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Abstract: Video-guided machine translation (VMT) is a type of multimodal machine translation that uses informa-
tion from videos to guide translation. However, in the VMT 2020 challenge, adding videos only marginally improved
the performance of VMT models compared to their text-only baselines. In this study, we systematically analyze why
videos did not guide translation. Specifically, we evaluate the models in input degradation and visual sensitivity ex-
periments and compare the results with a human evaluation using VATEX, which is the dataset used in the VMT 2020
challenge. The results indicate that short and straightforward video descriptions in VATEX are sufficient to perform
the translations, which renders the videos redundant in the process. Based on our findings, we provide suggestions on
the design of future VMT datasets. Code and human-evaluated data are publicly available for future research.
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1. Introduction
Multimodal machine translation (MMT) extends text-only ma-

chine translation by using information from other modalities to
improve translation quality. Video-guided machine translation
(VMT) is a multimodal machine translation task in which videos
are provided as additional inputs to the model that translates sen-
tences from the source to target languages. Compared to image-
guided machine translation, videos provide visual and acoustic
modalities with rich embedded information, such as actions, ob-
jects, and temporal transitions.

VMT aims to use videos as additional information to reduce the
ambiguities existing in the language, thereby improving transla-
tion quality [1]. In Fig. 1, VMT system could disambiguate and
translate “bar” as “杆 (pullup bar)” by referring to the associated
video.

The recently proposed VATEX dataset [1] is a dataset for VMT
research and shared tasks. According to the results of VMT Chal-
lenge 2020, all multimodal VMT models only had marginal per-
formance gains compared to their text-only counterparts, which
contradicts the belief that videos improve translation quality. We
hypothesize that this was caused by the design of the VATEX
dataset: short and straightforward video descriptions are suffi-
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cient for translations, making information from the videos redun-
dant to the models.

To examine our hypothesis, we conducted experiments with in-
put degradation experiments, visual sensitivity, and human eval-
uation inspired by recent work on probing the need for visual
context in image-guided machine translation [2], [3], [4].

Experiments with input degradation and visual sensitivity have
two goals: 1. To examine whether VMT models can utilize videos
if they provide complementary rather than redundant information.
2. To eliminate the possibility that modeling limitations and rep-
resentation of videos prevent VMT models from leveraging in-
formation from videos. Human evaluation is a manual inspection
to examine our hypothesis that text in the VATEX dataset is suf-
ficient to perform the translation, and videos provide redundant
rather than complementary information. The experimental and
human evaluation results showed that when textual information
was sufficient, visual information from videos became redundant
to the VMT model.

The code used in this study and human evaluation data are pub-
licly available *1.

2. Related Work
2.1 Multimodal Machine Translation

Multimodal machine translation aims to generate better trans-
lation by leveraging non-linguistic information for a source sen-
tence. The first attempt in this field focuses on using still im-
ages [5], [6], [7]. Most studies employed pretrained image clas-

*1 https://github.com/ZhishenYang/do video guide translation.git
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Fig. 1 Example of VMT, where video helps to disambiguate the word “bar”: “bar” should be translated
as “pullup bar.”

sification models, such as ResNet [8], to extract visual features
from still images. The visual features are then utilized in an atten-
tive manner [9], [10] or to initialize the decoder’s hidden state [6].

Several years after the emergence of image-guided machine
translation, VATEX [1] was introduced as a dataset for video-
guided translation. The dataset was annotated based on a subset
of Kinetics-600 [11] and comprises over 41K YouTube videos.
The first VMT challenge was held in 2020. The top three
teams in VMT Challenge 2020 presented recurrent neural net-
work (RNN)-based and transformer-based models. The winning
team [12] used a hierarchically attentive RNN-based model [10]
with positional encoding for video features. Two other teams
proposed transformer-based VMT models with modifications to
incorporate video features. Although transformer-based models
outperformed RNN-based models as single models, the RNN-
based model achieved the best performance by combining mul-
tiple types of video features in an ensemble.

Although the hierarchically attentive RNN model and the
VGT-Shallow model performed well in VMT Challenge 2020,
the question raised in this study is that we are not sure whether
these models use information from videos to guide translation.
Therefore, we selected these two VMT models to obtain answers.

