
Electronic Preprint for Journal of Information Processing Vol.30

Regular Paper

Automating End-to-End Web Testing via Manual Testing

Hiroyuki Kirinuki1,a) Haruto Tanno1,b)

Received: August 2, 2021, Accepted: January 11, 2022

Abstract: End-to-end test automation for web applications is important in order to release software quickly in ac-
cordance with market changes. However, the cost of implementing and maintaining test scripts is a major obstacle
to the introduction of test automation. In addition, many testing activities, such as exploratory testing, user-interface
testing, and usability testing, rely on human resources. We propose an approach to generate effective test scripts from
manual testing, which is indispensable in software development. Manual testing activities are recorded by our tool.
The generated test scripts leverage the page-object pattern, which improves the maintainability of test scripts. To gen-
erate page objects, our approach extracts operations as methods useful for test automation from the test logs. Our
approach also generates test cases that cover features of an application by analyzing its page transitions. We evaluated
whether our approach could generate complete test scripts from test logs obtained from four testers. Our experimental
results indicate that our approach can generate a greater number of complete methods in page objects than a current
page-object generation approach. We also conducted an empirical evaluation of whether our approach can reduce the
cost of implementing test scripts for real systems. The result showed that our approach reduces about 48% of the time
required to implement test scripts compared with manual implementation.

Keywords: end-to-end testing, web testing, manual testing, test automation

1. Background
Software testing is an important process to evaluating and im-

proving software quality, and developers spend time and effort
on software testing [1], [2]. Many researchers aim to make soft-
ware testing more efficient and detect more bugs [3]. Automated
testing is important for improving the efficiency of software test-
ing. It is especially effective for tests repeated many times such
as regression testing. It has recently been required that the soft-
ware release cycle is shortened in order to respond quickly to
market changes. Therefore, test automation has become essential
for software development.

When testing software with graphical user interfaces (GUIs)
such as web applications, it is also necessary to test GUIs from
the user perspective. We call this type of testing end-to-end test-
ing, which is what we focus on in this paper. To automate end-
to-end testing, tools that automate web-browser operation, such
as Selenium [4], are commonly used. End-to-end test automation
requires implementing test scripts. In addition, it may be neces-
sary to modify the existing test scripts when modifying the ap-
plication under test. Christophe et al. [5] investigated the change
history of the source code, including the Selenium test scripts, for
eight open-source web applications and how modifying applica-
tions affects these scripts. They found that 75% of Selenium test
scripts were changed at least once every nine commits (once ev-
ery 2.05 days). Therefore, the Selenium test scripts are updated
frequently as the application evolves, so the maintainability of
test scripts is important.

1 NTT Software Innovation Center, Mintao, Tokyo 108–0024, Japan
a) hiroyuki.kirinuki.ad@hco.ntt.co.jp
b) haruto.tanno.bz@hco.ntt.co.jp

There are two approaches for automating end-to-end testing,
i.e., record & replay or programming. Record & replay tools
(e.g., Selenium IDE) record operations carried out by the tester
as a test script and automate the verification by executing the test
script. Thus, this approach can easily implement test scripts with-
out the user needing programming skills, but the test scripts tend
to be less maintainable because they are described as a simple
sequence of recorded operations. The programming approach,
on the other hand, implements test scripts as programs using li-
braries, such as Selenium webdriver, that operate a web browser.
This approach can implement test scripts with high maintainabil-
ity if the developer is skilled, but the implementation tends to be
costly. Leotta et al. [6] conducted a comparative experiment on
these two approaches. The experimental results indicated that the
programming approach took 32–112% more time to implement
test scripts than the record & replay approach. In contrast, it took
16–51% less time to modify test scripts. Considering the total
cost of implementation and modification, the results also indicate
that the programming approach is less costly in most cases when
more than three modifications are required.

In their experiment, the participants who adopt the program-
ming approach used the page-object pattern to implement the test
scripts. The page-object pattern is a design pattern for end-to-end
test automation and improves the maintainability of test scripts
by separating test cases and page-specific code [7], [8]. From the
above results, the programming approach with the page-object
pattern is suitable for software repeatedly released in a short pe-
riod. However, implementing highly maintainable test scripts
by using the programming approach requires skilled develop-
ers. Therefore, the difficulty of test script implementation hin-
ders the introduction of end-to-end automated testing into soft-

c⃝ 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

ware development. To solve this problem, Stocco et al. [9] pro-
posed an approach to automatically generate page objects. This
approach generates page objects by crawling applications, but it
is a challenge to crawl large-scale applications and generate com-
plete page objects.

We propose an approach to automatically generate a test script
that uses the page-object pattern from manual testing logs. The
key point is that test scripts can be generated by simply perform-
ing manual tests without users being aware of test automation.
Automated testing is becoming more commonly used in industry,
but not all testing can be automated. This is because many devel-
opment projects hesitate to introduce test automation due to the
high implementation cost, and automatic verifications are diffi-
cult in some tests such as user-interface testing, usability testing,
and so on. Manual testing approaches can be broadly categorized
as scripted testing or exploratory testing [10], [11], [12]. Scripted
testing is an approach with which developers design tests in ad-
vance by considering what kind of test should be conducted and
execute them in accordance with the test design. Developers often
document the test design and if necessary, make test-procedure
manuals that describe detailed procedures for the tests. On the
other hand, exploratory testing is an approach with which devel-
opers do not design tests in advance but conduct test execution,
test design, and learning simultaneously. Exploratory testing can-
not currently be replaced by automated testing because testers’
expertise is important for it.

The proposed approach can generate a test script almost with-
out any prior preparation by recording manual testing, which is
indispensable in software development. Our approach can solve
the problems of the manual implementation of test scripts and
those with other approaches to generate page objects. With our
approach, operations carried out by the tester are regarded as the
use of a feature on a web page. Our approach converts the opera-
tions into a method of the page object.

The generated test scripts include not only page objects but also
test cases that cover features of an application by analyzing page
transitions of that application. In general, a test case is a speci-
fication of the test and includes a set of operations executed on
an application to determine if it satisfies software requirements.
Note that test cases generated with our approach are automated.
Our approach lowers the barrier to introducing end-to-end test
automation to software development. To evaluate the effective-
ness of our approach, we asked four testers to conduct manual
testing on an open-source web application and evaluated whether
our approach generates useful test scripts. A test script here refers
to a set of page objects and test cases. The experimental results
indicate that our approach can generate a greater number of com-
plete methods in page objects than a current approach for page-
object generation. We also conducted an empirical evaluation of
whether our approach can reduce the cost of implementing test
scripts for real systems. The result showed that our approach re-
duces about 48% of the time required to implement test scripts
compared with manual implementation. Contributions of this pa-
per are as follows:
• We propose a technique to generate automated test scripts

with page objects from manual testing activities, which is

indispensable in software testing.
• We evaluated whether the generated test scripts were com-

plete or not and showed that our approach can generate a
greater number of complete page objects than an existing
page object generation technique.

