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Abstract

This paper introduces a new form of slicing, named
architectural slicing, to aid architectural understanding
and reuse. In contrast to traditional slicing, architec-
tural slicing is designed to operate on the architectural
description of a software system, rather than the source
code of a program. Architectural slicing provides knowl-
edge about the high-level architecture of a software sys-
tem, rather than the low-level implementation details of

‘@ program.

1 Introduction

Software architecture is receiving increasingly atten-
tion as a critical design level for software systems [16].
The software architecture of a system defines its high-
level structure, exposing its gross organization as a col-
lection of interacting components. A well-defined ar-
chitecture allows an engineer to reason about system
properties at a high level of abstraction. Architectural
description languages (ADLs) are formal languages that
can be used to represent the architecture of a software
system. They focus on the high-level structure of the
overall application rather than the implementation de-
tails of any specific source module. Recently, a number
of architectural description languages have been pro-
posed such as ACME (8], Rapide [10], and UniCon [15]
to support formal representation and reasoning of soft-
ware architectures. As software architecture design re-
sources §n~ the form of architectural descriptions) are
going to be accumulated, the development of techniques
to support understanding, testing, reengineering, main-
tenance, and reuse of software architectures will become
an important issue.

One promising way to support software architecture
development is to use slicing technique. Program slic-
ing, originally introduced by Weiser [18], is a decomposi-
tion technique which extracts program elements related
to a particular computation. A program slice consists of
those parts of a program that may directly or indirectly
affect the values computed at some program point of
interest, referred to as a slicing criterion. The task to
compute program slices is called program slicing. We
refer to this kind of slicing as traditional slicing to dis-
tinguish it from a new form of slicing introduced later.

Traditional slicing has been studied primazily in the
. context of conventional programming languages [17]. In

such languages, slicing is typically performecgl using de-
pendence graph representations [4, 9, 6, 14, 19, 20]. Tra-
ditional slicing has many applications in software engi-
neering activities including program understanding [5],
debugging [1], testing [2], maintenance (7], reuse [13?, re-
verse engineering (3], and complexity measurement [14].

Applying slicing technique to software architectures
promises benefit for software architecture development
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at least in two aspects. First, architectural understand-
ing and maintenance should benefit from slicing. When
a maintainer wants to modify a component or connec-
tor in an architectural description of a software system
in order to satisfy new design requirement, he/she must
first investigate which components or connectors will
affect the modified component or connector and which
components or connectors will be affected by the mod-
ified component or connector. By using a. slicing tool
on its architectural description, he/she can extract the
parts of the description containing those components
and connectors that might affect the modified compo-
nent or connector and might be affected by the modified
component or connector. The. slicing tool which pro-
vides such information can assist the maintainer greatly.
Second, architectural reuse should benefit from slicing.
While reuse of code is important, in order to make truly

‘large gains in productivity and quality, reuse of software

designs and patterns may offer the greater potential for
return on investment. By slicing an architectural de-
scription of a software system, a system designer can
extract reusable architectures from it, and reuse them
into new system designs for which they are appropriate.

While slicing is useful in software architecture de-
velopment, existing slicing techniques for conventional
programming languages can not be applied to archi-
tectural descriptions straightforwardly due to the fol-
lowing reasons. First, the traditional definition of slic-
ing is concerned with slicing programs written in con-
ventional programming languages which primarily con-
sist of variables and statements/c]auses as their ba-
sic language elements, and the slicing notions. are usu-
ally defined as (1) a slicing criterion is a pair (s, V)
where s is a statement/clause and V is a set of vari-
ables defined or used at s, and (2) a slice consists of
only statements/clauses. However, in an architectural
description language, the basic language elements are
components and connectors, but neither variables nor
statements{ clauses as in conventional programming lan-
guages. Therefore, to slice architectural descriptions,
new definition of slicing must be given. Second, existing
techniques for computing slices of a conventional pro-
gram are topically performed using dependence graph
representations which can be used to represent program
dependences in a program. Usually, there are two types
of program dependences in a conventional program, i,e.,
control dependences representing the control conditions
on which the execution of a statement or expression
depends and data dependences representing the flow of
data between statements or expressions. However, the
dependences in a conventional program are basically de-
fined between statements or variables, but neither com-
ponents nor connectors as in architectural description
languages. Moreover, in addition to the definition/use
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binding relationship, an architectural description lan-
guage usually support more broad and complex rela-
tionships between components and/or connectors such
as pipes, event broadcast, and client-server protocol. As
a result, new types of dependence relationships between
components and/or connectors in an architectural de-
scription must be studied in order to compute an archi-
tectural slice.

