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Abstract: This study develops a new deep learning-based extendable multiple-objective molecular generator (MO-
MolGen). This generator integrates a recurrent neural network (RNN) to generate molecules and Pareto Multi-
Objective Monte Carlo Tree Search (Pareto MOMCTS) to decide search direction. This generator is validated by
generating compounds for specific target proteins with evaluation on the drug-like properties and docking score.
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1. Introduction
Developing a new drug to market is costly in terms of money

and time. Drug development takes an average of 10-15 years
with an approximate cost of 2.8 billion USD[1]. In the stage of
screening and design, the size of the drug-like chemical space is
approximate 1060[2][3], and scientists cannot master such enor-
mous search space with human experience.

Molecules with high pharmacological or biological activity to-
wards the target have been selected in the stage of the lead com-
pound screening[4]. Molecules with high affinity to target protein
are called hit compounds, and hit compounds with other pharma-
cological properties are called lead compounds. Lead compounds
will be optimized for drug candidates in a further stage of the drug
design process.

The traditional chemical method in lead compound screening
is high throughput screening (HTS)[5]. In HTS, only a few thou-
sand samples can be tested in one time. It is a relatively small
number for the search space, and testing on molecules needs syn-
thesis is costly.

With the development of computer science, computer-aided
drug discovery (CADD) is becoming more and more popular
in pharmaceutical companies and research institutions[6][7]. In
CADD, the search for lead compounds is more effective in a vir-
tual simulation method. Furthermore, CADD searches lead com-
pounds without compound synthesis, which is anticipated to cut
costs[8].

In CADD, the screening method can apply to chemical
database as virtual screening. However, virtual screening is hard
to reach a full space search due to the enormous search space of
drug-like compounds[2].
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1.1 De novo drug design
Unlike virtual screening, de-novo drug design attempts to cre-

ate structurally novel lead compounds with desired properties,
which may be affinity to the target protein, molecular weight, or
molecular stability[9][10]. De-novo drug design can avoid the
problem of virtual screening that compounds beyond search space
are unreachable.

Deep learning has played a noteworthy role in recently de-novo
drug design research[11]. Deep learning has shown potential
in multiple fields, such as computer vision[12], speech recogni-
tion[13], and audio signal processing[14]. The usage of neural
networks with multiple hidden layers made an intuition that deep
learning can learn higher-level abstractions of the input.

1.2 Generative model
Recently, Gomez-Bombarelli et al.[15] were firstly applied a

neural network called variational autoencoder (VAE) on molecule
generate. However, SMILES strings created by VAE have a low
success rate; most of them have an invalid chemical structure;
VAEs need repeated generation steps to obtain a molecule. Segler
et al.[16] employ recurrent neural network (RNN) to generate
molecules and achieve a high success rate of valid chemical struc-
tures. Their algorithm generates molecules randomly and chooses
high-scoring molecules from them. It required a large scale of
candidates to ensure including the desirable molecules; moreover,
molecules generated by these models need further structural op-
timization to meet drug development requirements.

Sattarov et al.[17] and Grebner et al.[18] generate molecules
with a generative model and select candidates according to the
performance of docking simulation. However, the docking simu-
lation in these models does not affect the generation process; thus,
molecules produced from these models are not fully optimized in
the docking simulation towards the target protein. Xu et al.[19]
proposed a model with VAE and docking score, but it reached the
optimal molecule in latent space of VAE with a long time search.

Yang et al.[20] integrate Monte Carlo tree search (MCTS) and
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RNN to get a directional molecule generation called ChemTS.
ChemTS builds a search tree according to the performance of
generated molecules and directs the search process to a more
promising structure to reduce the ineffective generation. Ma
et al.[21] proposed SBMolGen, which enhances ChemTS with
a more complex reward function. However, ChemTS focuses
on optimizing a single reward that will lead the generation in
an extreme direction where other essential properties are ne-
glected. And SBMolGen has a sound performance in generating
molecules with a good affinity towards target protein, but other
evaluations, such as the QED score, are relatively poor.

