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Abstract: Context recognition has attracted attention for various daily life applications. Many existing approaches
use micro-electromechanical systems (MEMS) sensors which require additional silicon chips to process and transmit
the sensor data. The energy consumption of such components is relatively large, requiring maintenance for charging
or replacing batteries. In this paper, we propose BAAS: a novel concept using Backscatter As A Sensor. BAAS rec-
ognizes contexts using a frequency shift backscatter tag with ultra-low power consumption. The key components of
the backscatter tag are an oscillator and a motion switch. The state of the motion switch changes according to the
movement of humans or the change of the situation of things. While the motion switch is on, the energy is supplied to
the oscillator, and the frequency of the backscattered signal shifts according to the oscillation frequency of the oscil-
lator. Context recognition is achieved by observing the existence and absence of the frequency shift. To demonstrate
the feasibility of context recognition using the backscatter tag, we have implemented a prototype and evaluated its
performance. Our results show that we can detect the frequency shift by BAAS within 3 m, backscattering BLE signal
from an exciter implemented by a commodity device.
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1. Introduction

Context recognition has attracted many researchers for various
daily life applications. For example, in elderly care, the detection
of leaving bed reduces the burden on caregivers [1]. The detection
of opening and closing doors and windows is useful for adaptive
control of air conditioning and intrusion detection [2]. Also, some
monitoring services are available by monitoring the use of things
such as electric pots and remote controllers [3].

Many existing approaches for context recognition use MEMS
sensors such as accelerometers and gyroscopes [4], [5]. How-
ever, they require further processes like analog-to-digital conver-
sion, modulation, and wireless data transmission, which consume
relatively large amounts of energy [6]. Therefore, batteries are
usually used to meet the energy requirement. To avoid the main-
tenance cost of the batteries, energy harvesting is widely used
combined with power saving. Such products are available on
the market *1. However, since the amount of harvested energy
is small, most approaches limit device capability such as opera-
tion frequency by duty cycling. This means devices with energy
harvesting are essentially not suitable for applications involving
high-frequency operations (e.g., activity recognition).

Another approach is to make wireless data transmission ultra-
low-power since it is the most energy-consuming process. Re-
cently, researchers have revealed the capability of backscatter
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communication using existing RF signals such as Wi-Fi, Blue-
tooth, LoRa, and TV [6], [7], [8] for IoT (Internet-of-Things) de-
vices. Backscatter is a communication technology consisting in
switching the reflection/absorption state of surrounding RF sig-
nals. As backscatter does not need to generate a carrier signal
on the tag, it can transmit data for context recognition with ultra-
low power (e.g., on the order of micro-watts [8]). Nevertheless, it
still requires the processing of sensor data, i.e., analog-to-digital
conversion and modulation by an A/D converter and a microcon-
troller. Implementing such digital components requires careful
hardware and software designs considering the energy consump-
tion of the whole system, which is complicated for many devel-
opers and researchers without deep knowledge of them. More-
over, additional components increase implementation cost, which
is not desirable to deploy sensors everywhere.

To address these challenges, we propose a context recogni-
tion platform named BAAS – Backscatter As A Sensor. BAAS
does not use backscatter to transmit sensor data but as a sensor.
The key component of BAAS is a frequency shift backscatter tag
which consists of an antenna, an RF switch, an oscillator, and
a motion switch. We note that it does not require a microcon-
troller. In contrast to existing backscatter communication, the tag
embeds the state of the motion switch into the frequency domain.
While the motion switch is on, the energy is supplied to the os-
cillator to make a frequency shift in the backscattered signal. The

The preliminary version of this paper was published at Multimedia
Communication and Distributed Processing System Workshop (DPSWS
2020), November 2020. The paper was recommended to be submit-
ted to Journal of Information Processing (JIP) by the chief examiner of
SIGDPS.

*1 https://www.enocean.com/en/technology/energy-harvesting/
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shifting frequency depends on the oscillation frequency. There-
fore, we leverage the oscillation frequency as the identification
of the tags as well as the frequency modulation. The state of
the motion switch changes according to the movement of humans
or the change of the situation of things. Context recognition is
achieved by observing the existence of this frequency shift and its
change over time. Contrary to many existing approaches for con-
text recognition, machine learning is not necessary because the
existence of the frequency shift directly corresponds to ON/OFF
of the motion switch which is related to the context. Furthermore,
if a pair of an oscillation frequency and its corresponding context
with the target person/object is known in advance, the target is
identified according to the shift frequency.