• Our empirical evaluation showed that the costs of test script
implementation can be reduced more than with other practi-
cal approaches used in real-world software development.

2. Page Object
A page object is a representation of each web page as an object

in object-oriented programming. In this study, we define a page
object as a class that contains accessors and methods. An acces-
sor obtains a reference to a web element specified by a locator.
The body of a method is a sequence of operations such as click-
ing web elements, entering a value to input fields, or selecting an
item from drop-down lists, and the method returns the page ob-
ject of the destination page. Web elements to be operated in the
methods are specified using an accessor.

Figure 1 shows an example of the owner add page in an open-
source web application PetClinic [13] and its page object. The
owner add page consists of five input fields, four links, and one
button. The page also has a feature of transition to another page
or adding an owner. The page object in Fig. 1 is implemented
in JavaScript with WebdriverIO [14], a test-automation frame-
work for web or mobile applications that makes the test code
description more concise than plain Selenium webdriver. The
firstName accessor indicates an input field for a first name.
$(‘#firstName’) captures a web element, the id of which in
HTML is “firstName” on the web page. Information for uniquely
identifying a web element on the web page, such as #firstName,
is called a locator. Users can use id, name, text, XPath, etc. as
a locator. The defined accessors are only called from methods
within the page objects. The addOwner() method in Fig. 1 re-
ceives values to be inputted in each input field as arguments. This
method inputs the values in each input field then clicks the add
owner button. When we write test cases to carry out an operation
on the owner addition page, we use methods defined in the page
object. The return value of the method is generally the page ob-
ject of the destination of the page transition. This enables us to
write test cases using the method chain. The page-object pattern
makes it possible to separate test cases and the page-specific code
due to modularizing operations and locators. Thus, the page-
object pattern can minimize changes to test cases because it is
only necessary to modify accessors or methods in the page object
when modifying web pages or features under test.

3. Related Work
Stocco et al. [9] proposed APOGEN to generate page objects

automatically. It generates page objects by crawling web applica-
tions under test and automatically extracts web elements from the
pages. APOGEN clusters the web pages on the basis of similar-
ity and integrates the pages belonging to the same cluster into one
page object. If multiple pages are functionally similar, the page
object should integrate the pages. This is because multiple sim-
ilar page objects reduce the modularity of the test script, which

c⃝ 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Fig. 1 Owner add page of PetClinic and its page object.

would undermine the strength of the page object.
APOGEN can reduce the cost of implementing page objects

but has two problems regarding page-object generation. The first
problem is that APOGEN requires a certain amount of prepara-
tion to use. When an application requires specific input values for
page transitions, it is necessary to teach the crawler the locators of
input fields and the input values for them in advance. In addition,
if APOGEN does not propose the proper cluster, the users need to
fix the cluster manually. Our approach, however, requires almost
no preparation because it uses logs of manual testing, which are

indispensable for software development. Chen et al. [15] improve
the accuracy of the page clustering for page-object generation by
considering CSS styles and the attributes of web elements, but the
problems caused by crawling have not been solved.

The second problem is the completeness of page objects gen-
erated with APOGEN. If the crawling cannot cover certain web
pages, APOGEN cannot generate page objects for the missing
web pages. APOGEN generates methods that operate web ele-
ments enclosed in Form tags as a feature of the web page, but this
technique may not be applicable on some web pages. This is be-
cause using features of web pages is not always equivalent to op-
erating web elements enclosed in Form tags. In addition, because
APOGEN converts all possible page transitions into methods, it
would generate too many methods that are not used in the actual
test if the application has many links or buttons. On the other
hand, our approach can accurately extract features from pages re-
gardless of the page structure by using tester operations, so it is
likely to generate useful methods in automated testing. Moreover,
APOGEN generates only page objects, but our approach can also
generate test cases that leverage the page objects.

Yandrapally et al. [16] proposed an approach to modularizing
test scripts automatically to improve the maintainability of test
scripts generated by a record and replay tool. Their approach
identifies operations to be modularized by analyzing the test
scripts and the document-object model of an application. Their
experimental results indicated that the number of steps can be
reduced by 49–75% by converting parts of the test scripts into
a subroutine. However, this approach does not take into account
how the subroutines follow the actual use cases of the application.

Crawling-based techniques for end-to-end test-script genera-
tion have been proposed to minimize the cost of end-to-end test-
ing [17], [18], [19]. These techniques are used to generate test
scripts that cover all features of an application by dynamic explo-
ration. However, test scripts generated with these techniques are
not complete and require modifications such as adding assertions
by the developer, and the maintainability is not taken into consid-
eration. Thus, it is difficult to incorporate them into continuous
development as they are. Although our approach may also require
some modifications to generated test scripts, it is easy to modify
them due to page objects. GUI ripping is the approach to traverse
GUIs automatically and generate their model for regression test-
ing [20], [21]. This approach also could have the same problem
as crawling-based techniques.

4. Proposed Approach
Figure 2 shows an overview of our approach. It requires man-

ual testing logs as input and outputs test cases and page objects.
The generated test cases use the page objects and call methods de-
clared in the page objects. To record manual testing activity, we
developed a tool [22] to obtain test logs that consist of operation
data. Such data include information of tags, attributes of oper-
ated web elements, types of operations (click or input), and page
titles/URLs where the operation is carried out. Testers can record
the data without being aware of the existence of the tool during a
test. Figure 3 shows a datum of an operation when a pet’s birth-
day is entered on the pet add page of PetClinic. Our approach

c⃝ 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Fig. 2 Overview of proposed approach.

Fig. 3 Datum of operation in test log.

generates page objects and test cases by using the page objects
from test logs and consists of two phases: page-object generation
and test-case generation. In the page-object-generation phase, our
approach generates page objects by using the data of operated
web elements and those of the operation procedure. In the test-
case-generation phase, our approach selects test cases to cover all
page transitions by analyzing page transitions obtained from test
logs and constructs test cases that leverage the page objects.

4.1 Page-object Generation
The proposed approach generates page objects of all web pages

visited during a test. Some web applications (e.g., single-page ap-
plications) do not have obvious page transitions, so we clarify the
definition of a page. In this study, testers could select a title match
or URL match as the definition of page equality. They also could
use regular expressions and regard web pages that have titles or
URLs matching the regular expressions as the same.

