.

One important point about the function-safety
interactive development process is that it incor-
porates safety analysis into the successive re-
finement of functional specifications of systems.

Formal proofs

Testing

v
'
Formal proof H
1}
l
1

Figure 4: Successive refinement model of software development

This feature fits very well the requirements of
safety critical systems. Without the interaction
between safety analysis and functional analysis,
the dependability of the ultimate system cannot
be easily ensured.

4 Conclusions

We have identified several. major techniques
for process modelling, which include Petri Net,
Statecharts, Jackson System Development and
Data Flow Diagrams. Also, we have investi-
gated several popular software process models,
which are Waterfall Model, Spiral Model, Suc-
cessive Process Model and Successive Refine-
ment Model. Based on the successive refine-
ment model, we have proposed a function-safety
interactive development process for developing
safety critical systems.

Our future research along this line will focus
on four respects. First, develop a formal and
graphical notation which should be able to be
used for all the activities in every stage of for-
mal development (e.g. analysis, specification,
design, implementation). In this respect, the
formalised data flow diagrams are a good can-
didate because (1) data flow diagrams are pop-
ular in industry for big project development, (2)

we have the background of this area. Second,
incorporate formal notation into fault tree no-
tation to derive a formalised fault tree notation.
Third, provide a principle of formal software
process for the development of safety critical
systems, which should include the principle and
rules of enforcing safety constraints and formal
proofs during a whole software process. Fourth,
model cause-effect relationships between differ-
ent activities during the formal software process
for software error analysis and software reliabil-
ity measurement.

5 Acknowledgements

We would like to thank all of our colleagues who
discussed with us about the ideas presented in
this paper for their constructive criticisms and
suggestions. We should also thank Hiroshima
City University and The Queen’s University of
Belfast of the U.K. for partially funding this
research.

6 References

[Boehm 88] B.W. Boehm, “A Spiral Model
of Software Development and Enhancement”,

Specification 1

Safety analysis

/ Refinement

Specification 3

Safety analysis

Formal proofs
S

Testing

Specification p

Safety analysis

Formal proof

/ Refinement

'-' ---------------- .

Figure 5: Function-safety interactive development process

IEEE Computer, May 1988, pp. 61-72.
Reprinted in R.H. Thayer (ed) IEEE Tutorial
on Software Engineering Project Management,
1988.

[Bryant 91] A. Bryant, “Structured Method-
ologies and Formal Notations: Developing A
Framework for Synthesis and Investigation”, in
Z User Workshop, Oxford 1989, edited J.E.
Nicholls, Springer-Verlag, Heidelberg, 1991.

[Hee et al 91]) K.M. van Hee, L.J. Somers, M.
Voorhoeve, “Executable Specifications for Dis-
tributed Information Systems”, in E.D. Falken-
berg, P.Lindgreen(eds.), Information System
Concepts: An In-depth Analysis, North-
Holland, 1991.

[Hee et al 91}] K.M. van Hee, L.J. Somers,
M. Voorhoeve, “Z and High Leve Petri nets”,
VDM’91, Lecture Notes in Computer Science,
Springer-Verlag, 1991, pp. 204-219.

[Hoare 85] C.A.R. Hoare, “Communicating
Sequential Processes”, Prentice-Hall Interna-
tional, UK, LTD., 1985.

[Jones 1980] C.B. Jones, “Software Devel-
opment”, Prentice-Hall International(London)
Inc., 1980.

[Jones 1986] C.B. Jones, “Systematic Software
Development Using VDM?”, Prentice-Hall Inter-
national(UK) Ltd, 1986.

[Kung 89] C.H. Kung, “Conceptual Modelling
in the Context of Software Development”, IEEE
transaction on Software Engineering, Vol. 15,
No. 10, October 1989.

[McDermid 93] John A. McDermid (ed), “Soft-
ware Engineer’s Reference Book”, Butterworth-
Heinemann, 1993.

[Milner 89] R. Milner, “A Calculus of Commu-
nicating Systems”, Lecture Notes in Computer
Science, No. 92, Springer-verlag, 1980.

(Royce 70] W.W. Royce, “Managing the Devel-
opment of Large Software Systems”, In Pro-
ceedings of IEEE WESCON, 1970, pp. 1-9.
Reprinted in Thayer, R.H. (ed.) IEEE Tutorial
on Software Engineering Project Management,
1988.

[Salter 93] J.E. Salter, “FASGEP Summary Re-
port: Tasks 1-6”, FASGEP Project, DTI Ref-
erence: IED4/1/9004, Lloyd’s Register, U.K.,
August 1993.

[Whitten et al 93] Jeffrey L. Whitten, Lonnie
D. Bentley, Thomas I.M. Ho, “Systems Analy-
sis and Design Methods”, Times Mirro/Mosby
College Publishing, 1986, pp. 218-277.
{Yourdon 89] Edward Yourdon, “Modern Struc-
tured Analysis”, Prentice-Hall International,
1989.