The oscillator used in our tag operates with μW level power
consumption *2. Therefore, a coin cell is enough for a lifetime
of several years as wristwatches. A permanent lifetime is further
expected by energy harvesting. However, to reduce the power
consumption of the oscillator, it is necessary to suppress the os-
cillation frequency to several hundred kHz. This means since
the channel bandwidth of Wi-Fi and Bluetooth is on the order of
MHz, the frequency shift of several kHz is not enough to avoid
the effect of the noise. To overcome the problem, BAAS employs
Interscatter [7] to emit a narrow-band carrier signal by Bluetooth
Low Energy (BLE). In this paper, we design the backscatter tag
with an evaluation of its fundamental performance.

Our contributions are summarized below.
• We designed a backscatter tag without a microcontroller and

proposed BAAS, a novel platform using backscatter as a sen-
sor for context recognition.

• The backscatter tag is ultra-low-power, which does not need
to limit the frequency of operation and communication for
power saving contrary to the existing methods. There-
fore, BAAS is also useful for applications involving high-
frequency operations (e.g., activity recognition).

• Context recognition using the backscatter tag does not re-
quire learning data collection since it does not rely on ma-
chine learning. Instead, we recognize pre-defined contexts
by observing the existence of the corresponding frequency
shifts. Since we do not rely on machine learning, BAAS is
robust to the environment change.

• We have implemented a prototype of the backscatter tag and
confirmed its feasibility for context recognition through per-
formance evaluation in a real environment with the demon-
stration of concept applications.

2. Related Work

2.1 Context Recognition by MEMS Sensors
The research community has explored a number of ways to

recognize context from wearable sensor data. The mainstream
of the context recognition is to use MEMS sensors such as an
accelerometer and a gyroscope with high accuracy and resolu-
tion [9]. However, they depend on devices such as smartwatches
which require frequent battery charge or replacement.

To solve the problem, there are many methods for low-power

*2 The oscillator of SiTime SiT1569 generates frequencies up to 462.5 kHz
with μW level power consumption.

context recognition using a barometric pressure sensor [10], low-
sampling rate acceleration [11], the amount of power generated
from human motions [12], and so on. They focus on the sensing
part without sending the sensed data while wireless data transmis-
sion is the most energy-consuming process. Therefore, we need
an integrated design from sensing to transmission.

2.2 Wi-Fi CSI
Recently, context recognition using Wi-Fi CSI (Channel State

Information) has been actively studied [13], [14], [15], [16] be-
cause it works by using commodity Wi-Fi devices. In Ref. [16],
the authors proposed two models for quantitatively correlating
CSI dynamics and human activities: a CSI-speed model that cor-
relates CSI dynamics with the movement speed and a CSI-activity
model that correlates the movement speed of different body parts
with a specific activity. FallDeFi [17] extracts the spectrogram
of CSI by Short Time Fourier Transform (STFT) combined with
noise filtering by PCA and DWT (Discrete Wavelet Transform)
for accurate fall detection. MultiSense [18] achieves the respi-
ration monitoring of multiple persons by Independent Compo-
nent Analysis (ICA) to separate the mixed signals. Widar3.0 [19]
recognizes gestures by extracting body-coordinate velocity pro-
files based on estimated body orientation to achieve cross-domain
recognition. Guo et al. [20] achieved individual identification and
workout assessment by using CSI autocorrelation and DNN. Wi-
Fi CSI is also capable of soil moisture sensing as presented in
Strobe [21] which exploits the relative Time of Flight (ToF) by
using multiple antennas.

However, most of the approaches require model training for
each target environment. Also, the separation of multiple targets
is essentially difficult, especially for multiple moving targets. On
the other hand, BAAS enhances Wi-Fi CSI sensing capability by
attaching a simple backscatter tag to the targets, which enables
target identification and the sensing of the target state coupled
with the motion switch. Specifically, BAAS can directly recog-
nize the target states without any learning process.

2.3 RFID
Another approach for maintenance-free context recognition is

passive RFID. Since RFID phase information is more reliable
than the Wi-Fi CSI, many approaches are based on fundamental
physics related to the wavelength, the distance, and the phase.
In this sense, context recognition by RFID is more accurate and
precise than Wi-Fi CSI. Another advantage of RFID tags is their
inherent ability to identify targets (i.e., attached parts, subjects, or
objects) by responding with its identification.

