
IPSJ SIG Technical Report

Polynomial-Time Approximation Schemes
for a Class of Integrated Network Design and Scheduling

Problems with Parallel Identical Machines

Yusuke Saito1 Akiyoshi Shioura1,a)

Abstract: In the integrated network design and scheduling problem (INDS-P), we are asked to repair edges in a graph
by using parallel machines so that the performance of the network is recovered by a certain level, and the objective is
to minimize the makespan required to finish repairing edges. The main aim of this paper is to show that polynomial-
time approximation schemes exist for some class of the problem (INDS-P), including the problems associated with
minimum spanning tree, shortest path, maximum flow with unit capacity, and maximum-weight matching.

Keywords: network optimization, parallel machine scheduling, polynomial-time approximation scheme, approxima-
tion algorithm

1. Introduction and Results
Network optimization problems aim at constructing networks

of good performance. Let us consider a situation where an exist-
ing network is damaged due to a disaster such as an earthquake,
a flood, or a hurricane. In this situation, it is required to repair
the network as quickly as possible so that the performance of the
network is recovered by a certain level. A mathematical model of
this problem is provided in [15] (see also [14]), which is referred
to as the integrated network design and scheduling problem. In
this paper, we deal with a variant of the integrated network design
and scheduling problem, which we denote by (INDS-P), where
parallel identical machines are used to repair edges and the ob-
jective of minimizing the makespan*1.

1.1 Problem Definition
The definition of the problem (INDS-P) is explained in more

detail. Let G = (V, E) be a (directed or undirected) graph repre-
senting the network, where V is the vertex set and E is the edge
set. We are given a set E0 ⊆ E of edges that are still alive after
the disaster and the remaining edges in E \ E0 are damaged. We
select some damaged edges and repair them as quickly as possi-
ble so that the performance of the repaired graph reaches a certain
desired level.

Selected damaged edges are repaired by using m parallel iden-
tical machines, where m is assumed to be a constant throughout
this paper. Time required to repair an edge e ∈ E \ E0 is given
by a non-negative integer p(e). Each edge can be processed by
a single machine and is not allowed to be processed simultane-

1 Department of Industrial Engineering and Economics, Tokyo Institute of
Technology, Tokyo 152-8550, Japan

a) shioura.a.aa@m.titech.ac.jp
*1 This problem is denoted as “Pm|β|Cmax-Threshold” in [15].

ously by two or more machines. In addition, preemption is not
allowed for each edge, i.e., once we start repairing an edge, then
we need to continue it until the repair finishes. The objective of
the problem (INDS-P) is to minimize the makespan, i.e., the time
required to finish repairing edges. The makespan is represented
as max{p(Xi) | i = 1, 2, . . . ,m}, where Xi is a set of edges repaired
by the i-th machine and p(Xi) =

∑
e∈Xi

p(e).
A set X ⊆ E \ E0 of repaired edges is selected so that the per-

formance of the repaired graph (V, X∪E0) reaches a certain level.
The performance level of the repaired graph is determined by the
edge set X ∪ E0 of the repaired graph and represented by a func-
tion φ : 2E → R ∪ {±∞}, which we call a performance function.
The value φ(X ∪ E0) is given by the optimal value of a certain
network optimization problem on the graph (V, X ∪ E0), such as
minimum spanning tree, shortest path, and maximum flow (see
[15]). With a performance function φ and a threshold value W,
the constraint on the performance level is given as φ(X∪E0) ≤ W
(resp., φ(X ∪ E0) ≥ W) if φ is defined by a minimization problem
(resp., a maximization problem).

In summary, the problem (INDS-P) is formulated as follows:

Minimize max{p(Xi) | i = 1, 2, . . . ,m}
subject to φ(X ∪ E0) ≤ W (or φ(X ∪ E0) ≥ W),

X =
⋃m

i=1 Xi,

X1, X2, . . . , Xm ⊆ E \ E0 are mutually disjoint.