2.2 Probing Auxiliary Modalities
Probing the need for auxiliary modalities is an important topic

in MMT. In image-guided machine translation, the first study [13]
evaluated the usefulness of images in MMT models and con-
cluded that MMT models did not always show high visual aware-
ness.

In the analytic experiments in Ref. [2], source sentences were
degraded in three different ways to simulate scarce textual con-
text conditions in which images should be beneficial to transla-
tion. Recently, the benefits of multimodal inputs were explained
by the results of regularization [3]. In contrast to these findings,
[14] evaluated a well-established dataset of image-guided ma-
chine translation, Multi30k [15]. Human evaluation results show
that 6.1% − −13.8% of English sentences require the visual con-
text for various reasons (e.g., lexical ambiguity or an inaccurate
English description), which suggests potential improvements for
MMT models. In addition to MMT tasks, [16] proposed a method

to isolate cross-modal interactions of multimodal classification
tasks and showed that cross-modal interactions have little or no
contribution to the model performance.

Extending [2], we investigate the need for videos as a visual
context for translation in VMT. Our study is based on VATEX [1],
which is a recently proposed dataset designed for VMT. .

3. Models
In this section, we introduce two NMT and two VMT models

used in the experiments. We selected the attentive RNN (Atten-
tive RNN) and transformer [17] as NMT models in the experi-
ments. For the VMT models, we employed two models from
VMT Challenge 2020: a hierarchically attentive RNN with posi-
tional encoding [12] and VGT-Shallow*2.

3.1 Attentive Recurrent Neural Network
The attentive RNN is a text-only model that consists of a gated

recurrent unit (GRU) [18] encoder and a conditional gated recur-
rent unit (CGRU) decoder [19].

Given an n-tokens input sentence x = (x1, · · · , xn), an encoder
with two stacked bidirectional GRU layers first encodes x into
encoder states h = (h1, · · · , hn), where each hi is a d-dimensional
vector.

The CGRU decoder consists of two unidirectional GRU lay-
ers with an attention layer in between. The CGRU receives the
encoder states h from the GRU encoder to decode the m-tokens
target sentence y = (y1, · · · , ym). For each target position j, we
use the first GRU layer to compute the decoder state proposal s j

from the previous word embedding w j−1 and the previous decoder
state ŝ j−1:

s j = GRU1(w j−1, ŝ j−1) (1)

Subsequently, an attention layer att that computes the textual
context vector c j along with the state proposal s j from GRU and
encoder states h:

c j = att(s j,h) (2)

The attention layer att computes c j as follows:

*2 https://www.youtube.com/watch?v=zHwXPmIQajA&t=517s
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ei j = oT tanh(W s j +Uhi), (3)

αi j =
exp(ei j)

N∑
k=1

exp(ek j)
, (4)

c j =

N∑
i=1

αi jhi, (5)

where oT , W , and U are learnable projection matrices.

3.2 Transformer
The transformer [17] adopts an encoder-decoder structure.

Given an n-tokens input sentence x = (x1, · · · , xn), the encoder
first encodes x into a representation z = (z1, · · · , zn). The de-
coder then decodes z to generate an m-tokens target sentence
y = (y1, · · · , ym). As the transformer does not contain any recur-
rence or convolution, we add positional encodings to both input
and output embeddings to preserve the order of sequence.

Encoder stacks N identical encoder layers, each of which con-
tains a self-attention mechanism followed by a fully connected
feed-forward network. The decoder also includes M identical de-
coder layers; each decoder layer has self-attention, source-target
attention, and feed-forward network. Note that each sublayer in
both the encoder and decoder layers is interconnected by a resid-
ual connection [8] followed by layer normalization [20].

3.3 Hierarchically Attentive Recurrent Neural Network
with Positional Encoding

A hierarchically attentive RNN with positional encod-
ing (PE) [12] is an extension of the hierarchically attentive
model [10]. The underlying model adopts a simple encoder
and a modified decoder from [21]. This study uses two distinct
attention mechanisms to compute the textual context vector
and auxiliary context vector (in our case, the context vector
over sequential video representations). However, the model is
assumed to incorporate spatial image features (e.g., the region
of interest feature from Faster-RCNN models). Therefore, it
does not leverage order information, which is a distinguishing
property of video features.