Super low-resolution accelerometers are proposed in Ref. [1],
which converts acceleration into the change of IDs reported from
a single RFID tag. To achieve real-time gesture recognition, EU-
IGR [22] proposed an LSTM-based sequence labeling classifier
that predicts gestures before its completion by using two tags at-
tached on each arm. RF-Kinect [23] recognizes 3D body move-
ment by attaching multiple tags on the subject’s body. It employs
phase difference between tags (PDT) to track the body movement,
which is robust to antenna orientation change. RF-Wear [24] rec-
ognizes body pose with tag arrays on each joint by observing the
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phase difference between the signals from the tags. RF-ECG [25]
estimates heart rate variability with a tag array attached on the
chest by separating chest movement due to respiration and heart-
beat. Interestingly, Tagtag [26] is a method for material sens-
ing using two tags on a container, leveraging material-dependent
phase change (i.e., antenna impedance changes). Also, soil mois-
ture sensing is possible by attaching two tags on each pot based
on signal change due to soil moisture [27].

Most of the above methods require the collection of training
data, which is dependent on the target environment. Compared
with RFID-based methods, BAAS can directly recognize pre-
defined contexts without any data collection for training. Also,
if future smart wireless devices have a capability of Software De-
fined Radio (SDR), we can directly use them with the addition of
the backscatter tags that can be easily developed by users.

2.4 Backscatter Communication
Various backscatter communication techniques have been pro-

posed following the pioneering concept of the ambient backscat-
ter [6]. Ambient backscatter achieves wireless communication
with ultra-low power by switching the antenna state between re-
flecting and absorbing RF signals existing in the environment
such as TV. However, the communication distance is still lim-
ited. On the other hand, Ref. [28] eliminates the self-interference
to extend the communication range. Reference [29] proposed
a method to increase the backscatter communication range and
speed by using multiple antennas. Also, Wi-Fi backscatter [8]
achieves a maximum communication speed of 1 kbps and a maxi-
mum communication range of 2.1 m. Passive Wi-Fi [30] achieves
a communication distance of 100 feet at a rate up to 11 Mbps by
controlling RF transmitted by the base station.

Such backscatter communication techniques are key enablers
for the spread of IoT devices combined with energy harvesting.
Nevertheless, it still requires sensor data processing by an A/D
converter and a microcontroller. Implementing such digital com-
ponents requires careful hardware and software designs, consid-
ering the whole system’s energy consumption, which is com-
plicated for many developers and researchers without in-depth
knowledge. Moreover, additional components increase imple-
mentation cost, which is not desirable for pervasive IoT devices.

2.5 Context Recognition Using Backscatter Sensors
The concept of leveraging backscatter as a sensor has re-

cently attracted researchers due to its low implementation cost
and battery-free or ultra-low-power operation.

In Printed Wi-Fi [31], a 3D printer is used to create an antenna
using a conductive material. Printed Wi-Fi generates the change
of the antenna impedance by turning a physical switch ON/OFF
according to various physical movements such as wind and wa-
ter flow. Hence, it switches between the two states of reflection
and absorption of the Wi-Fi signal, converting physical move-
ments into the RF signal change. Printed Wi-Fi is advantageous
in terms of energy since it does not require any power, generating
backscatter signals by rotating gears using forces such as wind
and water flow. However, it does not focus on context recogni-
tion, especially on human activities. This is challenging because

the frequency of the backscatter signals generated by human mo-
tions is similar to the RF signal change due to the human motions
themselves. Therefore, the backscatter signals are indistinguish-
able from the signal changes due to the human motions. Live-
Tag [32] is a chip-less touch interface that leverages printed res-
onators and antennas to make the signatures of touch events in the
Wi-Fi spectrum. The above approaches are completely battery-
free. However, the communication range is very limited, like up
to 1 m, and capturing the human motions is essentially difficult.