In this paper, we introduce a new form of slicing,
named architectural slicing. In contrast to traditional
slicing, architectural slicing is designed to operate on
an architectural description of a software system, rather
than the source code of a program. Architectural slic-
ing provides knowledge about the high-level architecture
of a software system, rather than the low-level imple-
mentation details of a program. Abstractly, our slic-
ing algorithm takes as input an architectural descrip-
tion (written in its associated architectural description
language) of a software system, then it removes from
the description those components and connectors which
are not necessary for ensuring that the semantics of the
description of the system is maintained. This benefit
allows unnecessary components and connectors to be
removed at architectural level of the system which may
lead to considerable space savings, especially for large-
scale software system consisting of numerous compo-
nents. In order to compute an architectural slice, we
present software architectural dependence graph to ex-
plicitly represent various types of dependences in an ar-
chitectural description of a software system. Based on
the graph, we afive a two-phase algorithm to compute
an architectural slice.

The purpose for development of architectural slicing
is quite different from that for development of tradi-
tional slicing. While traditional slicing was designed
originally for supporting source code level understand-
ing and debugging of a conventional program, archi-
tectural slicing was primarily designed for supporting
architectural level understanding aid reuse of a large-
scale software system. However, just as traditional slic-
ing has many other applications 1n software engineering
activities, we believe that architectural slicing has also
useful in other software architecture development activ-
ities including architectural testing, reverse engineering,
reengineering, and complexity measurement. .

The rest of the paper is organized as follows. Sec-
tion 2 briefly introduces the ACME: an architectural
description language. Section 3 defines some notions
about slicing software architectural descriptions. Sec-
tion 4 presents three types of dependences in an archi-
tectural description and a dependence graph. Section
5 gives a two-phase algorithm for computing an archi-
tectural slice. Concluding remarks are given in Section

.

2 ACME: An Architecture Description

Language :

We assume that readers are familiar with the basic
concepts of architectural description languages, and in
this paper, we use ACME architectural description lan-
guage [8] as our target language to represent software
architectures. The selection of the ACME is based on its
potentially wide use because “it is being developed as a
joint effort of the software architecture research commu-
nity to provide a common intermediate representation
for a wide variety of architecture tools.” [Sr

There are seven design elements in ACME that can
be used to represent software architectures which in-

clude components, connectors, systems, ports, roles,
representations, and bindings. Among them, the most
basic elements of architectural description are compo-
nents, connectors, and systems. Readers can refer [8] for
more details of the language description, and we briefly
introduce these design elements here.

Components are used to represent the primary com-
putational elements and data stores of a system. Intu-
itively, they correspond to the boxes in box-and-line de-
scriptions of software architectures. Typical examples of
components include clients, servers, filters, objects, and
databases. Each component has its interface defined
by a set of ports. A component may provide multiple
interfaces by using different types of ports. Each port
identifies a point of interaction between the component
and its environment. A port can represent a simple in-
terface such as procedure signature, or more complex
interfaces, such as a collection of procedure calls that
must be invoked in certain specified orders, or an event
multi-cast interface point.

Connectors are used to represent. interactions be-
tween components. Connectors mediate the communi-
cation and coordination activities between components.
Intuitively, they correspond to the lines in box-and-line
descriptions. connectors may represent simple forms of
interaction, such as pipes, procedure calls, event broad-
casts, and also more complex interactions, such as a
client-server protocol or a SQL link between a database
and an application. Each connector has its interface de-
fined by a set of roles. Each role of a connector defines a
participant of the interaction represented by the connec-
tor. Connectors may have two roles such as the caller
and callee roles of an RPC connector, the reading and
writing roles of a pipe, or the sender and receiver roles
of a message passing connector, or more than two roles
such as an even broadcast connector which might have

.a single event-announcer role and an arbitrary number

of event-receiver roles.