It is easy to see that this problem is NP-hard since it is a gener-
alization of parallel identical machine scheduling minimizing the
makespan (see also [15]). Hence, we focus on approximability of
the problem (INDS-P), especially in the cases with the following
specific families of performance functions:
• Peformance functions associated with the minimum span-

ning tree.
Assume that G = (V, E) is an undirected graph with

1ⓒ 2022 Information Processing Society of Japan

Vol.2022-AL-188 No.9
2022/5/20

IPSJ SIG Technical Report

non-negative integer edge length ℓ(e) (e ∈ E). The value
of φMST(Y) for Y ⊆ E is defined as the length of a min-
imum spanning tree in the edge-induced subgraph (V,Y);
φMST(Y) = +∞ if the graph (V,Y) has no spanning tree. We
denote by ΦMST the family of performance functions associ-
ated with the minimum spanning tree.

• Performance functions associated with the single-source
single-destination shortest path.

Assume that G = (V, E) is a directed graph with two dis-
tinct vertices s, t ∈ V and non-negative integer edge length
ℓ(e) (e ∈ E). The value of φSP(Y) for Y ⊆ E is defined as
the length of a shortest path from s to t in the graph (V,Y);
φSP(Y) = +∞ if the graph (V,Y) has no path from s to t. We
denote by ΦSP the family of performance functions associ-
ated with the single-source single-destination shortest path.

• Performance functions associated with the maximum-weight
matching.

Assume that G = (V, E) is an undirected graph with non-
negative integer edge weight w(e) (e ∈ E). The value of
φMM(Y) for Y ⊆ E is defined as the weight of a maximum-
weight matching in the graph (V,Y). We denote by ΦMM

the family of performance functions associated with the
maximum-weight matching.

• Performances function associated with the maximum flow
with unit capacity.

Assume that G = (V, E) is a directed graph with two dis-
tinct vertices s, t ∈ V . The value of φUMF(Y) for Y ⊆ E is
defined as the amount of a maximum flow from s to t in the
graph (V,Y). We denote by ΦUMF the family of performance
functions associated with the maximum-weight matching.

1.2 Our Results
The main aim of this paper is to show that polynomial-time

approximation schemes (PTASes, for short) exist for the problem
(INDS-P) with some families of performance functions, includ-
ing ΦMST, ΦSP, ΦUMF, and ΦMM. Recall that an approximation
algorithm for (INDS-P) is a PTAS if for any feasible instance of
(INDS-P) and any constant ε > 0, the algorithm finds in polyno-
mial time a feasible solution (X1, X2, . . . , Xm) such that

max{p(Xi) | i = 1, 2, . . . ,m} ≤ (1 + ε)C∗,

where C∗ is the optimal value of (INDS-P).
To state the main result, consider the special case of (INDS-P)

with m = 1, i.e., only a single machine is available. We denote
this special case as (INDS-S), which is formulated as

Minimize p(X)
subject to φ(X ∪ E0) ≤ W (or φ(X ∪ E0) ≥ W),

X ⊆ E \ E0.

We show that (INDS-P) admits a PTAS if its special case (INDS-
S) admits a PTAS. That is, the existence of a PTAS for (INDS-
P) depends on the performance function φ, and irrelevant to the
number m of machines.
Theorem 1.1. Suppose that the problem (INDS-S) with some
performance function φ admits a PTAS (or a polynomial-time ex-

act algorithm). Then, the problem (INDS-P) with the same per-
formance function φ also admits a PTAS.

As shown in Section 3, if φ ∈ ΦMST ∪ΦSP ∪ΦMM then a PTAS
exists for the problem (INDS-S). We also show that if φ ∈ ΦUMF,
then (INDS-S) can be solved in polynomial time. Hence, the fol-
lowing result is obtained as an immediate corollary of Theorem
1.1.
Corollary 1.2. If φ ∈ ΦMST ∪ΦSP ∪ΦUMF ∪ΦMM, then the prob-
lem (INDS-P) admits a polynomial-time approximation scheme.