To make the generative model more appropriate for realistic
drug design tasks, multi-objective optimization has also been ap-
plied. Quentin et al.[22] has proposed multi-objective generative
models based on RNN and a scalar reward function, which is
a weighted sum of multiple rewards. Khemchandani et al.[23]
has proposed a DeepGraphMolGen, which is based on grammar-
based encoding of molecules into graphs and the graph convolu-
tional neural network. Both studies use a scalar reward function
that causes a loss of a degree of freedom in the search process by
changing the multiple objective problem into a single objective
problem.

2. Research Purpose
The purpose of this study is to develop a multiobjective

molecule generator that is extensible using deep learning. For
this purpose, we use utilizes an RNN to generate molecules and
Pareto Multi-Objective Monte Carlo Tree Search (Pareto MOM-
CTS) to expand the search process into a multiple reward space.
By docking simulation, MOMolGen generates molecules with a
strong binding affinity toward the target protein. Moreover, other
pharmaceutical properties involved in molecule evaluation, such
as the QED score and logP, made generated molecules more prac-
ticable in the further drug design process. Furthermore, a vector-
ized reward keeps enough degree of freedom in the search pro-
cess.

3. Methods
3.1 MOMolGen

The workflow of MOMolGen is illustrated in Figure 1. It con-
sists of two parts, (1), Monte Carlo search tree to execute the
search process and decide the head of a drug candidate, (2), gen-
erative RNN to complement the drug candidate, and followed by
a series of evaluations which is extendable by drug design re-
quirements.

The MOMolGen has four steps in every single search:

(1) Selection: Each node in the search tree have one character
in SMILES vocabulary, which may represent an element or
a structure. In the selection step, an expandable node is se-
lected through tree policy, and the route from the root node
to the selected node is the front part of the molecules been
explored in the current search.

(2) Expansion: One node adds to the search tree as a child node
of the selected node.

Fig. 1 MOMolGen

(3) Simulation: In the simulation stage, pre-trained RNN will
act as default policy complement the molecule and send
them to evaluators to get an evaluation vector, the new eval-
uation vector compared with the Pareto front to decide it is
a dominated vector or not.

(4) Backpropagation: The value of the evaluation vector will
pass to all parent nodes through the backpropagation route.

A whole search on a given target protein will repeat these
four steps and stop when it reaches the computation limitation.
Molecules with a nondominated reward vector on the Pareto front
are promising drug candidates with property desired.

3.2 Tree policy
The tree policy chooses the nodes to explore in the search pro-

cess grounds on the rewards of the nodes in selection stage. The
cumulative rewards rs of a state s are updated as:

rs ←
1

ns + 1
(ns × rs + ru)

where ru is reward of a new evaluation, and ns is the number of
visit times of state s.

Simply selecting the nodes with a high cumulative reward will
lose the balance between exploitation and exploration. The Upper
Confidence Bound (UCB) r̄s is used to control the balance:

r̄s =

(
rs;i +

√
ci ln
(
nparent

)
/ns

)d
i=1

where ci is exploration vs exploitation parameter for i-th compo-
nent of reward vector.

A vector is hard to sort due to its high dimension. An Upper-
bound U(s) Using hyper-volume (HV) indicator of rs with Pareto
front P is:

U(s) = V (r̄s) = HV (P ∪ {r̄s} ; z)

where z is the reference point of hyper-volume indicator.
U(s) provide a scalar evaluation of a node s. However, it keeps

a constant value if r̄s is dominated by any point in the Pareto front.
An approach to sort dominated point is called Pareto-rank.