To address this problem, we add positional encodings [17] to
the video representations at the beginning of the attention so that
the model can capture the order of the representations.
3.3.1 Encoder

First, we encode the n-tokens input sentence x = (x1, · · · , xn)
into encoder states h = (h1, · · · , hn) using two stacked bidirec-
tional GRU layers, where each hi is a d-dimensional vector. The
T -frame video representations z = (z1, · · · , zT ) are extracted from
a video v.

Moreover, we add positional encoding to the video feature z to
obtain frame-aware video representations ẑ = (ẑ1, · · · , ẑT ) at each
position pos ∈ (1, · · · ,T ):

ẑpos = zpos + PEpos, (6)

PE(pos,2i) = sin(pos/100002i/d), (7)

PE(pos,2i+1) = cos(pos/100002i/d) (8)

where i is the dimension, pos ∈ (1, · · · ,T ) is the position , and i

is the dimension.
3.3.2 Decoder

For each target position j, we compute the decoder state pro-
posal s j from the previous word embedding w j−1 and the previous
decoder state ŝ j−1:

s j = GRU1(w j−1, ŝ j−1). (9)

Subsequently, the textual context vector c(t)
j and video context

vector c(z)
j are computed using two separate attention mecha-

nisms, attt and attz:

c(t)
j = attt(s j,h) (10)

c(z)
j = attz(s j, ẑ) (11)

The final context vector c j is computed using another attention
mechanism over modalities m ∈ {t,z}:

e(m)
j = oT tanh(W1s j +U

(m)c(m)
j ), (12)

α(m)
j =

exp(e(m)
j )∑

m′∈{t,z}
exp(e(m′)

j )
, (13)

c j =
∑

m∈{t,z}
α(m)

j Q(m)c(m)
j , (14)

where oT and W1 are the model’s parameters that are shared
among all modalities; U (m) and Q(m) are dedicated model param-
eters for each modality; U (m) and Q(m) are the projection matri-
ces that map each single-modality context vector into a common
space, and o is a weight vector with the same dimensions as the
common space.

The final context vector c j is fed to the second GRU along with
the decoder state proposal s j to generate the final decoder state
ŝ j and output distribution p(y j|y< j):

ŝ j = GRU2(c j, s j), (15)

p(y j|y< j) = softmax(W2ŝ j + b), (16)

where W2 and b are the model parameters.

3.4 VGT-Shallow
The VGT-Shallow first encodes an input sentence using a stan-

dard transformer encoder to retrieve the encoder state h. Sub-
sequently, the model employs a single fusion layer that has one
visual reconstruction module, a cross-modal multihead attention
module [17], and an element-wise weighted sum module. Note
that we exploit normalization and residual connection between
modules. Specifically, the visual reconstruction module uses mul-
tihead attention to reconstruct the auxiliary features.

h
′

r = multiheadr(z,h,h) (17)

where multiheadr is a multihead attention module.
The obtained reconstructed feature h

′

r is then fed into the cross-
modal attention module:

h
′

x = multiheadx(h,h
′

r,h
′

r) (18)

where multiheadx is a multihead attention module.
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Finally, the fusion layer computes the element-wise sum over
h using h

′

x as the weight to obtain the final multimodal represen-
tation h

′
:

h
′
= h

′

x ⊙ h (19)

The model decodes the target sentence using h
′

instead of h.

3.5 Video Feature Extraction
Videos consist of a sequence of frames. We obtained two types

of video frames: per-second frames and keyframes. Keyframes in
videos store whole images, which often provide good visual rep-
resentations of objects and scenes. In contrast, per-second frames
offer more information regarding per-second visual changes in
videos.

For video v, we first used ResNet-152 [8] pretrained on Ima-
geNet [22] to extract two sets of appearance features: Pv and Kv,
from per-second frames and keyframes separately.