Theorem 1.1 follows from the next lemma, stating that (INDS-
S) and (INDS-P) are almost equivalent in terms of the approxi-
mation ratio; see Section 2 for a proof of the lemma.
Lemma 1.3. Suppose that the problem (INDS-S) with some
performance function φ admits a polynomial-time (1 + α)-
approximation algorithm with some α ≥ 0. Then, for any con-
stant δ > 0, the problem (INDS-P) with the same performance
function φ admits a polynomial-time (1 + α + δ)-approximation
algorithm

The problem (INDS-P) can be regarded as a bicriteria opti-
mization problem minimizing the makespan and also minimizing
(or maximizing) the performance function. Therefore, we may
consider the following problem, which is denoted as (INDS2-P),
obtained by swapping the objective function and the constraint on
the network performance level:

Minimize (or Maximize) φ(X ∪ E0)
subject to p(Xi) ≤ C (i = 1, 2, . . . ,m),

X =
⋃m

i=1 Xi,

X1, X2, . . . , Xm ⊆ E \ E0 are mutually disjoint.

We also consider the special case of (INDS2-P) with m = 1,
which is denoted as (INDS2-S):

Minimize (or Maximize) φ(X ∪ E0)
subject to p(X) ≤ C, X ⊆ E \ E0.

For α > 0, we say that an algorithm for (INDS2-P) is a (1, 1+α)-
approximation algorithm if it finds a feasible solution X =

⋃m
i=1 Xi

satisfying

φ(X ∪ E0) ≤ W∗ (for minimization problem),

φ(X ∪ E0) ≥ W∗ (for maximization problem),

p(Xi) ≤ (1 + α)C (i = 1, 2, . . . ,m),

where W∗ is the optimal value of (INDS2-P). We also say that
(INDS2-P) admits a bicriteria PTAS if it admits a polynomial-
time (1, 1+α)-approximation algorithm for every constant α > 0.
Theorem 1.4. Suppose that the problem (INDS2-S) with
some performance function φ admits a bicriteria PTAS (or a
polynomial-time exact algorithm). Then, the problem (INDS2-
P) with the same performance function φ also admits a bicriteria
PTAS.

As in the case of (INDS-P), we obtain the following corollary
on the existence of bicriteria PTASes for some specific perfor-
mance functions.
Corollary 1.5. If φ ∈ ΦMST ∪ΦSP ∪ΦUMF ∪ΦMM, then the prob-
lem (INDS2-P) admits a bicriteria PTAS.

Theorem 1.4 follows immediately from the next lemma, to be

2ⓒ 2022 Information Processing Society of Japan

Vol.2022-AL-188 No.9
2022/5/20

IPSJ SIG Technical Report

proven in Section 2.
Lemma 1.6. Suppose that the problem (INDS2-S) with some
specific performance function φ admits a polynomial-time (1, 1 +
α′)-approximation algorithm with some α′ ≥ 0. Then, for
any constant α > α′, the problem (INDS2-P) with the same
performance function φ admits a polynomial-time (1, 1 + α)-
approximation algorithm.
Remark 1.7. The problem (INDS2-P) includes as a special case
the multiple knapsack problem with identical capacity knapsacks.
The multiple knapsack problem is a natural generalization of the
knapsack problem, where multiple knapsacks are given and items
can be packed into one of the knapsacks. It is known that the mul-
tiple knapsack problem admits a PTAS, even in the case where
capacity of knapsacks are different [6], [11]. It is not clear how
to apply the techniques used in [6], [11] to obtain a PTAS for
(INDS2-P). □
Remark 1.8. In the problems (INDS-P) and (INDS2-P), we may
assume, without loss of generality, that E0 = ∅. Indeed, Any
problem instance with E0 , ∅ can be reduced to the one with
E0 = ∅ by setting p(e) = 0 for all e ∈ E0; it is easy to see that the
instance after the reduction is essentially equivalent to the original
one since all edges e with p(e) = 0 can be processed immediately
when the machines start processing. □

1.3 Related Work
The integrated network design and scheduling problem is orig-

inated by Nurre et al. [14], where the network performance level
is determined by the amount of a maximum flow, and the ob-
jective is to maximize the cumulative performance level over a
finite time horizon. The same problem with different kinds of
performance functions is considered in [15], where NP-hardness
of the problems is proved and some heuristic algorithms based
on dispatching rules are presented. The problem of this type is
also referred to as the incremental network design problem and
the incremental combinatorial optimization problem, and approx-
imation algorithms with theoretical guarantee have been proposed
[4], [7], [8], [10].