The following describes the content of the generated page ob-
ject. Accessors in the page objects access web elements operated
at least once during a test. The accessors return web elements

Algorithm 1: Method generation for page objects.
Input: a test log
Output: methods for each page object

1 page set P← ∅;
2 foreach operation in the test log do
3 add the page where the operation is executed on P;
4 end
/* Now we have pages p1, p2, . . . , pn */

5 foreach page pi in P do
6 let Spi is the operation sequences for pi;
7 Spi ← ∅;
8 end
9 operation sequence s← ∅;

10 foreach operation in the test log do
11 add the operation to s;
12 if there is a page transition, and the previous operation is

executed on pi then
13 add s to Spi for the page;
14 s← ∅;
15 end
16 end
17 foreach page pi in P do
18 let the sequences adopted as methods for the page object of pi be

Mpi ;
19 Mpi ← ∅;
20 sort Spi in descending order by length;
21 foreach operation sequence s in Spi do
22 if s is not included in any other s′ ∈ Mpi then
23 add s to Mpi ;
24 end
25 end
26 convert Mpi to methods;
27 end

specified by locators via a function of WebdriverIO. To improve
the robustness against application modification, we use locators
with priority in the order of (i) id, (ii) name, (iii) text, and (iv) ab-
solute XPath. This is because XPath locators are known to change
more frequently than other locators. Text locators are only used
for web elements that can contain texts in them (e.g., <a> and
<button>). The text locators identify web elements by whether
the link text and inner text match the given string.

In the page-object pattern, a method contains a sequence of op-
erations in a web page and represents a feature provided by the
page. An operation o is defined as

o = ⟨t, i, e, p⟩

where t is a type of operation (input or click), i is an input value,
e is an operated web element, and p is a web page where the op-
eration is carried out. We regard a sequence of operations carried
out from the time a tester comes to a certain page until the time
they left as use of a certain feature of the page. We call such
operations an operation sequence. Algorithm 1 describes the de-
tailed algorithm to generate methods for page objects. We need to
first obtain the page set that testers visited by analyzing a test log
(lines 1–4). Suppose we have pages p1, . . . , pn. We next extract
operation sequences carried out on each page as the candidates of
the methods (lines 5–16). Let Spi be the operation sequences for
pi. By scanning the test log, we can retrieve operation sequences
carried out on pi.

c⃝ 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

If we converted all operation sequences into methods, many
duplicate methods would be generated. Therefore, we suppress
the generation of duplicated methods by rejecting operation se-
quences when an operation sequence is included in one of the
other operation sequences (lines 17–27). This process aims to
generate only versatile methods. For example, we can replace not
operating an input field with the operation of entering an empty
string into the input field. Let us define operation sequence s1

and Es1 as the set of web elements operated in s1 and define s2

and Es2 in the same manner. We assume that “operation sequence
s2 includes s1” means that the destination of s1 and s2 are the
same, and Es2 includes Es1 . For example, suppose that a web
page has web elements e1, . . . , e4, and let us set Es1 = {e1, e2, e4}
and Es2 = {e1, e2, e3, e4}, where Es2 includes Es1 . Also suppose
that the destinations of s1 and s2 are the same. In this case, s1

is not adopted as a method because s2 includes s1. We take only
operated web elements into account regardless of the input value
to determine the inclusion. Let Mpi be the operation sequences
adopted as methods in the page object for p1. Finally, the al-
gorithm converts each operation sequence in Mpi into JavaScript
code that uses the APIs of WebdriverIO. Since the algorithm con-
verts operation sequences into methods in this manner, the roles
of the generated methods are not likely to overlap.

We next present how to determine identifiers of classes, acces-
sors, and methods in the page objects. Class names are deter-
mined by the title or URL used to define the page. When we use
regular expressions to define web pages, each web page can have
a user-defined alias. Accessor names are determined by the id,
name, or text of the web element. Method names are “go<class
name of the destination>” when the method clicks a link at the
end of it; otherwise, it is “do<accessor name called lastly>”. If
the name of the generated identifier conflicts with other identi-
fiers, this algorithm adds a serial number to the end of the identi-
fier name.

4.2 Test-case Generation
The proposed approach generates not only page objects but

also test cases using the page objects. Our approach first deter-
mines paths of page transitions to be checked in each test case (a
path is represented as a sequence of pages). A test case is con-
structed by combining methods defined in the page objects and is
executed along with one of the determined paths. We note that
our test case generation algorithm does not take into account the
states of the target application, so the tests are not always exe-
cutable. This limitation is discussed in Section 4.3.

The following presents the algorithm to determine paths of
page transitions. Our approach selects paths that satisfy the fol-
lowing rules:
( 1 ) The path covers all page transitions checked during manual

testing.
( 2 ) If the same pages are visited twice in one path, subsequent

pages will not be visited.
( 3 ) Page transitions executed in the other paths are not executed

as much.
Figure 4 shows an example of path selection. Web pages
p1, . . . , p5 and page transitions among them are shown. In this

Algorithm 2: Test-case generation.
Input: A test log and page objects
Output: Test cases

1 path list← ∅;
2 pathc ← ∅;
3 add the start page to pathc;
4 Construct page transition diagram from the test log;
5 Function breadthFirstSearch():
6 queue (of path)← ∅;
7 Enqueue pathc to queue;
8 while queue is not empty do
9 pathc ← Dequeue from queue;

10 if all destinations from the last page of path are included in
pathc then

11 Cut off the redundant page transitions at the end of
pathc;

12 if pathc includes undiscovered page transitions then
13 Add pathc to path list;
14 end
15 end
16 foreach pa ← adjacent page of the last page of pathc do
17 if pa is not included in pathc then
18 path′ ← pathc with pa appended;
19 Enqueue path′ to queue;
20 end
21 end
22 end
23 end
24 breadthFirstSearch();
25 foreach path in the path list do
26 Convert path to a test case that consists of chained methods;
27 end

Fig. 4 Example of path selection for test-case generation.

case, the rules determine the two paths:

Path1 = [p1, p2, p4, p5, p2], Path2 = [p1, p2, p3, p5].

Here, Path1 and Path2 obviously satisfy the first rule. Next, p2 is
the last page of Path1, and subsequent pages are not visited. We
can see that Path1 follows the second rule. p5 is the last page of
Path2, and the page transition from p5 to p2 is not executed. Since
Path1 has already passed through the page transition from p5 to
p2, the third rule rejects the page transition. On the other hand,
both Path1 and Path2 pass through the page transition from p1 to
p2. The page transition is not rejected by the third rule. This is
because the page transition from p1 to p2 is necessary to cover all
page transitions by two paths.