4. Experiment
In VMT, videos function as complementary information to dis-

ambiguate translation. Therefore, VMT models should outper-
form text-only models. However, these two types of models have
similar performances on the VATEX dataset. This section intro-
duces two experiments that we implemented in this study: in-
put degradation and visual sensitivity. These two experiments
were conducted to determine why videos do not guide transla-
tion: whether it can be explained by the VATEX dataset, VMT
models, or visual features extracted from videos.

4.1 Input Degradation
The results of VMT Challenge 2020 indicate that VMT models

perform slightly better than text-only models; either VMT mod-
els cannot leverage visual information or using textual modal-
ity is sufficient to perform the translation. We conducted input
degradation to examine the hypothesis that VMT models ignore
the visual modality because the information provided by textual
modality is sufficient to perform translation, not because of the
models themselves.

Inspired by recent research on probing the need for visual con-
text in image-guided machine translation [2], [3], [4], we con-
ducted four source-side input degradation experiments: color,
noun, verb, and progressive masking. Table 1 shows examples of
these four types of input degradation. Because these input degra-
dation experiments simulate scarce textual information, videos
should provide complementary information to VMT models. Un-
der this condition, VMT models that rely on visual information
obtained from videos should outperform text-only models that de-
pend only on textual information.

Color Deprivation We replaced English words that repre-
sent colors in the source sentences with a special token, [c].

Noun Masking We replaced each noun in the source English
sentences with a special token, [n].

Verb Masking The authors of the VATEX dataset used
videos from the Kinetics-600 dataset, which contains a broad
range of actions. All verbs in the source sentence were replaced
with a special token, [v].

Progressive Masking Progressive-masking aims to progres-
sively replace the last N tokens in a source sentence with a spe-
cial token, [p]. Unlike other masking experiments, progressive-
masking simulates a progressive low-resource scenario [2]. We
hypothesize that with the increasing number of masked tokens in
the source sentences, VMT models with access to visual infor-
mation will perform better than text-only models. When nearly
100% of all tokens are masked, VMT models will perform video
captioning with “expected length” as the only known information.

4.2 Visual Sensitivity
Videos, as another input to the VMT system, possess visual

information, such as actions, objects, and scenes that can poten-
tially guide the translation. We classify two types of video fea-
tures: (1) action features derived from actions and (2) appearance
features for visual objects.

In contrast to image-guided machine translation, video-guided
approach uses videos as input. A video consists of a sequence
of frames (still images) embedded with richer visual information
than a single image. The question raised in this study is as fol-
lows: “Do visual features extracted from videos improve transla-
tion quality of VMT models?” To answer this question for video
v, we also created a visual set that contained only the middle vi-
sual feature vector from Pv.

To establish a baseline in this experiment, we used randomly
sampled vectors as feature vectors. For each video, we generated
10 randomly sampled vectors with the same number of dimen-
sions as the vectors in Pv. The hypothesis is that the performance
of VMT models deteriorates when the model is fed with randomly
sampled vectors. Table 2 summarizes the visual feature sets that
were created for the experiments.

5. Experimental Setup
5.1 Dataset

We used VATEX v1.1 (the latest version) *3. Because the pub-
lic test set is on hold, we split the validation set and used 50%
of samples for validation and the remaining 50% for testing. The
task was to translate from English to Chinese, as in VMT Chal-
lenge 2020.

Because some YouTube URLs were invalid, we downloaded
94% of the videos from the training and validation sets. Ta-
ble 3 shows the statistics of the VATEX dataset used in the ex-
periments.

5.2 Implementation
In this section, we introduce text processing, input degrada-

tion, visual feature extraction, model configurations, and model
training.

Text Processing We used spaCy *4 to tokenize the English
sentences, and then employed byte pair encoding (BPE) [23] to
split the English tokens into subwords, where the number of
merge operations was 8,000. Chinese translations were tokenized
at the character level. The English and Chinese vocabulary sizes
in the training set were 7,921 and 3,357, respectively.

*3 https://eric-xw.github.io/vatex-website/download.html
*4 https://spacy.io/
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Table 1 Examples of input degradation.

Input Degradation Examples
Original Text a person drives a golf cart down the street while walking a large white dog.