In addition to the maximization of the cumulative performance
level, Nurre and Sharkey [15] deal with the problem of minimiz-
ing the makespan under the performance level constraint, which
is nothing but the problem (INDS-P) discussed in this paper. To
the best of our knowledge, no approximation algorithm with non-
trivial bound is known for (INDS-P) and its special cases with
specific performance functions, while a PTAS exists for (INDS-
S) if the performance function is given by minimum-weight span-
ning tree, shortest path, or maximum-weight matching (see Sec-
tion 3 for details).

A network optimization problem similar to (INDS-P) is dis-
cussed by Averbakh, Pereira, et al. (see [1], [2], [18], etc.) in
the name “the network construction/reconstruction problem,” and
various theoretical results as well as computational study have
been presented. A major difference between the network con-
struction/reconstruction problem and (INDS-P) is that in the for-
mer problem each edge to be repaired should be connected with a
fixed depot vertex by existing (alive and already repaired) edges,
while there is no such restriction in our problem.

The problem (INDS-P) in this paper is also related to schedul-
ing problems with rejection (see, e.g., [3], [17]). In scheduling
problem with rejection, we do not need to process all jobs and
can reject some jobs, which yields penalty cost. This schedul-
ing problem is a bicriteria optimization problem, where the ob-
jective is to optimize some standard objective function such as
makespan, total flow time, etc., and also to minimize the total re-
jection cost. The problem (INDS-P) can be regarded as a schedul-
ing problem with nonlinear rejection cost; the edge set E\(X∪X0)
can be regarded as the set of rejected edges, and the difference of
the values φ(E) and φ(X ∪ E0) can be regarded as the rejection
cost, which is nonlinear in general.

In the literature of scheduling with rejection, the total rejec-
tion cost is often assumed to be linear, i.e., it is given as the sum
of rejection cost for rejected jobs. Recently, a nonlinear (sub-
modular) rejection cost function is considered in some papers
[12], [13], [19], where constant-factor approximation algorithms
are proposed, while we focus on PTASes in this paper.

2. Proofs of Lemmas 1.3 and 1.6
To the end of this paper, we assume, without loss of general-

ity, that E0 = ∅ in the problems (INDS-P) and (INDS2-P) (see
Remark 1.8).

2.1 Proof of Lemma 1.3
We give a proof of Lemma 1.3 in the case where the perfor-

mance level constraint is φ(X) ≤ W; the case of φ(X) ≥ W can be
proven similarly and omitted.

Let C∗ ∈ Z be the optimal value of the problem (INDS-P),
which is not known in advance. Also, let δ′ > 0 be a real number
satisfying

(1 + α + δ′)(1 + δ′) ≤ 1 + α + δ.

In the following, we present a polynomial-time algorithm such
that for a given real number C, if C ≥ C∗ then the algorithm finds
a feasible solution (X1, X2, . . . , Xm) of (INDS-P) satisfying

p(Xi) ≤ (1+α+δ′)C (i = 1, 2, . . . ,m), φ(X) ≤ W with X =
m⋃

i=1

Xi;

(2.1)
note that if C < C∗ then the algorithm may find a feasible solu-
tion satisfying (2.1), or stop without finding any solution. Using
this algorithm and binary search with respect to C, we can find C
with C∗ ≤ C ≤ (1 + δ′)C∗ and a feasible solution X1, X2, . . . , Xm

of (INDS-P) satisfying (2.1), for which the approximation ratio is
(1 + α + δ′)(1 + δ′) ≤ 1 + α + δ. Hence, (X1, X2, . . . , Xm) is an
(1 + α + δ)-approximate solution of (INDS-P).