Systems represent configurations of components and
connectors. )

Figure 2 (a) shows the ACME architectural de-
scription of a simple London Ambulance Service dis-

‘patch system (LAS system) which is taken from [12],

and Figure 1 (a) shows its architectural representa-
tion. The architectural representation contains five
components which are connected by six connectors.
For example, in the representation, the component
call_entry and the component incident_mgr is con-
nected by the connector call_info_channel. Each
component is declared. to have a set of ports, and
each connector is declared to have a set of roles. For
example, a comporent incident_mgr has four ports
designed as map_request, incident_info_request,
send_incident_info, and receive_call_msg, and a
connector call_info_channel has two roles designed
as from and to. The topology of the system is declared
by a set of attachmentses. For example, an attachments
incedent_info_path represents the connections from
calls to incident.manager, incident updates to resource

managet, and dispatch requests to dispatcher.

In order to provide moré information about archi-
tectural descriptions, ACME also supports annotation
of architectural structure with lists of properties. Each
property has a name, an optional type, and a value,
and each ACME architectural design entity can be
annotated. For example, in Figure 2, the connector
call_info_channell has a set of properties that state
the connection type is massage passing channel and the




// Instance based example - simple LAS architecture:
System LAS_CAD = {
// system components
call_entry = component {
-ports : { send _call msg } .
} .
incident_mgr = component {
ports : incident_info_request,
send_incident_info, receive_call_msg }
}

resource_mgr = ent {

ports : { map_request ] i
receive_incident_info} - send_dispatch_requesd
)]
dispatcher = component {
ports : { receive_dispatch_request }

map_server = component {
ports : ( request_portl, request_port2 )
}

// system connectors
// measage passing connectors
call_info_channel = connector {

roles : { from, to }
) .
incident_upd .ch 1 = tor {
roles : ( from, to }

1
idispatch_request_channel = connector {
roles : (from, to )}
)
// RPC connectors
incident_info_request_rpc = connector {
roles : { client_end, server_end }
H
map_request_rpcl = connector {
roles : { client_end, server_end )
) ) )

map_request_rpcl = connector {
roles : {client_end, server_end }
1

11

up. the. attach
incident_info_path = attachments : {
// calls to incident_manager
call_entry.send_call_msg to call_info_channel.to;

v // incident updates to resource manager
incident_mgr.send_incident_info to
incident_update_channel. from;
‘resource_mgr.receive_incident_info to
incif.lenl:_update_’channel .to;

// dispatch requests to dispatcher
resource_mgr.send_dispatch_request to
dispatch_request_channel.from;
dispatcher.receive_dispatch_request to
di tch h l.to;

_xeqt

}

rpc_requests = attachments : ( J

/7 calls to map server .
incident_mgr.map_request to map_request_rpcl.client_end]
map_server.request_portl to map_request_rpcl.server_end
resource_mgr.map_request to map_request_rpc2.client_end
map_server.request_port2 to map_request_rpc2.server_end]

// incident info from incident_mgr

resource_mgr.incident_info_request to
incident_info_request_rpc.client_end;

incident_mgr.incident_info_request to
incident_info_request_rpc.server_end;

Figure 2: An architectural description in ACME and a slice of it.

message flow is from the role from to the. role to.

In order to focus on the key idea of architectural slic-
ing. In this paper, we assume that an ACME architec-
tural description contains these basic elements including
component whose interface is defined by a set of ports,
connector whose interface.is defined by a set of roles
and system whose topology is declared by a set of at-
tachmentses each including a set of attachments. Repre-
sentations and bindings will not be considered here, and
we will consider them in our future work. In the rest of
the paper, we assume that an architectural description
be devoted by (Cy,; Cn, Ar) where Cyy,, Cy,, and A,, are
the set of components, connectors, and attachmentses
of the description respectively..