Color Deprivation a person drives a golf cart down the street while walking a large [c] dog.
Noun Masking a [n] drives a [n] [n] down the [n] while walking a large white [n].
Verb Masking a person [v] a golf cart down the street while [v] a large white dog.

Progressive Masking (n=6) a person drives a golf cart down the street while [p] [p] [p] [p] [p] [p]

Table 2 Names and descriptions of video feature sets associated with each video v.

Name Descriptions
I3D Action feature provided by VMT Challenge 2020

Per-second frames (ResNet-152) Appearance features extracted from per-second frames: Pv.
Keyframes (ResNet-152) Appearance features extracted from keyframes: Kv.

Single frame (ResNet-152) Contains only the middle visual feature vector from Pv.
Random Contains 10 randomly sampled vectors, the same number of dimensions as vectors in Pv.

Table 3 Statistics of the VATEX dataset used in the experiments.

Split Language Video Sent. Token

Train English 24,376 121,880 1,861,537
Chinese 2,742,708

Valid English 1,405 7,025 107,111
Chinese 157,370

Test English 1,405 7,025 106,502
Chinese 157,807

Input Degradation The color deprivation masked approxi-
mately 0.4% of tokens in each of the training, validation, and
test tests. For noun masking and verb masking, the correspond-
ing numbers of tokens were approximately 28% and 14%, re-
spectively. We selected N = {2, 4, 6, 8, 10, 16, 20, 30} in the
progressive-masking experiment. With N = 30, nearly 100% of
the tokens were masked.

Video Feature Extraction We extracted two types of dy-
namic visual features from videos: action features and appear-
ance features. The action features were extracted from videos
using two-stream inflated 3D ConvNet (I3D) [24]. We used I3D
features provided by VMT Challenge 2020 *3 as action features.
Each appearance feature is the averaged convolutional feature
from the last convolutional layer of ResNet-152 [8] pretrained on
ImageNet [22].

Model Configurations Table 4 summarizes model configu-
rations used in our experiments. Our implementation is based on
nmtpytorch [25], which is a popular framework for both NMT
and MMT.

Model Training We used the following loss functions: (1)
negative log-likelihood loss for the RNN-based models and (2)
label smoothing [26] for the transformer-based models. During
the training of RNN-based models, we used the Adam optimizer
with a learning rate of 0.0004, unit clipping gradient norm, 0.5
dropout rate, 0.00001 weight decay, and an early stopping pa-
tience of 10. To train the transformer-based models, we used the
Adam optimizer with a learning rate of 0.0442, unit clipping gra-
dient norm, 0.5 dropout rate, 0.00001 weight decay, and an early
stopping patience of 10. For both evaluation and validation, we
performed a beam search with a size of 5.

Evaluation Metric For all experiments, we used the same
evaluation metric as that in VMT Challenge 2020: corpus-level
BLEU [27].

6. Results
In this section, we discuss the results of the input degrada-

tion and visual sensitivity experiments, presented in Table 5
and Fig. 2. Without any input degradation, all transformer-based
models had higher BLEU scores than the RNN-based models.
Among the VMT models, VGT-Shallow (Keyframes (ResNet-
152)) achieved the best BLEU score.

In our experiments, transformer-based models had a signif-
icantly higher number of learnable parameters and, therefore,
higher BLEU scores compared to the RNN-based models.

Given complete text, the performances of all VMT models did
not surpass their text-only counterparts. VMT models started to
benefit from using video features only when information in text
was scarce. Therefore, when text contains sufficient information
for translation, visual features extracted from videos were ignored
by the models as noisy.

6.1 Input Degradation
In this section, we report the experimental results of four in-

put degradation experiments: color deprivation, noun masking,
verb masking, and progressive masking. Based on the experi-
mental results, VMT models successfully leveraged information
from videos and outperformed text-only models only when tex-
tual information was scarce (thus, when a larger number of words
was masked).

Color Deprivation The differences between the VMT and
text-only models were marginal because only a small fraction of
tokens was masked, compared with models trained on complete
data. Although VGT-Shallow (Keyframes (ResNet-152)) has the
highest BLEU scores among all models, it is only slightly higher
than its monomodal counterpart, Transformer.