We now show that if C ≥ C∗ then a feasible solution satisfying
(2.1) can be computed in polynomial time, even when the value
C∗ is not known in advance. Let

ES = {e ∈ E | p(e) < δ′C}, EL = E \ ES ;

i.e., ES (resp., EL) is the set of edges with small (resp., large)
processing time. Since C∗ is the optimal value of (INDS-P), there
exists a feasible (and optimal) solution X∗1 , X

∗
2 , . . . , X

∗
m of (INDS-

P) such that

3ⓒ 2022 Information Processing Society of Japan

Vol.2022-AL-188 No.9
2022/5/20

IPSJ SIG Technical Report

p(X∗i) ≤ C∗ (i = 1, 2, . . . ,m), φ(X∗) ≤ W with X∗ =
m⋃

i=1

X∗i .

We first guess the assignment of “large” edges X∗1 ∩ EL, X∗2 ∩
EL, . . . , X∗m ∩ EL to m machines in the optimal solution*2. Since
p(e) ≥ δ′C for each e ∈ EL, it holds that

|X∗i ∩ EL| ≤ C∗/(δ′C) ≤ C/(δ′C) = 1/δ′ (i = 1, 2, . . . ,m),

where the second inequality is by the assumption C ≥ C∗. This
implies that there exist at most nm/δ′ possible choices of the as-
signment X∗1 ∩ EL, . . . , X∗m ∩ EL. Note that m and δ′ are assumed
to be constant numbers in this paper, and therefore nm/δ′ is poly-
nomial in the input size of the problem.

Suppose that the sets X∗1∩EL, X∗2∩EL, . . . , X∗m∩EL are guessed
correctly, and let XL =

⋃m
i=1(X∗i ∩ EL). We then consider the fol-

lowing problem:

Minimize p̂(X) subject to φ(X) ≤ W, X ⊆ E, (2.2)

where

p̂(e) =

p(e) (e ∈ E \ EL),

0 (e ∈ XL),

(1 + α)mC + 1 (e ∈ EL \ XL),

This is an instance of (INDS-S), and its optimal value is bounded
by p̂(X∗). Since the optimal value of (INDS-P) is at most C and
the set XL is guessed correctly, an upper bound of the value p̂(X∗)
can be obtained as follows:

p̂(X∗) = p̂(X∗ ∩ ES) + p̂(XL) = p̂(X∗ ∩ ES)

= p(X∗ ∩ ES)

= p(X∗) − p(XL) ≤ mC − p(XL).
(2.3)

Let X∗∗ ⊆ Ê be a (1 + α)-approximate solution of the problem
(INDS-S) given above and XS = X∗∗ ∩ ES . Since the optimal
value of (INDS-S) is at most mC − p(XL) by (2.3), it holds that

p̂(X∗∗) ≤ (1 + α)(mC − p(XL)). (2.4)

This inequality, together with the definition of p̂, implies that

X∗∗ ∩ (EL \ XL) = ∅.

The inequality (2.4) also implies that

p(XS) + p(XL) = p̂(XS) + p(XL) = p̂(X∗∗) + p(XL) ≤ (1 + α)mC.
(2.5)

We finally construct a feasible solution (X1, X2, . . . , Xm) of
(INDS-P) satisfying (2.1) by assigning edges in XS ∪ XL to m
machines appropriately. Edges in XL are assigned to m machines
according to the guessed assignment. Then, edges in XS are as-
signed to m machines in a greedy way as follows. We first as-
sign edges in XS to the 1st machine until its makespan exceeds
(1 + α)C; then assign remaining edges in XS to the 2nd machine
until its makespan exceeds (1+ α)C, and so on. We stop this iter-
ation if we assign all edges in XS . Due to the inequality (2.8), all

*2 By guessing we mean trying all possible assignments by enumeration.

edges in XS can be assinged to some of the m machines.
Since each edge in XS has processing time at most δ′C, the

makespan of each machine is at most

(1 + α)C + δ′C = (1 + α + δ′)C.