3 Architectural Slicing :

3.1 A Simple Example o

We present a simple example to explain our approach
_on architectural slicing.” The example shows also one
application of architectural slicing, where it is used in
architectural understanding of a software system.

Consider. the: LAS system: whose ACME descrip-
tion is shown in Figure 2 (a). Suppose a maintainer
needs to modify two ports incident_info_request and
receive_incident_info of the compo-
nent resource_mgr in the architectural description in
order to satisfy new design requirement, the first thing
he/she has to do is to investigate which components
and connectors interact with component resource_mgr
through these two ports. A common way is to man-
ually check the source code of the description to find
such information.- However, it is very time-consuming

and. error-prone even for a small size description be-
cause there may be complex dependence relations be-
tween components and/or connectors ii the description.
However, if the maintainer has an architectural slicer in
hand, The work may probably be simplified and auto-
mated without the disadvantages mentioned above. In
such a scenario, he/she only needs to invoke the slicer,
which takes as input a complete architectural descrip-
tion of the system and the set of ports of the com-
ponent resource_mgr, i.e., incident_info_request,
receive_incident_info (thisis ‘an architectural slic-
ing criterion). The slicer then computes an architec-
tural slice and forward slice with respect to the crite-
rion and outputs it to the maintainer. An architectural
slice is a partial description of the original one which
includes those components and connectors that might
affect the component resource_mgr through ports in
the criterion, and an architectural forward slice 1s a pat-
tial description of the original one which includes those
components and connectors that might be affected by
the component resource_mgr through ports in the cri-
terion. The other parts of the description that might not -

affect or be affected by, the component resource_mgr

have been removed, i.e., sliced away from the original
description. The maintainer can thus focus his/her at-
tention only on the contents included in the slice to
investigate the impact of modification. Using the algo-
rithm we present in Section 5, the slice shown in Figure
2 can be computed.

3.2 Architectural Slices

Intuitively, an architectural slice may be viewed as
a subset of the behavior of a software architectural de-
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Figure 1: The architecture of the LAS system.

scription, similar to the original notion of the traditional
static slice. However, while a traditional slice intends to
isolate. the behavior of a specified set of program vari-
ables, an architectural slice intends to isolate the be-
havior of a specified set of a component’s ports or a
connector’s roles.

Given an architectural description P = (Cp, Cyyy As)
of a software system, our goal is to compute a slice
S, = (Cl,,C., Ar)) that should be a “subset” of P that
preserves partially the semantics of P. To define the
meanings of the word “subset,” we introduce the con-
cept of a reduced component, connector and attache-
ments.

Definition 3.1 Let P = (C,.,Chn, A) be an architec-
tural description and ¢, € Cpyy ¢ € Cp, and a,, € Ay,
be ‘a component, connector, and attachments of P re-
spectively: : . '

o A reduced component of ¢, 73 a cbmponcnt ¢, that
is derived from c,, by removing zero, or more ports
fromem. . ‘

e A reduced connector of ¢, is a connector ¢, that
is derived from ¢, by removing zero, or more roles
from cn. : S

e A reduced attachments of an, is an attachments a;,
that is derived from a,, by removing zero, or more

" attachments from a,,.

The above definition showed that a reduced compo-
nent, connector, or attachments of a component, ¢on-
nector, or attachments may be itself in the case that no
its port, role, or attachments has been removed from it,
or an empty component, connector, or attachments in

the case that all its ports, roles, or attachments have
been removed.

Figure 3 shows a component incident_mgr, a
connector map._request_rpcl, and an attachments
rpe_requests as well as their corresponding reduced
component, connector, and attachments. The small
rectangles represent those ports, roles, or attachments
that have been removed from the original component,
connector, or attachments. : )

Having the definitions of a reduced component, con-
nector and attachments, we now define the meaning of
the word “subset”.