Algorithm 2 describes the algorithm for test-case generation.
First, our approach analyzes test logs to generate a page-transition

c⃝ 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Fig. 5 Example of generated test case and methods that it calls.

diagram as far as visited pages in the test (line 4). Next, we ob-
tain a list of paths satisfying the above three rules by carrying out
a breadth-first search to the page-transition diagram (lines 5–21).
Depth-first search is also a well-known graph-traversal algorithm,
but in this case, a breadth-first search is superior. The reason is
that a breadth-first search determines the shorter paths first, thus
contributing to generating concise test cases. Let the start page of
all paths be the start page of the manual testing. When no more
page transitions are possible due to the second rule, we cut off the
redundant page transitions at the end of the path because of the
third rule. A test case consists of chained methods defined in the
page objects and executes the page transitions following the path
(lines 16–18). For example, suppose that there are three pages
p1, p2, and p3. When a path [p1, p2, p3] is converted to a test
case, the test case first calls a method defined in the page object
of p1 to go to p2. The return value of the first method is the page
object of p2; hence, the test case then calls a method defined in
the page object of p2 to go to p3. In this manner, our approach
generates test cases that satisfy the rules by converting each path
into a test case. Note that if multiple methods execute the same
page transition in one page object, the first generated method is
used in the test case. Our approach can also generate arguments
and input values for the method. This is because the test logs
contain input values when each page transition is carried out by
testers.

Figure 5 shows an example of a generated test case and meth-
ods called from the test case. The page-transition diagram and
test case is a part of the output in our experiment using Pet-
Clinic described in Section 5. Suppose that we obtain a path

that transitions in the following order: the top page, owner search
page, owner page, and pet add/edit page. In this case, our ap-
proach generates a test case that consists of four methods exe-
cuting the page transitions. Each method is declared in differ-
ent page objects. The test cases start from the page object of
the top page, and the page object has the goOwnerSearchPage()
method. Next, goOwnerSearchPage() returns the page object of
the owner search page, and the page object calls the doFind-
Owner() method. By repeating the same steps, the test case is
built. If methods require arguments, the proposed approach ex-
tracts a set of input values that caused the required page transition
from the test log.

4.3 Limitation
Because our approach does not take into account the state of

a target application, it may generate test cases that need to set
the application to a certain state in order to execute them. To
execute such test cases, we need to insert a process to initialize
the database before executing the test cases or to modify input
values given in generated test scripts. The problem of state de-
pendency may hinder the practical use of our technique. This
problem is also common with most crawling-based test genera-
tion techniques and record & replay tools and is out of the scope
of this study. There are several pieces of research [23], [24] work-
ing on dependency-aware test generation, and these could be used
to solve this problem. If the techniques proposed in these studies
are not introduced, users will have to modify generated test scripts
to solve the state-dependency problem. However, this problem is
partially mitigated by the fact that test scripts that use page ob-

c⃝ 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

jects are easier to modify than those that do not. One of the moti-
vations of this research is to generate test scripts that are easy to
modify, as it is difficult to generate perfect test scripts for users.

Our approach limits target applications and situations that can
be applied. The proposed approach currently cannot generate any
assertions; hence, users need to insert assertions to check that the
test scripts are correctly executed. However, it is technically fea-
sible to verify that the currently opened web page matches the
expected one because we record titles and URLs of web pages
where operations are carried out. Moreover, the generated test
scripts leverage the page-object pattern and have high maintain-
ability. Therefore, it is even easy to add more detailed assertions.

Our recording tool is currently unable to record operations
other than click and input. Hence, it is not possible to carry out
any other operations (e.g., drag, mouse hover, etc.) in the gener-
ated test scripts. In addition, our approach cannot generate meth-
ods including operations that were not performed in manual test-
ing. However, we believe that we can make up for the lack of test
logs by keeping logs of not only planned manual testing, but also
a little behavior verification and smoke testing.

5. Evaluation
We conducted experiments to determine if our approach can

generate effective test scripts. In particular, we address the fol-
lowing research questions.
RQ1. Can our approach generate a greater number of com-

plete methods in page objects than a current approach, i.e.,
APOGEN?

RQ2. Can the test cases generated with our approach be used
without modification and cover the features of the applica-
tion?

RQ3. Does our approach reduce the initial cost of test script
implementation compared to practical approaches used in in-
dustry?

5.1 Experimental Setup
Four participants as testers conducted manual testing on Spring

PetClinic version 2.2.0, which is an open-source web application.
Spring PetClinic is a sample application of the Spring Frame-
work, but it is non-trivial and has more than 6k lines of Java code.
Table 1 lists all web pages and features of PetClinic. Note that
we used the database prepared by PetClinic as the initial state.
All web pages of PetClinic have a header that contains links to go

Table 1 Web pages and features of PetClinic.

Web page Feature
Top page Nothing
Owner search page Search owners by a last name
Owner search result page Show the list of owners hit by a search
Owner add/edit page Input owner data and add or update the

owner
Owner page Add or edit pet data of the owner and

add visit data for the pet
Pet add/edit page Enter pet data and add or update the

pet
Visit data add page Enter visit data for the pet and add

them
Veterinarians list page Nothing
Error page Nothing

to the top page, owner search page, veterinarians list page, and
error page. We regard the owner add page and owner edit page
as the owner add/edit page because these two pages are generated
from the same template file of the Spring Framework and have
almost the same structure. For the same reason, we also regarded
the pet add/edit page as a single page. In addition, each owner
has a separate owner page in PetClinic, but we also regarded the
owner pages as a single page. Since these page objects must be
modified in the same way frequently when the template is modi-
fied, we believe it would be better to separate these page objects
to experiment in a practical setting.

We used two manual testing approaches to determine whether
our approach does not depend on the manner of manual testing.
In this experiment, two testers conducted scripted testing, and the
other two conducted exploratory testing. These four testers all
had over three years of experience in testing, and the two con-
ducting exploratory testing had experience in doing it.

We first had the testers operate PetClinic to grasp its specifica-
tions. We assumed that unit tests of PetClinic were sufficiently
conducted on both the server-side and client-side as a premise of
the experiment. Next, we instructed the testers in how to con-
duct end-to-end testing on PetClinic regarding functionality and
usability. Although PetClinic is a stable application, we asked
the testers to test it with the intention of finding bugs. The two
testers who conducted scripted testing designed and documented
the content of tests as test scenarios in advance before conducting
the tests in accordance with the test scenarios. A test scenario
here means a sequence of procedures to check a use case of the
target application. The other two testers conducted exploratory
testing for up to 30 minutes to find bugs by using their knowl-
edge and experience.

All operations carried out in the tests were recorded with our
tool explained in Section 4. Let the test logs obtained from testers
A–D be test logs A–D, respectively. Table 2 shows the summary
of the tests the testers conducted. The cases of exploratory testing
had no documented test scenario because the two testers did not
design tests in advance. The number of operations equaled the
number of click events and change events that occurred when the
testers operated web elements. We applied our approach to the
test logs and generated four sets of test scripts. We also merged
the four test logs and created one large test log that was equal to
four tests conducted consecutively. We also applied our approach
to the merged test log in the same manner. The generated test
scripts from our approach and APOGEN are publicly available *1

5.2 Page-object Generation
We compared our approach with APOGEN to evaluate whether

the page-object-generation phase of our approach was able to

Table 2 Summary of tests by testers.