Hence, (X1, X2, . . . , Xm) is a feasible solution of (INDS-P) satis-
fying (2.1). This concludes the proof of Lemma 1.3.
Remark 2.1. We discuss the behavior of the algorithm explained
above in the case with C < C∗. In the algorithm we solve
the problem (2.2) for all possible choices of the assignment
X∗1 ∩ EL, . . . , X∗m ∩ EL. As explained above, if C ≥ C∗ then one
of the possible assignments is the correct guess, and therefore the
problem (2.2) corresponding to the assignment is feasible. This
means that if the problem (2.2) is infeasible for all possible as-
signments, then we have C < C∗. Otherwise, the problem (2.2) is
feasible for some assignment; this is possible when (1+α)C ≥ C∗.
In this case, the analysis of the algorithm is still valid, and we ob-
tain a feasible solution of (INDS-P) satisfying (2.1). □

2.2 Proof of Lemma 1.6
We give a proof of Lemma 1.6 in the case where the objec-

tive is the minimization of performance function φ(X); the case
of maximization can be proven similarly and omitted.

Let W∗ be the optimal value of (INDS2-P). Then, there exists a
feasible (and optimal) solution X∗1 , X

∗
2 , . . . , X

∗
m of (INDS2-P) such

that

φ(X∗) = W∗ with X∗ =
m⋃

i=1

X∗i , p(X∗i) ≤ C (i = 1, 2, . . . ,m).

Also, let δ = α − α′ and

ES = {e ∈ E | p(e) < δC}, EL = E \ ES ;

i.e., ES (resp., EL) is the set of edges with small (resp., large)
processing time. We first guess the assignment of “large” edges
X∗1 ∩ EL, X∗2 ∩ EL, . . . , X∗m ∩ EL to m machines in the optimal so-
lution. Since p(e) ≥ δC for each e ∈ EL, it holds that

|X∗i ∩ EL| ≤ C/(δC) = 1/δ (i = 1, 2, . . . ,m).

This implies that there exist at most nm/δ possible choices of the
assignment X∗1 ∩ EL, . . . , X∗m ∩ EL. Since m and δ are constant
numbers, nm/δ is polynomial in the input size of the problem.

Suppose that the sets X∗1∩EL, X∗2∩EL, . . . , X∗m∩EL are guessed
correctly, and let XL =

⋃m
i=1(X∗i ∩ EL). We then consider the fol-

lowing problem:

Minimize φ(X) subject to p̂(X) ≤ mC − p(XL), X ⊆ E,
(2.6)

where

p̂(e) =

p(e) (e ∈ E \ EL),

0 (e ∈ XL),

(1 + α)mC + 1 (e ∈ EL \ XL),

This is an instance of (INDS2-S), and its optimal value is at most
W∗ since X∗ is a feasible solution; indeed, X∗ satisfies the inequal-
ity constraint:

4ⓒ 2022 Information Processing Society of Japan

Vol.2022-AL-188 No.9
2022/5/20

IPSJ SIG Technical Report

p̂(X∗) = p̂(X∗ ∩ ES) + p̂(XL) = p(X∗ ∩ ES)

= p(X∗) − p(XL)

=

m∑
i=1

p(X∗i) − p(XL) ≤ mC − p(XL).

Let X∗∗ ⊆ Ê be a (1, 1 + α′)-approximate solution of the prob-
lem (INDS2-S) given above and XS = X∗∗∩ES . Since the optimal
value of (INDS2-S) is at most W∗, it holds that

φ(X∗∗) ≤ W∗,

p̂(X∗) ≤ (1 + α′)(mC − p(XL)). (2.7)

This inequality, together with the definition of p̂, implies that

X∗∗ ∩ (EL \ XL) = ∅.