Noun Masking All models had lower BLEU scores com-
pared to those of their complete-data baselines. All VMT mod-
els, except for Hierarchically Attentive RNN (I3D) and Hierar-
chically Attentive RNN (random), had higher BLEU scores com-
pared to those of the text-only models.

Noun masking has a larger masking scale; therefore, compared
to the verb masking and color deprivation experiments, the VMT
models can exploit the visual context to infer missing informa-
tion.

Verb Masking In verb masking, all models had deteriorated

c⃝ 2022 Information Processing Society of Japan
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Table 4 Configurations of models used in the experiments: Dencoder , Ddecoder , and Dembedding are the di-
mensions of encoder, decoder, and source/target word embedding; Nencoder and Ndecoder are the
number of encoder and decoder layers; h is the number of attention heads; Nparameter is the num-
ber of learnable parameters (using full-text and per-second frames (ResNet-152) features).

Model Dencoder Ddecoder Dembedding Nencoder Ndecoder h Nparameter

Attentive RNN 512 512 1024 2 2 26.78M
Hierarchically Attentive RNN 512 512 1024 2 2 29.92M

Transformer 512 512 512 6 6 8 49.90M
VGT-Shallow 512 512 512 6 6 8 63.02M

Table 5 Corpus-level BLEU scores on test set. * indicates that a model is significantly different from
its text-only counterpart. bold marks the model with the best BLEU score. ∗indicates statistical
significance of the difference over their text-only counterparts (p < 0.05).

Models T TColor TNoun TVerb

Attentive RNN 35.76 35.46 22.35 31.46
Hierarchically Attentive RNN (I3D) 35.55 35.19∗ 21.98∗ 31.50
Hierarchically Attentive RNN (Per-second frames (ResNet-152)) 35.48∗ 35.34 24.36∗ 31.57
Hierarchically Attentive RNN (Keyframes (ResNet-152)) 35.41∗ 35.21∗ 23.87∗ 31.61
Hierarchically Attentive RNN (Single frame (ResNet-152)) 35.43∗ 35.27 23.94∗ 31.66
Hierarchically Attentive RNN (Random) 33.31∗ 35.37 22.11∗ 31.59
Transformer 37.35 36.63 23.60 32.75
VGT-Shallow (I3D) 37.13∗ 36.70 23.67 32.88
VGT-Shallow (Per-second frames (ResNet-152)) 36.86∗ 36.38∗ 25.15∗ 32.67
VGT-Shallow (Keyframes (ResNet-152)) 37.23 36.77 23.89∗ 32.86
VGT-Shallow (Single frame (ResNet-152)) 37.14∗ 36.40∗ 24.80∗ 33.04∗

VGT-Shallow (Random) 36.96∗ 36.72 23.53 33.17∗

Fig. 2 Progressive Masking (using per-second frames (ResNet-152) features): the VMT models outper-
form the text-only models with increasing percentages of masked tokens.

performances, but the differences between the VMT and text-only
models were minimal. VGT-Shallow (random) achieved the best
BLEU score.

Progressive Masking Figure 2 shows the results of
progressive-masking. In the case of an increasing number of
masked tokens, the VMT models, especially Hierarchically
Attentive RNN, started to take advantage of visual modalities
and, therefore, outperformed the text-only models. Moreover,
Hierarchically Attentive RNN had the best BLEU score when
nearly 100% of the tokens were masked.

6.2 Visual Sensitivity
In color masking and verb masking, the VMT models had com-

parable performances as the models that used dynamic visual fea-
tures extracted from videos using pretrained models, even when
the models used randomly initialized features as visual features.
We could not observe the same results in the noun masking test:

when a higher number of tokens was masked, the information
provided by visual features improved the model.

In the noun masking test, VGT-Shallow (Per-second frames
(ResNet-152)) achieved the best BLEU score. We also found that
all VMT models that used appearance features (ResNet-152) had
higher BLEU scores than action features (I3D) and were statis-
tically better than text-only models. As nouns are often related
to visual objects, when a large number of nouns are masked,
appearance features derived from visual objects compensate for
scarce textual information, thereby helping VMT models to dis-
ambiguate translations.