Tester Approach # of test scenario # of operations
A Scripted testing 9 135
B Scripted testing 20 258
C Exploratory testing – 378
D Exploratory testing – 505

*1 https://zenodo.org/record/5655786

c⃝ 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Table 3 Classification of methods in page objects generated with our approach and APOGEN (the values
in parentheses are counted by including the number of methods in the page objects that could
not be generated by APOGEN).

Source Complete Redundant To modify Unnecessary Header Total
APOGEN 5 0 6 0 18 31
Test log A 6 (9) 0 3 0 6 (7) 13 (17)
Test log B 8 (12) 0 7 1 8 (12) 24 (32)
Test log C 6 (10) 0 4 6 12 (16) 28 (36)
Test log D 9 (13) 1 6 3 10 (13) 29 (36)
Merged log 12 (16) 0 3 11 18 (23) 44 (53)

generate complete methods. We first examined page objects gen-
erated with the proposed approach and APOGEN. PetClinic has
nine pages, as shown in Table 1. Note that we define owner pages,
owner add/edit page, and pet add/edit page each as one page by
regular expression of the URLs. This is because the pages are
generated from the same template, as explained in Section 5.1.
Therefore, the proposed approach generated nine page objects
from each test log. We then applied APOGEN to PetClinic
to generate page objects. We gave information to APOGEN’s
crawler to reach as many pages as possible and classify reached
web pages into the pages shown in Table 1 by manual clustering.
However, we could not generate page objects for the error page
and owner search page due to the limitation of APOGEN. This
result is the same as in the evaluation of an existing paper [9].
Thus, we obtained seven page objects with APOGEN, except for
the two pages that could not be reached.

We then classified the methods in the page objects in accor-
dance with the following criteria:
Complete Methods have no parts to be modified for arguments,

operations, and return values.
Redundant Methods function correctly but contain meaning-

less operations that do not affect their functionality.
To modify Methods require modification of any of the argu-

ments, operations, and return value in order to use it.
Unnecessary The second or subsequent methods of multiple

methods that check the same page transitions.
Header Methods click links on the header to go to another

page.
Although methods classified as header are all complete methods,
we decided to distinguish header from the others. This is because
they are unlikely to be used in actual test cases despite the large
number.

Table 3 shows the results of the classification. The table shows
both the case where we count only the methods in the seven page
objects generated by APOGEN and the case where the two page
objects that APOGEN could not generate are included. Our ap-
proach generated a greater number of complete methods than
APOGEN, even if we excluded the page objects of web pages
that APOGEN could not reach. It also generated one redun-
dant method goOwnerSearchPage() for test log D. This is be-
cause tester D carried out the operation sequence to click a link
to go to the owner search page after filling in an input field on the
owner add/edit page. The operation sequence is converted to the
method, but the operation of filling an input field is not necessary
to go to the owner search page.

The to modify methods were generated with both APOGEN
and our approach, but our approach tended to generate fewer.

There was no correct page object as a return value in four
to modify methods generated with APOGEN probably because
APOGEN does not take into account the case where different
page transitions are performed depending on the input values
when using the same feature. The other two to modify methods
by APOGEN lack operations to enter values when updating in-
formation of pets or owners. On the other hand, the proposed
technique was able to generate these methods that APOGEN was
not able to generate correctly. APOGEN converts operations on
web elements enclosed in FORM tags into a method, but Pet-
Clinic did not have such a set of web elements. Hence, there
was no sequence of operations that the proposed technique could
recognize but APOGEN could not.

Most of the to modify methods generated with our approach
have an insufficient number of arguments and cannot enter values
to some input fields. This is because testers did not fill in all input
fields in some pages during the tests. If testers conducted a test
that attempts to register an owner with a blank name, the gener-
ated method did not include the operation to fill in the name in-
put field due to the method-generation algorithm of our approach.
However, there are other possible inputs to cause registration to
fail, such as not giving an address and inputting incorrect charac-
ters. The methods should always have arguments for all inputs to
register an owner because missing arguments reduce versatility.
If there are no missing arguments and users want to register an
owner with a blank name, the users can achieve the operation to
give an empty string as an argument.

Our approach generated unnecessary methods that click differ-
ent owners on the owner search result page separately in most
cases. Since these methods have the same destination, the sec-
ond and subsequent methods are classified as unnecessary. The
unnecessary methods were only generated with our approach.
However, if APOGEN reached the owner search result page,
APOGEN would generate many methods to click each owner and
generate more unnecessary methods than our approach.

Our approach generated fewer header methods, even though it
generated more page objects. Most of the methods classified as
header are not important and would not be used because devel-
opers usually just need to make sure the links are valid.

Page objects generated from the merged log had the most com-
plete methods and the least methods to modify. The reason is that
each log fills in the missing operations. Our approach converts
operation sequences that include other small operation sequences
into methods. Thus, even if a log has an operation sequence that
does not operate on all input fields, our approach generates a com-
plete method if all input fields are operated on in the other logs.
On the other hand, the object generated from the merged log gen-

c⃝ 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Table 4 Classification and average length of generated test cases.

Source Complete Data-dependent To modify Total Avg. length
Test log A 7 0 1 8 4.25
Test log B 11 0 1 12 4.00
Test log C 10 4 0 14 4.58
Test log D 11 0 2 13 4.50
Merged log 19 0 1 20 4.46

erated many unnecessary and header methods. This is because
the merged log includes many operations of clicking various own-
ers in the owner search result page and clicking links in the header
on each page. However, since this problem is largely due to the
specification of PetClinic, the problem may not occur in other
applications.

To summarize the evaluation of page-object generation
and answer RQ1, our approach is more likely to generate
a greater number of complete methods compared with
APOGEN, regardless of the manual testing approach or
testers. Generating page objects from a merged log can
compensate for the incompleteness of each log but in-
creases the number of extra methods that are likely to be
unused.

5.3 Test-case Generation
We next evaluated whether the test-case-generation phase of

our approach was able to generate complete test cases. It depends
on the project as to what test cases should be automated, but in
this experiment, we evaluated whether our approach could gener-
ate test cases that check the normal scenario of each feature and
do not require modifications. The reason is that such test cases
are versatile and can be useful in any project. Moreover, it is
easy to implement test cases for exceptional scenarios (e.g., cases
in which owner registration fails) by reusing generated test cases
and page objects. We classified test cases generated from test logs
A–D in accordance with the following criteria.
Complete A test case can be executed without modifying the

order of method calls, argument values, and the database
state.