Definition 8.2 Let P = (Cp,Cn,Am) and P/ =
(Cr.y Ciy AL)) be architectural descriptions, then:

0 Cp = {C,1Cnyre+-1Cn, } 8 @ “subset” of Cp, =
{C'mnc‘mh' o ’CWM;} iffOf‘ i=1,2...,k c’m.- is a
‘reduced component of cm,,

o () = {¢, 1 Chyr---1Ch,} is a “subset” of Cp =
{CnirCngreeesCn } ffori=1,2,...k, ¢, is are-
duced connector of ¢,;,

o A = {ap, ,ap,,,..., 0, } is a “subset” of Am =
{@mys8mgyevstm,} ffori=1,2,...,k, al,. isa
reduced attachments of an,,, -

Definition 8.3 Let P = (Cp,Cn,An) and P' =
(Cr.,Cn, Al) be architectural descriptions. Then P’ is
a reduced architectural description of P if: (1) C), is
a “subset” of Cp,, (2) Cl is a “subset” of C,, and (3)
Al is a “subset” of Ap,. .

Having the definitions of a reduced architectural de-
scription, we define some notions about slicing software
architectural descriptions. - .

In an architectural description of a software system,
a component/connector’s interface is defined to be a set
of ports/roles which identify the form of the compo-
nent/connector interacting with its environments. To
understand how a component interacts with the other
components or connectors for making changes, a main-
tainer must examine each port of the component of in-
terest. Moreover, it has Il))e_en frequently emphasized
that connectors are as important as components for ar-
chitectural design, and-a maintainer may -also modify
a connector during the maintenance. ‘To satisfy these
requirements, we define a slicing criterion for an archi-
tectural description as a set of ports of a component or
a set of roles of a connector of interest. :

Definition 3.4 Let P = (Cn, Cn,Am) be an architec-
tural description. A slicing criterion for P is a pair
(¢, E) such that: Core

o c'€ Cp, and E is a set of ports of ¢, or

e c€ C, and E is a set of roles of c.” .

Note that the determination of the set F depends on
users’ interést on what they want to examine. The E
may be the set of ports/roles of component/connector ¢,
or just-a-subset of ports/roles of component/connector
e ‘ S .

Definition 3.5 Let P = (Cm, Cn, Am) be an architec-
tural description. A slice S, = (C,,C,,, Al,) of P on
a given slicing criterion (c, E') is a reduced architectural
description of P which contains only those reduced com-
ponents, connectors, and attachmentses that might di-
rectly or indirectly affect the behavior of ¢ through ele-
ments in E.




incident_mgr = {
ports : { map_request, incident_info_request,
send_incident_info, receive_call_msg }

(a) -

map_request_rpcl = connector {
roles : { client_end, serve_end )
property : { conn_type : string = RPC; }

(c)

rpc_requests » attachments : (
// calls to map server

incident_mgr .map_request to map_request_rpcl.client_end;
map_server.request portl to map_request_rpcl.server_end;
 Tesource_mgr.map_request to map_request_rpc2.client_end;
map_server.request_port2 to map_request_rpc2.server_end;

// incident info from incident_mgr

resource _mgr.incident_info_request to
incident_info_request_rpc.client_end;

incident_mgr.incident_info_request to
incident_info_request_rpc.server_end;

(e)

incident_mgr = component {
ports : (1, incident_info_request,
send_incident_info, receive_call_msg )
)

- (b}

map_request_rpcl = connector {
roles : (€ ] L —1 )
property : { conn_type : string = RPC; )

(d)

rpc_requests = attachments : {
// calls to map server

C
[
 —

duutd

| em—

// incident info from incident_mgr
resource_mgr .incident_info_regquest to
incident_info_reques: t_rpc.client_end;
incident_mgr.incident_info_request to
incident_info_request_rpc.server_end;

(£)

Figure 3: A connector, component, and attachments and their corresponding reduced connector, component, and

attachments.

Definition 3.6 Let P = (Cyn, Cy, An) be an architec-
tural description. A forward slice Sy, = (C!,;C", A!))
of P on a given slicing criterion sic, E) is a reduced ar-
chitectural description of P which contains only those
reduced components, connectors, and attachmentses that
might be directly or indirectly affected by the behavior of
c through elements in E.

From Definitions 3.5 and 3.6, it is obviously that
there is at least one slice or forward slice of ‘an archi-
tectural description that is itself, and the architecture
represented by S, or Sy, should be a “subarchitecture”
of the architecture represented by P.