7. Human Evaluation
The authors of VATEX used a post-editing annotation strategy

to collect parallel English-Chinese translation pairs, in which au-
tomatic translation systems were employed.

We hypothesize that if English-Chinese translations are good
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Table 6 Example of human evaluation. “Vatex translation” shows the translation from the VATEX
dataset; “Text-only translation” is the human translation without showing the video; and “Post-
edited translation” is the post-edited Chinese translation when showing the video. The parenthe-
sized sentences are obtained using Google Translation of Chinese sentences.

enough, videos become redundant and will not help further im-
prove the translations in post-editing. To test our hypothesis, we
conducted a human evaluation task based on a post-editing anno-
tation strategy. The human evaluation task is to inspect data man-
ually and examine our hypothesis that text in the VATEX dataset
is sufficient to perform the translation and to check if videos pro-
vide complementary information to reduce ambiguities in trans-
lation.

7.1 Translations
We randomly selected 500 videos from the VATEX’s valida-

tion set to construct the human evaluation set, and we selected
two English video descriptions from each video’s parallel trans-
lation pairs in random order. Therefore, the human evaluation
set includes 1,000 instances; each instance has an English video
description and a video URL.

Given an instance from the human evaluation set, a human
translator was first asked to perform an English—Chinese trans-
lation, then watch the video, and post-edit the translation only if
it does not properly describe the video. We also asked the trans-

lator to provide reasons for post-editing, as well as any remarks.
Four professional translators were recruited, two for translation
and two for post-editing, to guarantee translation quality.

7.2 Results
The average editing distance between original Chinese trans-

lations from VATEX and human translations is 13.3, which in-
dicates that translations of human translators are quite different
from those in VATEX. The translators post-edited 104 Chinese
translations, 10.4% of the total number of instances, with an av-
erage editing distance of 5.1, compared with human translations,
and 14.5 compared with original translations from the VATEX
dataset. We found that 98% of post-edits were categorized as
“Source English description is inaccurate,” and 2% of post-edits
were “Wrong quantifier,” which means that the translators used
information from videos to correct the wrong description in En-
glish source sentences. This result reveals the need to improve
the quality of source video descriptions.

Based on the above results, we found that in most cases, source
English sentences provided sufficient information for the human
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translator to perform translations. Videos helped to correct wrong
descriptions in the source sentences rather than to disambiguate
translations. These findings also indicated that the short and sim-
ple sentences in the VATEX dataset were sufficient for translation
purposes, and their videos only provided redundant information,
which is consistent with the automatic metrics evaluations.

7.3 Examples
Table 6 shows two examples of post-editing correction. In ex-

ample (a), the edit distance between the Chinese video descrip-
tion in VATEX and human post-editing is 15. In the source En-
glish description, “being historically” is an ambiguous and incor-
rect phrase, and we cannot align it with any part of the video.
Therefore, the translator changed most parts of the sentence to
align with the video content. In example (b), the edit distance was
14. In the source English description, “a hand” does not match “a
pair of hands” in the video; hence, the translator watched videos
to correct the wrong quantifier used in the source sentence.

8. Conclusion
In this study, we investigate the dominance of textual modality

and the contributions of visual modality in VMT tasks by ana-
lyzing a large-scale VMT dataset, VATEX. Results from input
degradation and visual sensitivity experiments indicate that VMT
models tend to ignore the visual modality when textual modality
has sufficient information to perform translation. These experi-
mental results can be explained by the fact that VATEX contains
simple and short video descriptions, which provide sufficient in-
formation to accomplish translation. Hence, the visual context
from videos is ignored in the translation process.

Our study intends to emphasize the need to design new datasets
to further advance research on VMT. To design a new VMT
dataset, we need to address the following problem of text modal-
ity dominance: when text provides sufficient information for
translation, videos become redundant. Based on the empirical
evaluation of VATEX and recent research on multimodal simulta-
neous neural machine translation, information scarcity in textual
modality can allow models to exploit information from videos
to improve the quality of translation. Therefore, future work on
creating VMT datasets should focus on simultaneous translation
of language pairs with linguistic particularities, such as different
word orders and gender marking [28], [29].
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