Data-dependent A test case can be executed by changing the
database state from the initial state or changing the value
given by the method argument.

To modify A test case can be executed by replacing some called
methods with other methods that have the same transition
destination as before.

Table 4 lists the results of the classification of generated test
cases and the average length of the test cases. The length of a
test case means the length of paths of page transitions checked in
a test case. It also equals the number of called methods in a test
case because a method call invokes a page transition.

The reason why four test cases of test log C were classified
as data-dependent is that tester C added a pet to an owner reg-
istered during manual testing. Since our approach does not take
into account the state of applications as explained in Section 4.3,
it generated test cases that add a pet to an owner who does not
exist in the initial state of the database. The testers other than

C tested the edit feature only for users and pets that are regis-
tered by default, so this problem did not occur when using logs
other than C. We found that whether or not our technique gen-
erates data-dependent test scripts depends on the way of testing.
Data-dependent test cases become complete when we replace the
method call in the test case with the method to click an initially
existing owner or when we change the initial state of the database.

Some test cases were classified as to modify because some web
pages with different features are defined as one page. For ex-
ample, adding and editing pets are different operations, but we
define the pet add/edit page as one page because the templates of
the pages are the same. The method clicking the “Add Pet” but-
ton after filling in input fields and the method clicking the “Up-
date Pet” button after that are declared as different methods in the
page object. However, our approach did not distinguish the meth-
ods when constructing test cases because both methods go to the
owner page from the pet add/edit page. As a result, our approach
may generate test cases that call the method to update a pet when
the method to add a pet should be called. In this case, the test
case becomes complete if we replace the method call to update a
pet with that to add a pet.

Table 5 shows what features were checked from the test cases
generated from test logs A–D and merged log (labeled “M”). The
features of PetClinic were extracted from the test-case specifica-
tions written by testers A and B. In the table, a “✓” indicates
that the generated test cases checked the feature, “×” indicates
the generated test cases did not check the feature even though the
manual test checked it, and “–” indicates that the generated test
cases could not check the feature because the manual test did not
check the feature. Due to the limitation of our approach, it is not
able to generate test cases checking the feature that the manual
tests did not check. We assume that one test case can confirm
multiple features. For example, we have a test case that adds a
pet to an owner found in the owner search after moving from the
top page to the owner search page. In this case, we determine
that the test case confirms features (1, 6, 12) in Table 5. Note that
Table 5 shows the result when the data-dependent test cases and
to modify ones were correctly modified and became complete.

Some features were not checked by the generated test cases al-
though the manual tests checked the features. In most cases, this
was due to the fact that our approach generates test cases on the
basis of the coverage of page transitions. For example, in a certain
test case, if a transition from the owner page to the pet add/edit
page was performed by clicking the “Add New Pet” button, the
page transition was checked. On the other hand, when the “Edit
Pet” button was clicked from the owner page, the transition to the
pet add/edit page was also performed. However, since this page
transition had already been checked, our approach did not gener-
ate the test case to check the feature to edit pet. As a result, for

c⃝ 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Table 5 Features confirmed from generated test cases.

Web page # Feature A B C D M

Owner search page

1 If one hit is made in the owner search, the owner page will be displayed. ✓ ✓ ✓ ✓ ✓
2 If two or more hits are made in the owner search, they will be displayed on the owner search

result page.
– ✓ × × ✓

3 If nothing is entered in the owner search, all owners will be displayed on the owner search
result page.

✓ × ✓ ✓ ×

4 Go to the owner add page. ✓ ✓ ✓ ✓ ✓
Owner search result page 5 Move to the owner page by clicking an owner name. – ✓ ✓ ✓ ✓

Owner page

6 Go to the pet add page. ✓ ✓ ✓ ✓ ✓
7 Go to the pet edit page. × × × × ×
8 Go to the owner edit page. ✓ ✓ ✓ ✓ ✓
9 Go to visit data add page. ✓ ✓ ✓ ✓ ✓

Owner add/edit page 10 Add an owner by filling in input fields. ✓ ✓ ✓ ✓ ✓
11 Edit an owner by filling in input fields. × × × × ×

Pet add/edit page 12 Add a pet by filling in input fields. ✓ ✓ ✓ ✓ ✓
13 Edit a pet by filling in input fields. × × – × ×

Visit data add page 14 Add visit data by filling in input fields. ✓ ✓ ✓ ✓ ✓
Header 15 Go to the top page, owner search page, veterinarians list page, or error page. ✓ ✓ ✓ ✓ ✓

Table 6 Summary of the test scenarios for empirical evaluation.

System # of test procedures # of involved pages Description
Scenario 1 A 3 4 Check data query feature
Scenario 2 A 2 14 Check data update feature
Scenario 3 A 2 14 Check data lifecycle
Scenario 4 B 2 6 Check standard operation procedures

the pairs of features (2, 3), (6, 7), (10, 11) and (12, 13) in Table 5,
only one feature of each pair was checked. However, we believe
that we can easily create test cases to check another feature of
each pair by slightly modifying the generated test cases.

Finally, we discuss the smallness and simplicity of generated
test cases. Table 5 shows that the average length of the test cases
was at most 4.58. This indicates that each test case is concise
and that users can easily understand the test cases. The interest-
ing point is that test log D had about twice as many operations as
test log B, and testers B and D adopted different manual testing
approaches, yet the numbers of test cases were almost the same.
Since generated test cases depend on the page-transition diagram
obtained from manual tests, our approach has the advantage of
generating similar test cases no matter how the manual tests were
conducted if the page-transition diagrams are similar.

In this experiment, although the test cases generated from test
log A were the smallest, the test cases covered most of the fea-
tures checked in the other test cases. Therefore, we can say that
there is redundancy in the test cases generated from the other test
logs. This is because the more links on the header are clicked,
the more complex the page-transition diagram becomes. Our ap-
proach uses the page-transition diagram to make the test cases
cover the page transitions executed in tests. However, every page
of PetClick has a header, and if testers go to another page by
clicking the links on the header, the page transitions are regarded
as different. Hence, we found that our approach may generate a
redundant set of test cases if applications contain mesh-like page
transitions that are interconnected.

To answer RQ2, our approach generated complete test
cases in most situations. The generated test cases cov-
ered most of the features of the application. However,
our approach may generate incomplete or redundant test
cases when multiple pages with different features are re-

garded as the same one or when the application has in-
terconnected page transitions.

5.4 Empirical Evaluation
We evaluated whether our approach is efficient to implement-

ing test scripts using page objects with less cost than existing ap-
proaches. As a comparison, we chose to implement test scripts
manually and with SeleniumIDE, which are commonly used in
real-world software development. Target systems are an internet
banking system (System A) and a campaign information manage-
ment system (System B), which are developed in a real project of
a partner company. We prepared three test scenarios for System A
and one test scenario for System B. Table 6 shows the summary
of each scenario. Each test scenario has multiple predetermined
test procedures.