Defining an architectural slice as a reduced architec-
tural description of the original one is particularly useful
for supporting architectural reuse. By using an archi-
tectural slicer, a system designer can automatically de-
compose an existing architecture (in the case 'that its
architectural description is availible) into some small
architectures each having its own functionality which
may be reused in new system designs. Moreover, the
"view of an architectural slice as a reduced description
dose not reduce the use when applied it to architectural
understanding because it also contains enough informa-
tion for a maintainer to facilitate the modification:

4 A Dependence Model for Architec- »

tural Descriptions

It has been shown that a dependence graph repre-
sentation such as the program dependence graph (PDG)
'[6, 9] for programs written in conventional programming
anguages, is well suited for computing slices of the pro-
grams since it provides a powerful framework for de-
pendence analysis. In order to compute a slice of an
architectural description, we ‘would like to use a sim-
ilar representation to explicitly represent dependences
in an architectural description. In this section we first
introduce three types of dependences in an architectural
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" description, then present a dependence graph for archi-

tectural descriptions.

4.1 Dependences in Architectural Descrip-
. tions ‘

Traditional dependence analysis has been primarily
studied in the context of conventional programming lan-
uages. In such languages, dependences are usually de-
%ned between statements or variables. However, in an
architectural description language, the basic language
elements are topically components and connectors, but
neither statements nor variables. Moreover, in an archi-
tectural description language, the interactions among

_ components and/or connectors is through ‘their inter-

faces that are usually defined to be a set of ports (for
components) and a set of roles (for connectors). As
a result, it is not enough to define dependences just
between components and/or connectors in an architec-
tural description. In this paper, we define dependences .
in an architectural description as dependence: relation-
ships between: ports and/or roles of components and/or
connectors. In the following, we present three types of
dependences in an architectural description.

The first type of dependence relationship in an archi-
tectural description is called component-connector de-
pendences which can be used to represent dependence
relationships between a port of a component and a role
of a connector in the description. Informally, if there
is an information flow from a port of a component to
a tole of a connector, then there exists a component-
connector dependence between them.. For example,
in Figure 2 (a), there is a component-connector de-

‘pendence between the port receive_incident_info

of the component resource_mgr and the role to of
the connector incident_update_channel since there
is a message flow from the role to to the port
receive_incident_info. )
The second type of dependence: relationship in an
architectural description is called connector-component



dependences which can be used to represent dependence
relationships between a role of a connector and a port
of a component. Informally, if there is an information
flow from a role of a connector to a port of a compo-
nent, then there exists a connector-component depen-
dence between them. For example, in Figure 2 (a), there
is a connector-component dependence between the role
fromof the connector call_info_channel and the port
send_call_msg of the component call_entry since
there is a message flow from the port send_call._msg
to the role from.

The third type of dependence relationships in an
architectural description is called additional depen-
dences which can be used to represent dependence re-
lationships between two ports or roles. within a com-
ponent or connector. Informally, for a component
or connector there are additional dependences from
each port or role as.input to other ports or roles as
output. For example, in Figure 2 (a), there is an
additional dependence between the roles client_end
and server_end of the connector map_request_rpc2
and also an additional dependence between the ports
map_request and receive_incident_info of the com-
ponent resource_msg.

4.2 Software Architectural Dependence
Graph

To explicitly represent three types of dependences in

an architectural description, we define a dependence

raph. named software architectural dependence graph
gSADG for short) for architectural descriptions. The

ADG of an architectural description is an arc-classified
digraph whose vertices represent the ports of compo-
nents and the roles of the connectors in the description,
and arcs represent three types of dependence relation-
ships introduced above in the description.