This method can sort every point into different layers, like the
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Pareto front. Nodes in the same layer are nondominated by each
other. This option requires the maintenance of all nodes, which
is too computational cost. Instead, this research uses the distance
of point perspective projection to pareto front:

W(s) = U(s) − |r̄p
s − r̄s|2

The pseudocode of MOMolGen is illustrated:

Algorithm 1 The MOMolGen algorithm
MOMolGen
Input: computational limit
Output: search tree T , Pareto Front P.
Initialize T0 ← initial search tree, v0 ← root node, P← ∅
while within computational limit do
vs ← TreePolicy(v0)
ru ← DefaultPolicy(vs)
if ru is not dominated by any points in P then

Remove points dominated by ru in P
Add ru to P

end if
while vs is not root node do

rs ←
1

ns+1 (ns × rs + ru)
ns ← ns + 1
vs ← parent of vs

end while
end while
return T

TreePolicy(v)
while v is nonterminal do

if v is not a leaf node then
v = argmax

v′∈children of v
W(v′)

else
return a new child node of v

end if
end while
return v

DefaultPolicy v
extract a SMILES fragment S form path of v
while S is not terminal state do

RNN generate a new character and append to S
end while
return reward for a complete SMILES r.

4. Experiments
4.1 Dataset

Dataset for RNN training is from ZINC. ZINC is a free pub-
lic database for ligand discovery, including over twenty million
molecules in biologically relevant representations. This research
use about 250,000 ligand-like molecules represented in SMILES.

3D structure data of proteins for ligand generating is from the
protein data bank; this research used four proteins to validate
the molecular generation process. There are two kinases (cyclin-
dependent kinase 2 (CDK2)[24] and epidermal growth factor re-
ceptor erbB1 (EGFR)[25]) and two G protein-coupled receptors
(adenosine A2a receptor (AA2AR)[26] and beta-2 adrenergic re-
ceptor (ADRB2)[27]), details of proteins are listed in Table 1:

Table 1 Experiment environment

Protein PDB ID Actives Decoys
CDK2 1H00 474 27830
EGFR 2RGP 542 17924

AA2AR 3EML 482 31498
ADRB2 3NY8 231 14993

Vocabulary of SMILES are listed in Table2

Table 2 SMILES vocabulary

Catagory SMILES descripution
Atom C,c,o,O,N,F,n,S,s,Br,I,P
Bonds . - = # $ : / \

Functional group [C@@H], [O-], [C@H], [NH+], [C@], [nH] ,
[NH2+] , [C@@] , [N+] , [nH+] , [S@] , [N-] ,

[n-] , [OH+] , [NH-] , [P@@H] , [P@@] , [PH2] ,
[o+] , [CH2-] , [CH-] , [SH+] , [O+] ,
[S-], [S+] , [S@@+], [NH3+],[n+] ,

[S@@] ,[P@] , [P+] ,[PH] ,[s+] , [PH+] ,
Terminator \ n

4.2 RNN training
This research uses an RNN model as a generator of ligand.

RNN model is pre-trained and stays identical during the ligand
search process.

Parameter of RNN training:
• Algorithm: Adaptive Moment Estimation (Adam)
• Learning rate: 0.01
• Batch size: 256
• Epoch: 100

4.3 Evaluations
This research chooses the Docking score, logP, QED score, and

SAscore as evaluations for generated molecules.
The docking score evaluates the binding effect between

molecules and target protein. The lower the docking score is, the
better the molecule could combinate target protein. The reward
function of the docking score is:

rdocking = −
(dockingsocre − basescore) ∗ 0.1

1 + |(dockingsocre − basescore) ∗ 0.1|

where base score is different baseline for each protein, in this re-
search is 0.

LogP evaluates the lipophilicity of generated molecules, which
could estimate solubility, absorption, and membrane penetration.
Different target proteins have a variety of best logP values. There-
fore, the reward function of LogP is:

rlogP = max
{
1 − (a ∗ (logP − center value))2, 0

}
where center value is the best logP value for different target pro-
tein, in this research is 1.4. And a is constant parameter.