We asked one developer who belongs to the partner company
to carry out tasks that are implementing test scripts to automate
these test procedures. The developer is familiar with our ap-
proach, SeleniumIDE, and how to implement test scripts with
page objects. The developer also has a detailed understanding of
the target systems. The condition for task completion is that the
developer implements test scripts and confirms that the test scripts
automate predetermined test procedures. The test procedures are
also complied with when recording the tests with SeleniumIDE
and our recording tool. The test script implementation tasks were
carried out in the following order.
(i) Manual implementation: The developer implemented test

scripts with page objects written in JavaScript.
(ii) SeleniumIDE: The developer recorded tests, exported them

as test scripts written in JavaScript, and then rewrote them
into test scripts with page objects.

(iii) Our approach: The developer recorded tests, generated
test scripts via our approach, and modified them to automate

c⃝ 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Table 7 The time to implement test scripts (minute).

Our approach SeleniumIDE Manual
Rec1 PO2 TC3 Total Rec PO TC Total Rec PO TC Total

Scenario 1 1 7 1 9 1 16 1 18 0 21 1 22
Scenario 2 3 26 2 31 3 41 2 46 0 66 2 68
Scenario 3 3 60 2 65 3 55 2 60 0 94 2 96
Scenario 4 1 5 1 7 1 20 1 22 0 28 1 29

Total 8 98 6 112 8 132 6 146 0 209 6 215
1 Time to record manual tests
2 Time to create or modify page objects
3 Time to create or modify test cases

the predetermined test procedures.
The developer could not divert test scripts implemented in the
previous tasks to the later tasks. Carrying out the previous tasks
was likely to make the later tasks easier, which may not result in
a fair outcome. We will discuss this problem in Section 6.

Table 7 shows how many minutes it took to finish the tasks.
The result shows that the proposed approach reduced the time to
implementing the test scripts by 48% compared to manual imple-
mentation and by 23% compared to using SeleniumIDE. Most of
the task time is spent on creating or modifying page objects. The
time spent in recording the operations and creating or modifying
the test cases was small. The reason why it takes less time to cre-
ate or modify test cases is that the test cases can be written easily
as a combination of methods in page objects, and the number of
test cases is small. When using our approach, the largest amount
of time (42.3%) was spent on the source code modification for
fixing the method in the page objects. The time used correcting
locator errors (34.7%) follows this. Other modifications included
adding commands to wait for loading web pages, removing un-
necessary test steps, and so on.

The reason why the page objects generated by our approach
required modifications was due to the complexity of System A.
Depending on the internal state of the system, the page transi-
tions may change even if the same operation is carried out. In
addition, System A has web pages changing drastically and dy-
namically by JavaScript. Our approach currently cannot handle
such internal states of applications and drastic screen changes. If
page objects are not correctly associated with each page, the gen-
erated page objects require significant modifications. However,
despite the need for modifications to the generated test scripts,
the results show that using our approach is more efficient than
implementing from scratch. Our approach will be able to solve
such problems by making it possible to define screens more flex-
ibly, for example, by defining pages using strings rendered on
web pages. Alternatively, it is a reasonable idea to use more ad-
vanced screen recognition techniques proposed in several pieces
of research [25], [26].

The main reason why the developer needed to fix locators was
that the locators generated by our approach did not uniquely iden-
tify the web elements in a web page in some cases. Since our
approach does not collect any information other than the web ele-
ments operated during the manual testing, the generated locators
may not be unique. This problem can be solved by consider-
ing all web elements in a web page to generate locators during
recording manual testing. We believe that these improvements

will further reduce the time required to implement test scripts via
our approach.

To answer RQ3, our approach has the potential to reduce
the cost of test script implementation in real-world soft-
ware developments. In addition, improving the algorithm
of our approach would potentially reduce more costs.

6. Threats to Validity
The external validity of our study concerns the generalization

of our findings. First, we used only PetClinic as the target to
evaluate the proposed technique. Different results from those in
this study may be obtained if we apply the proposed approach
to other applications. In this study, we chose PetClinic since it
was used in an existing paper [9] to compare our approach with
APOGEN. Next, the results of our experiment depended on the
content of the testers’ manual testing approach. Our experiments
showed that our approach can generate a greater number of com-
plete methods and test cases for a variety of testing approaches.
However, when other testers conduct manual tests, we may not
obtain similar results. In addition, the proposed technique may
not work well if manual testing is not sufficiently performed. If
the proposed technique is applied to an application more complex
than PetClinic, testers may miss features to be tested. Even if the
manual testing is sufficient, generated test scripts may not be able
to be executed due to the state-dependency problem when some
operations in the manual testing depends on past ones.

In the empirical evaluation, only one developer carried out test
script implementation tasks. We may obtain different results from
this evaluation by having more developers carry out the same
tasks. In addition, doing the previous tasks may make the later
tasks easier, so it is possible that the time to carry out tasks via our
approach is shorter than it should be. We believe that the effect
of the previous tasks on the evaluation is small because the tasks
assigned to the developer are simple compared to usual test script
implementation. In usual test script implementation, developers
often implement test scripts through trial and error. In our exper-
iment, on the other hand, the test procedures were predetermined
and the developer understood the details of systems under test.
Moreover, the developer did not spend time on properly naming
identifiers and refactoring, other than converting predetermined
test cases into test scripts. This would have made it clearer how
to implement test scripts in many parts.

c⃝ 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

A threat to internal validity is that we defined the web pages
and features of PetClinic ourselves and classified the generated
page objects and test cases. The definition of the features was
based on the test specifications written by testers A and B, so we
believe that the definition is objective to some extent. We will
make the output of our approach publicly available so that other
researchers can verify the results.

7. Conclusion
We proposed an approach to generate test scripts using the

page-object pattern from manual testing logs. Through experi-
ments, we showed that our approach solved the problems with
current approaches and generated a greater number of complete
methods in page objects. Our approach also generated test cases
that leverage the generated page objects and covers most of the
features of the application under test. The generated test cases
and page objects are reusable, and users can add new test cases
easily. Our empirical evaluation also showed the potential for
reducing the cost of test script implementation in real-world soft-
ware development. The proposed approach is effective to reduce
the cost of implementing and maintaining test scripts by gener-
ating useful test scripts through the conducting of only manual
testing, which is essential in software development.

For future work, we aim to generate more complete page ob-
jects and test cases by converting operation sequences into meth-
ods more precisely using the testers’ knowledge contained in the
test logs effectively. We also would like to make our recording
tool publicly available so that everyone can record testing activi-
ties. If everyone can obtain test logs, researchers will be able to
mine the test logs and use them for various purposes other than
test automation.