The inequality (2.7) also implies that

p(XS) + p(XL) = p̂(XS) + p(XL) = p̂(X∗∗) + p(XL) ≤ (1 + α′)mC.
(2.8)

We finally construct a feasible solution (X1, X2, . . . , Xm) of
(INDS2-P) satisfying

φ(X) ≤ W∗ with X =
m⋃

i=1

Xi, p(Xi) ≤ (1 + α)C (i = 1, 2, . . . ,m)

by assigning edges in XS ∪XL to m machines appropriately. Edges
in XL are assigned to m machines according to the guessed assign-
ment. Then, edges in XS are assigned to m machines in a greedy
way as follows. We first assign edges in XS to the 1st machine un-
til its makespan exceeds (1 + α′)C; then assign remaining edges
in XS to the 2nd machine until its makespan exceeds (1 + α′)C,
and so on. We stop this iteration if we assign all edges in XS . Due
to the inequality (2.8), all edges in XS can be assinged to some of
the m machines.

Since each edge in XS has processing time at most δC, the
makespan of each machine is at most

(1 + α′)C + δ′C = (1 + α)C.

Hence, (X1, X2, . . . , Xm) is a feasible solution of (INDS2-P) satis-
fying the desired conditions. This concludes the proof of Lemma
1.6.

3. Proofs of Corollaries 1.2 and 1.5
Throughout this section we assume, without loss of generality,

that E0 = ∅.

3.1 Case of Φ ∈ {ΦMST,ΦSP}.
The problem (INDS-S) with φ ∈ ΦMST ∪ ΦSP is reformulated

as follows:

Minimize p(X)
subject to ℓ(X) ≤ W,

X ⊆ E is a spanning tree (or s-t path)
in the graph (V, E).

This is the minimum spanning tree problem (or the shortest s-
t path problem) with a knapsack constraint. It is easy to see that

(INDS2-S) has the same problem structure as (INDS-S). The min-
imum spanning tree problem with a knapsack constraint has a
PTAS due to Ravi and Goemans [16], and the shortest s-t path
problem with a knapsack constraint has a fully PTAS due to Has-
sin [9]. Hence, Corollary 1.2 holds in the case Φ ∈ {ΦMST,ΦSP}.
Note that a PTAS can be converted into a (1, 1+ε)-approximation
algorithm for every ε > 0 (see, e.g., [16], Section 1). Hence,
Corollary 1.5 also holds in this case.
3.1.1 Case of Φ = ΦMM.

The problem (INDS2-S) with φ ∈ ΦMM is reformulated as fol-
lows:

Maximize w(X)
subject to p(X) ≤ C, X ⊆ E is a matching in the graph (V, E).

This is the maximum-weight matching problem with a knapsack
constraint, for which a PTAS exists (see Berger et al. [5]). By
using this PTAS for (INDS2-S) and binary search, we can easily
obtain a (1, 1 + ε)-approximation algorithm of (INDS2-S) for ev-
ery ε > 0, and also a PTAS for (INDS-S) (see, e.g., [16], Section
1). Hence, Corollaries 1.2 and 1.5 hold if Φ = ΦMM.
3.1.2 Case of Φ = ΦUMF.

In the problem (INDS-S) with φ ∈ ΦUMF, we need to find an
edge set X ⊆ E that minimizes the value p(X) under the constraint
that the amount of a maximum flow in (V, X) is at least W. Since
for each edge e ∈ E its capacity is one and p(e) ≥ 0, we can
assume that for each e ∈ X contained in the optimal solution of
the problem, we have positive flow on the edge e. Hence, we can
regard this problem as a minimum-cost flow problem, where we
minimize the total flow cost

∑
e∈E p(e) f (e) under the constraint

that the amount of the s-t flow represented by the vector f (e)
(e ∈ E) is at least W. This observation shows that (INDS-S) with
φ ∈ ΦUMF can be solved in polynomial time.

Similarly, the problem (INDS2-S) with φ ∈ ΦUMF can be re-
garded as the problem of maximizing the amount of an s-t flow
under the constraint that the total cost of the flow is at most C.
Hence, we can obtain an optimal solution of (INDS2-S) by solv-
ing the problem (INDS-S) for all possible value of W. Since
each edge has unit capacity, the amount of flow is at most |E|,
the number of edges in G. That is, it suffices to solve (INDS-S)
for W = 0, 1, . . . , |E|, and then find a maximum s-t flow under the
cost constraint, which can be done in polynomial time.