QED score evaluates the drug-likeness of generated molecules
from 0 to 1. The higher the number is, the molecule is more likely
to become a drug, the reward function of the QED score is:

rQED = QED score

SAscore evaluates the synthesis accessibility of generated
molecules from 1 to 10. The greater number of SAscores rep-
resents a more difficult synthesis. This research uses the SAscore
as a filter instead of the final evaluation. The threshold value of
the SAscore is < 3.5.
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5. Results
5.1 Molecule Generation

The exploration time of molecular generation against four tar-
get proteins is set to 120h. Approximately 35,000 molecules were
generated for each target protein. Figure 2 3 4 shows the density
distributions of Docking score, LogP, and QED score.

The docking score of generated molecules against four target
proteins has a normal distribution. However, some molecules
with a relatively high docking score are generated.

Distributions of logP of generated molecules concentrated in
the choice center value, most of the generated molecules have a
logP value in the range of -2 to 4.

A considerable number of molecules with a high QED score
are generated in the QED score. Four distributions of QED
score have a similar shape, the generative model shows portabil-
ity on different proteins. Table 3 shows the numbers of generated
molecules.

Table 3 Number of Generated Molecules

Protein Total
Docking score
< −10

logP Center value
±0.3

QED score
> 0.8

CDK2 36458 189 5166 9298
EGFR 50132 426 7159 11947

AA2AR 36506 496 5366 9536
ADRB2 35421 998 5058 8945

Fig. 2 Docking score of generated molecules

Fig. 3 LogP of generated molecules

The distribution of molecules in the reward space are illustrated
in Figure 6, points are represented with colors from blue to red in
the order of generation. Molecules generated in the early stage

Fig. 4 QED score of generated molecules

Fig. 5 Generated molecules for AA2AR

of generation are centralized in the center section. On the other
hand, molecules generated in the later generation stage show a
more widespread distribution in search space. The search tree
builds in the generation process directs the search to a new re-
gion.

Figure 5 shows generated molecules towards AA2AR,
molecule a is the first generated molecule, and molecules b, c,
and d are molecules on the Pareto front at the end of the search.
b is the molecule with the best docking score; however, the QED
score is relatively low. c and d are two molecules with a balance
performance on all evaluations.

5.2 Pareto Front Change
Projections of Pareto front change in the generation against

AA2AR on the 2D reward plane are shown in Figure 7,Figure 8,
and Figure 9. Pareto fronts on both the Docking-QED reward
plane and Docking-LogP reward plane show a gradual move to
the right-top during the search process, representing that MOMol-
Gen changes the search directions to the more well performance
branch in the Monto Carlo search tree.
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Fig. 6 Reward space of generated molecules

However, the Pareto front on the QED-LogP reward plane
reaches right-top in the early search stage, which shows QED and
logP are highly correlated to each other; multiple optimizations
on this pair of evaluations are unnecessary. The selection of ob-
jectives needs to be more prudent in future work. A mistake like
that is a waste of computational resources; moreover, it influences
the performance of other optimization.

Fig. 7 Pareto fronts of AA2AR on the Docking-logP plane in every 10
hours

6. Conclusion
This research has developed MOMolGen, an extendable

multiple-objective molecular generator model. MOMolGen is
verified on two groups of proteins; it generates molecules with
multiple desired pharmaceutical properties on test proteins. Com-
pared with single objective molecular generator models, which
neglect other pharmaceutical properties, MOMolGen has full
consideration for multiple properties needed by drug design.

This research has validated the MOMolGen in multiple opti-
mizations of docking score, QED score, and logP; however, the
validation of MOMolGen extensibility on other pharmaceutical
properties is needed.

Through this research have generated molecules with multiple

Fig. 8 Pareto fronts of AA2AR on the Docking-QED plane in every 10
hours

Fig. 9 Pareto fronts of AA2AR on the logP-QED plane in every 10 hours

desired properties, how to select drug candidates from these gen-
erated molecules is still challenging. Molecules on the Pareto
front are better than other molecules in some aspects, but there
lacks a method of comparison between these molecules. Fur-
thermore, if only molecules on the Pareto front are considered,
molecules distributed near the Pareto front in reward space are
ignored, which still have an outstanding evaluation.
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