Some others add a small amount of energy (μW level) to
enhance backscatter sensors’ capability, assuming energy har-
vesting. Specifically, a small amount of energy enables fre-
quency shift, which can avoid interference with the carrier wave
frequency, extending the backscatter communication distance.
UbiquiTouch [33] is an ultra-low-power wireless touch interface
that embeds the information on a touch point in a frequency-
modulated bit sequence. Daskalakis et al. [34] presented soil
moisture sensing by generating a frequency shift in the backscat-
tered signal using a CSS555 timer. RF Bandaid [35] proposed
an RF sensing platform (RFSP) which consists of an energy har-
vester, an antenna, an oscillator, an RF switch, and a resistive or
capacitive sensor. The resistive or capacitive sensor changes its
resistance or capacitance according to its sensing target. For ex-
ample, the capabilities of temperature, force, and stress measure-
ments have been demonstrated in Ref. [35]. RF Bandaid employs
a micropower precision programmable oscillator (MPPO) from
Linear Technology LTC6906. This oscillator converts the resis-
tance or capacitance of the sensor to a specific frequency. The
RF switch changes its state according to the oscillator frequency,
resulting in the frequency shift in the backscattered signal.

BAAS also leverages a small amount of energy for the fre-
quency shift to extend the communication range. Moreover, the
frequency shift helps separate the backscattered signal from the
RF signal changes due to human motions. BAAS is also unique
in its analog design based on the motion switch, which is directly
coupled with the target context’s state.

3. System Overview

Figure 1 illustrates the system overview. An exciter emits RF
signal for backscatter tags attached to people and objects such as
shoes, doors, and chairs. A receiver then observes a frequency
spectrum to detect the existence of the tags and the state of the
motion switches which are coupled with corresponding contexts.
We assume devices with power supply or large batteries such as
smartphones, laptops, and Wi-Fi base stations as exciters and re-
ceivers. To use off-the-shelf devices as receivers, we need an

Fig. 1 System overview.
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additional device such as SDR and a spectrum analyzer. Some
products are available on the market such as Analog Devices
ADALM-PLUTO which costs 200 USD.

If the backscatter tag exists in the target environment with its
motion switch turned on, the frequency shift corresponding to the
frequency of the carrier signal fc appears in the backscattered sig-
nal. We assume a pair of the oscillation frequency fi of tagi and
the corresponding context ci of the tag is registered in a database.
The receiver detects peaks in the frequency spectrum and deter-
mines whether there is a frequency shift fi or not. If the peak at
fi is detected, we recognize the occurrence of ci.

4. System Design and Implementation

4.1 Design of Frequency Shift Backscatter Tag
Figure 2 shows a block diagram of the frequency shift

backscatter tag composed of an oscillator, an RF switch, an an-
tenna, a motion switch, and a battery (or an energy harvester).
The human movement or the state change of an object turns the
motion switch on and off. When the motion switch is on, current
flows in the circuit. Then, the RF switch connected to the antenna
turns on and off at the oscillator frequency of fi mounted on the
backscatter tag i. The impedance of the antenna is switched ac-
cording to the state of the RF switch, generating a frequency shift
of fi Hz in the backscattered signal. This is explained by basic
trigonometry:

2 sin fct sin fit = cos ( fc − fi) t − cos ( fc + fi) t. (1)

The above equation indicates that the product of two sinusoids
of frequencies fc, fi results in cosine waves of frequencies fc +

fi, fc − fi. We note that two frequency shifts fi and − fi are gener-
ated with respect to the carrier frequency fc. Context recognition
is achieved by observing the existence of either fi or − fi.

4.2 Frequency Shift Detection
To detect the frequency shift of the backscattered signal, we

obtain time-series of the signal power spectrum by STFT (Short-
time Fourier Transform). We then apply a moving average filter
both in the time and frequency domains for smoothing. The win-
dow sizes of the moving average filter in the time and frequency
domains are empirically set to 10 and 2, respectively. Figure 3
shows an example of the spectrum after smoothing. We set the
carrier frequency to 2,480 MHz and generated a frequency shift
of 500 kHz. We see that a peak due to the frequency shift occurs
at ±500 kHz while the peak at +500 kHz is buried in the carrier
signal envelope. Even in such a case, the proposed method is ro-
bust to noise because it is sufficient if one of the peaks at fc + fi
and fc − fi is detected.

Fig. 2 Block diagram of frequency shift backscatter tag.

The details of the peak detection are as below. We let the sig-
nal level at frequency f be P( f ). In the following, we explain the
detection of a peak of fc− fi. We note that the same applies to the
case of fc + fi. We define the noise floor Pf loor of the spectrum as
below.

Pf loor = P( fc − fi + α/2). (2)

Here, α is the width of the peak generated by the frequency shift.
We empirically set α to 6 kHz.