Definition 4.1 The software architec.tural dependence
graph (SADG) of an architectural description P is an
arc-classified digraph (V,Com, Con, Add), where:

‘o V is the set of vertices that represent each port and

_ role in the P; o

o Com is the set of component-connector dependence
arcs such that any (u,v) € Com iff u is component-
connector dependent on v; R

o Con is the set of connector-component dependence
arcs such that any (v,v) € Con iff u is connector-
component dependent on v; |

o Add is the set of additional dependence arcs such

* that any (u,v) € Add iff u is additional dependent
on v. o

Figure: 4 shows the SADG of the architectural
description ‘in  Figure 2. In. the figure, large
squares ‘represent components in the description, and
small squares represent the ports of each compo-
nent. Each port vertex has its name described
by component_name.pori_name. For example, pv8
(resource_mgr.receive_incident_info) is a port
ver- : .
tex that represents the port receive_incident_info of
the component resource_mgr. Large circles represent
connectors in the description, and small circles repre-
sent the roles of each connector. Each role vertex has
its name described by connector_name.role.name. For
example, 7v7 (incident_info_request_rpc.
client_end) is a role vertex that represents the role
client_end of the connector incident_info request.

The complete description of each vertex is shown in the
bottom of the figure. . '
Bold arcs represent component-connector depen-
dence arcs that connect a port of a component to a role
of a corresponding connector. Bold dashed arcs rep-
resent connector-component dependence arcs that con-
nect a role of a connector and a port of a.corresponding
component. Thin dashed arcs represent additional de-
pendence arcs that connect two ports or roles within a
component or connector. For example, (pv8,rv4) and
ép’v3,r'v8{ are component-connector dependence -arcs.
75, pv9) and (rv9, pv2) are connector-component de-
pendence arcs. (rv2,7vl) and (rv6, rv5), and (pv2, pv5)
and (pv7,pv8) are additional dependence arcs.

5 Computing Architectural Slices

The slicing notions defined in Section 3 give us only
a general view of an architectural slice, anc% do not tell
us how to compute it. In this section we present an al-
gorithm to compute a slice of an architectural descrip-
tion based on its SADG. Our algorithm is a dependence
graph based one which contains two phases: (1) Com-
puting a slice S, over the SADG of an architectural
description, and (2) Constructing an architectural slice
S, or Sy, from S,.

5.1 Computing a Slice over the SADG

Let P = (Cp,Chp, Am) be an architectural descrip-
tion and G = (V,Com, Con, Add) be the SADG of P.
To compute a slice over, the G, we refine the slicing no-
tions defined in Section 3 as follows:

o A slicing criterion for G is a pair (¢, V) such that:
(1) ¢ € Crm and V. is a set of port vertices corre-
sponding to the ports of ¢, or (2) c € C, and V, is
a set of role vertices corresponding to roles of ¢,

o The slice S;(c,V.) of G on a given slicing criterion
(¢, V.) is a subset of vertices of G such that for any
vertex v of G, v € S,(c, V;) iff there exists a path
from v € V. to v in the SADG.

o The forward slice Sgy(c, Vc) of G on a given slicing
criterion (c, V.) is a subset of vertices of G such that
for any vertex v of G, v € Sy,(c, V.) iff there exists
a path from v to o' € V; in the SADG.

According to the above descriptions, the computa-
tion of a slice or forward slice over the SADG can
be solved by using an usual depth-first or breath-first -
graph traversal algorithm to traverse the graph by tak-
ing some port/role vertices corresponding to a compo-

_nent/connector of interest as the start pomnt of interest.

Figure 4 shows a slice over the SADG with respect to
the slicing criterion (resource.mgr,V.) such that V, =
{pvT7,pv8}. The shaded parts o the graph have been
removed, i.e., sliced away.

5.2 Computing an Architectural Slice

The slice S, computed above is only a slice over the
SADG of an architectural description, which is a set of
vertices of the SADG. Since we wish to obtain a slice of
an architectural description itself, we should map each
element in S, to the source code of the description. By
using the reﬁ'uced component, connector, and attach-
ments introduced in Section 3, a slice S, of an archi-
tectural description can be constructed in the following
three steps. Let P = (Cin, CnyAm) be an architectural
description and G = (V, Com, Con, Add) be the SADG
of P.
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Figure 4: The dependence graph of the architectural description

Step 1: Mapping a port vertex in S, to its corre-
sponding reduced component:

— For any component ¢,, € C,,, if there ex-
ists a port vertex v such that v € S; and v
represents a port of c,, then there exists a
unique reduced component ¢}, of ¢, such that
¢!, € Sp and ¢}, is not an -empty component.