References
[1] Yang, B., Hu, H. and Jia, L.: A Study of Uncertainty in Software Cost

and Its Impact on Optimal Software Release Time, IEEE Trans. Soft-
ware Engineering, Vol.34, No.6, pp.813–825 (2008).

[2] Bertolino, A.: Software Testing Research: Achievements, Challenges,
Dreams, Future of Software Engineering, pp.85–103 (2007).

[3] Orso, A. and Rothermel, G.: Software Testing: A Research Travel-
ogue (2000–2014), Proc. Future of Software Engineering, pp.117–132
(2014).

[4] Selenium, available from ⟨http://www.seleniumhq.org/⟩
(accessed 2021-08-02).

[5] Christophe, L., Stevens, R., Roover, C.D. and Meuter, W.D.: Preva-
lence and Maintenance of Automated Functional Tests for Web Appli-
cations, IEEE International Conference on Software Maintenance and
Evolution, pp.141–150 (2014).

[6] Leotta, M., Clerissi, D., Ricca, F. and Tonella, P.: Capture-Replay vs.
Programmable Web Testing: An Empirical Assessment during Test
Case Evolution, 20th Working Conference on Reverse Engineering,
pp.272–281 (2013).

[7] Leotta, M., Clerissi, D., Ricca, F. and Spadaro, C.: Improving Test
Suites Maintainability with the Page Object Pattern: An Industrial
Case Study, IEEE 6th International Conference on Software Testing,
Verification and Validation Workshops, pp.108–113 (2013).

[8] Ricca, F. and Stocco, A.: Web Test Automation: Insights from the
Grey Literature, 47th International Conference on Current Trends in
Theory and Practice of Computer Science (2020).

[9] Stocco, A., Leotta, M., Ricca, F. and Tonella, P.: Clustering-Aided
Page Object Generation for Web Testing, Web Engineering, pp.132–
151, Springer (2016).

[10] Ghazi, A.N., Petersen, K., Bjarnason, E. and Runeson, P.: Levels of
Exploration in Exploratory Testing: From Freestyle to Fully Scripted,
IEEE Access, Vol.6, pp.26416–26423 (2018).

[11] Shah, S.M.A., Alvi, U.S., Gencel, C. and Petersen, K.: Comparing
a Hybrid Testing Process with Scripted and Exploratory Testing: An

Experimental Study with Practitioners, pp.187–202 (2014).
[12] Itkonen, J., Mantyla, M.V. and Lassenius, C.: Defect Detection Ef-

ficiency: Test Case Based vs. Exploratory Testing, 1st International
Symposium on Empirical Software Engineering and Measurement,
pp.61–70 (2007).

[13] PetClinic, available from ⟨https://github.com/spring-projects/
spring-petclinic⟩ (accessed 2021-08-02).

[14] WebdriverIO, available from ⟨https://webdriver.io/⟩ (accessed 2021-
08-02).

[15] Chen, Y., Li, Z., Zhao, R. and Guo, J.: Research on Page Object
Generation Approach for Web Application Testing, The 31st Inter-
national Conference on Software Engineering and Knowledge Engi-
neering, pp.43–48 (2019).

[16] Yandrapally, R., Sridhara, G. and Sinha, S.: Automated Modulariza-
tion of GUI Test Cases, Proc. 37th International Conference on Soft-
ware Engineering, pp.44–54 (2015).

[17] Iyama, M., Kirinuki, H., Tanno, H. and Kurabayashi, T.: Automat-
ically Generating Test Scripts for GUI Testing, IEEE International
Conference on Software Testing, Verification and Validation Work-
shops, pp.146–150 (2018).

[18] Fard, A.M., Mirzaaghaei, M. and Mesbah, A.: Leveraging Existing
Tests in Automated Test Generation for Web Applications, Proc. 29th
ACM/IEEE International Conference on Automated Software Engi-
neering, pp.67–78 (2014).

[19] Dallmeier, V., Pohl, B., Burger, M., Mirold, M. and Zeller, A.: Web-
Mate: Web Application Test Generation in the Real World, IEEE 7th
International Conference on Software Testing, Verification and Vali-
dation Workshops, pp.413–418 (2014).

[20] Memon, A.: GUI ripping: Reverse engineering of graphical user in-
terfaces for testing, Proc. 10th Working Conference on Reverse Engi-
neering, pp.260–269 (2003).

[21] Amalfitano, D., Fasolino, A.R., Tramontana, P., Carmine, S.D. and
Memon, A.M.: Using GUI ripping for automated testing of Android
applications, 2012 Proc. 27th IEEE/ACM International Conference on
Automated Software Engineering, pp.258–261 (2012).

[22] Kirinuki, H., Kurabayashi, T., Tanno, H. and Kumagawa, I.: Poster:
SONAR Testing - Novel Testing Approach Based on Operation
Recording and Visualization, 2020 IEEE 13th International Confer-
ence on Software Testing, Validation and Verification (ICST), pp.410–
413 (2020).

[23] Biagiola, M., Stocco, A., Ricca, F. and Tonella, P.: Dependency-
Aware Web Test Generation, 2020 IEEE 13th International Confer-
ence on Software Testing, Validation and Verification (ICST), pp.175–
185 (2020).

[24] Biagiola, M., Stocco, A., Mesbah, A., Ricca, F. and Tonella, P.: Web
test dependency detection, Proc. 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2019, pp.154–164,
Association for Computing Machinery (2019).

[25] Roest, D., Mesbah, A. and van Deursen, A.: Regression Testing Ajax
Applications: Coping with Dynamism, 2010 3rd International Con-
ference on Software Testing, Verification and Validation, pp.127–136
(2010).

[26] Yandrapally, R., Stocco, A. and Mesbah, A.: Near-duplicate detec-
tion in web app model inference, Proc. ACM/IEEE 42nd International
Conference on Software Engineering, ICSE ’20, pp.186–197, Associ-
ation for Computing Machinery (2020).

Hiroyuki Kirinuki is currently a re-
searcher in the Software Innovation Cen-
ter at Nippon Telegraph and Telephone
Corporation (NTT). He received an M.E.
degree in 2015 from Osaka University. He
joined NTT in 2015. His research inter-
ests include software testing and empiri-
cal software engineering. He is a member

of the IPSJ.

c⃝ 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Haruto Tanno is currently a researcher
in the Software Innovation Center at
Nippon Telegraph and Telephone Cor-
poration (NTT), Tokyo, Japan. He re-
ceived an M.E. in 2009 and Dr. Eng.
in 2020 from The University of Electro-
Communications, Tokyo. He joined NTT
in 2009. His research interests include

software testing and debugging. He is a member of the IPSJ.

c⃝ 2022 Information Processing Society of Japan