References
[1] I. Averbakh and J. Pereira, “The flowtime network construction prob-

lem,” IIE Transactions 44 (2012), 681–694.
[2] I. Averbakh and J. Pereira, “Network construction problems with due

dates,” European Journal of Operational Research 244 (2015), 715–
729.

[3] Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall, L. Stougie,
“Multiprocessor scheduling with rejection,” SIAM Journal on Discrete
Mathematics 13 (2000), 64–78.

[4] M. Baxter, T. Elgindy, A. T. Ernst, T. Kalinowski, and M.W.P. Savels-
bergh, “Incremental network design with shortest paths,” European
Journal of Operational Research 238 (2014), 675–684.

[5] A. Berger, V. Bonifaci, F. Grandoni, and G. Schäfer, “Budgeted match-
ing and budgeted matroid intersection via the gasoline puzzle,” Math-
ematical Programming 128 (2011), 355–372.

[6] C. Chekuri and S. Khanna, “A polynomial time approximation scheme
for the multiple knapsack problem,” SIAM Journal on Computing 35
(2005), 713–728.

[7] K. Engel, T. Kalinowski, and M.W.P. Savelsbergh, “Incremental net-
work design problem with minimum spanning trees,” Journal of Graph

5ⓒ 2022 Information Processing Society of Japan

Vol.2022-AL-188 No.9
2022/5/20

IPSJ SIG Technical Report

Algorithms and Applications 21 (2017), 417–432.
[8] M.X. Goemans and F. Unda, “Approximating incremental combina-

torial optimization problems,” Proceedings of APPROX/RANDOM
2017, LIPIcs 81, 6:1–6:14.

[9] R. Hassin, “Approximation schemes for the restricted shortest path
problem,” Mathematics of Operations Research 17 (1992), 36–42.

[10] T. Kalinowski, D. Matsypura, and M.W.P. Savelsbergh, “Incremental
network design with maximum flows,” European Journal of Opera-
tional Research 242 (2015), 51–62.

[11] H. Kellerer, “A polynomial time approximation scheme for the mul-
tiple knapsack problem,” Proceedings of APPROX/RANDOM 1999,
LNCS 1671, 51–62.

[12] X. Liu and W. Li, “Approximation algorithm for the single ma-
chine scheduling problem with release dates and submodular rejection
penalty,” Mathematics 8 (2020), 133.

[13] X. Liu and W. Li, “Approximation algorithms for the multiproces-
sor scheduling with submodular penalties,” Optimization Letters 15
(2021),2165–2180.

[14] S. G. Nurre, B. Cavdaroglu, J. E. Mitchell, T. C. Sharkey, and W.
A. Wallace, “Restoring infrastructure systems: an integrated network
design and scheduling (INDS) problem,” European Journal of Opera-
tional Research 223 (2012), 794–806.

[15] S. G. Nurre and T. C. Sharkey, “Integrated network design and
scheduling problems with parallel identical machines: complexity and
dispatching rules,” Networks 63 (2014), 303–326.

[16] R. Ravi and M. X. Goemans, “The constrained minimum spanning
tree problem,” Proceedings of 5th Scandinavian Workshop on Algo-
rithm Theory (1996), LNCS 1097, 66–75.

[17] D. Shabtay, N. Gaspar, and M. Kaspi, “A survey on offline scheduling
with rejection,” Journal of Scheduling 16 (2013), 3–28.

[18] T. Wang and I. Averbakh, “Network construction/restoration prob-
lems: cycles and complexity,” Journal of Combinatorial Optimization
(2021), published online.

[19] H. Zheng, S. Gao, W. Liu, W. Wu, D.-Z. Du, and B. Hou, “Approx-
imation algorithm for the parallel-machine scheduling problem with
release dates and submodular rejection penalties,” Journal of Combi-
natorial Optimization (2022), published online.

6ⓒ 2022 Information Processing Society of Japan

Vol.2022-AL-188 No.9
2022/5/20