For any component c,, € C,,, if there ex-
ists no port vertex v such that v € S, and
v represents a port of ¢,,, then there exists a
unique reduced component ¢}, of ¢, such that
¢, € Sp and ¢}, is an empty component.

The reduced components G}, in S, have the
same relative order as the components C,, in

Step 2: Mapping a role vertex in S, to its corre-
sponding reduced connector: ‘
“— For any connector ¢, € C,, if there exists a
port vertex v such that v € S; and v repre-
sents a port of ¢,, then there exists a unique
reduced component ¢, of ¢, such that ¢, € S,

and ¢}, is not an empty component.

For any connector ¢, € C,, if there exists no
role vertex v such that v € S; and v represents
a role of ¢,, then there exists a unique reduced
connector ¢, of ¢, such that ¢, € S, and ¢,
is an empty connector. ' -

The reduced connectors C, in S, have the
same relative order as the connectors €, in

in Figure 2 and a slice over it.

Step 3: Reducing an attachments in P to its cor-
responding reduced attachments: =~

— For any attachments a,, € A,,, if there ex-
ists two vertices such that v;,vs € S, and
vl to v2 represents an attachment in a,,,
then there exists' a unique reduced attach-
ments aj, of a,, such that a}, € S, and a,
is not an empty attachments. ‘

For any attachments a,, € A,,, if there ex-
ists no two vertices such that v;,v € S,
and vl to v2 represents an attachment in
@, then there exists a unique reduced attach-
ments al, of @, such that'al, € S, and a], is
an empty attachments. ‘

The reduced attachmentses A’ in S, have the
same relative order as the attachmentses A,,

in P.

Figure 2 shows a slice of the ACME description with
respect to the slicing criterion. (resource_mgr, E) such
that - E={incident_info_request,
receive_incident_info} is a sét of ports of compo-
nent resource.mgr. The parts contained in rectangles
are those that have been removed, i.e., sliced away from
the original description.

6 Concluding Remarks-

We introduced a new form of slicing, named archi-
tectural slicing to aid architectural understanding and
reuse. In contrast to the traditional slicing, Architec-
tural slicing is designed to operate on the architectural
description of a software system, rather than the source
code of a program. Architecturalslicing provides knowl-
edge about. the high-level architecture of a software sys-
tem, rather than the low-level implementation details
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of a program. In order to compute an architectural
slice, we also presented the software architectural de-
pendence graph to explicitly represent various types of
dependences in an architectural description of a soft-
ware system. Based on the graph, we gave a two-phase
algorithm to compute an architectural slice.

While our initial exploration used ACME as
the architectural description language, the concept
and approach of architectural slicing are language-
independent. However, the implementation of an ar-
chitectural slicing tool may differ from one architecture
description language to another because each language
has its own structure and syntax which must be handled
carefully.

In architectural description languages, in addition to
provide both a conceptual framework and a concrete
syntax for characterizing software architectures, they
also provide tools for parsing, displaying, compiling,
analyzing, or simulating architectural descriptions writ-
ten in their associated language. However, existing lan-
guage environments provide no tools to support archi-
tectural understanding, maintenance, testing, and reuse
from an engineering viewpoint. We believe that a slic-
ing tool such as an architectural slicer introduced in this
paper should be provided by any ADL as an essential
means to support these development activities.

As future work, we would like to extend our approach
presented in this paper to handle other constructs in
ACME language such as templates and styles which
were not considered here, and also to extend our ap-
proach to handle the slicing problem for other architec-
ture description languages such as UniCon and Wright.
Moreover, we are also considering to apply the coordi-
nation theory [11] to software architecture dependence
analysis to identify all primary dependence relationships
between components. Finally, to demonstrate the use-
fulness of our slicing approach, we are implementing a
slicer for ACME architectural descriptions to support
architectural level understanding ard reuse. The next
step for us is to perform some experiments to evaluate
the usefulness of architectural slicing in practical devel-
opment of software architectures.
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