Figure 3 shows the height of the signal level ΔP( fc − fi) of the
shift frequency fc − fi from Pf loor. ΔP( fc − fi) is given as:

ΔP( fc − fi) = P( fc − fi) − Pf loor. (3)

If ΔP( fc − fi) exceeds the threshold T HP, the peak at fc − fi is
detected. If the peak of fc− fi is detected, we recognize the occur-
rence of the context ci associated with the backscatter tag i. How-
ever, some slight offset may occur due to the hardware imper-
fection (e.g., oscillation frequency offset). Therefore, we allow a
slight shift around the target shift frequency. For this purpose, we
introduce a window size fδ in the frequency. ΔP( fc− fi) is then de-
fined as the highest peak in the range of [ fc − fi − fδ, fc − fi + fδ].
ΔP( fc − fi) changes according to the relative positions between
the exciter, the backscatter tag, and the receiver. Therefore, we
investigate the factors on the value of T HP in Section 5.2.

4.3 Generating Carrier Signal by BLE
In Wi-Fi and Bluetooth used in many devices, a bandwidth of

several MHz to several tens of MHz is assigned to each channel.
For example, IEEE 802.11ax defines a channel width of 20 MHz
to 80 MHz according to the transfer rate. The channel width of
BLE is 2 MHz. To extend the range of the backscatter signal by
the backscatter tag, it is desirable to avoid interference with the
carrier signal transmitted from the exciter. This means it is desir-
able to send the carrier signal as narrow as possible. Therefore,
we use the method proposed in Interscatter [7] for narrow-band
carrier signal generation by BLE.

Figure 4 shows BLE channel assignment. BLE has 40 chan-
nels in the 2.4 GHz band with 2 MHz of the channel width. BLE

Fig. 3 Peak detection.

Fig. 4 BLE channel assignment.
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Fig. 5 Narrowband carrier generation by BLE.

uses GFSK (Gaussian Frequency-Shift Keying) for modulation.
In GFSK, the frequency shifts by ±250 kHz from the center fre-
quency of the channel correspond to the bits ‘1’ and ‘0’. The
three BLE channels, 37, 38, and 39, are called advertising chan-
nels and are used to establish a connection between devices. After
the connection is established, the remaining 37 data channels are
used for frequency hopping communication.

From the above BLE mechanism, Interscatter [7] generates a
narrow-band carrier signal by always sending ‘0’ s or ‘1’ s in a
single advertising channel. We employ the above technique to
generate the narrow-band carrier signal by BLE. For implemen-
tation, we used a BLE evaluation board LAUNCHXL-CC1352P-
2 from Texas Instruments. Figure 5 shows the spectrum of the
carrier signal generated on channel 39 whose center frequency is
2,480 MHz. The output power of the signal was set at 20 dBm,
which is the maximum of the board, and the carrier signal was
generated at a frequency shifted by 250 kHz in the negative direc-
tion by continuously sending ‘0’ s. We see a carrier signal with
a narrower bandwidth and a higher peak compared with a nor-
mal BLE signal. We also see the stronger signal in the frequency
band above the peak. This is due to a carrier signal shifted in the
negative direction from the center frequency of the BLE chan-
nel. As mentioned earlier, frequency shifts appear at positive and
negative sides centered at the carrier frequency. To avoid an in-
terference due to the carrier envelope, we observe the frequency
shift farther from the center frequency of the BLE channel.

We note that BLE allows a frequency offset up to ±75 kHz and
a frequency drift up to ±40 kHz in a single packet. Therefore, a
frequency shift on the order of kHz is insufficient for identifica-
tion. For this problem, one of the solutions is to detect the BLE
carrier frequency first and to see the frequency difference from
the detected BLE carrier frequency. However, in this paper, we
focus on the sensing aspect of our method and leave the detailed
design of identification of multiple tags for our future work. In
the following evaluation, we assume that we can correctly iden-
tify the backscatter tags.

5. Evaluation

5.1 Evaluation Environment
To evaluate the performance of the backscatter tag, we have

conducted experiments in a real environment. The software-
defined radio USRP B210 was used as a receiver. Since the carrier
signal generated by BLE has an envelope with a width of around
700 kHz, the oscillation frequency should be 350 kHz or more.
Therefore, we set the sampling rate of USRP to 1.2 MHz. Since

Fig. 6 Layout of multiple tags experiment.

Fig. 7 Spectrum in multiple tags experiment.

BLE has a packet transmission interval, the FFT window size was
set to 8,192, which is sufficiently larger than the BLE transmis-
sion interval. We used omnidirectional antennas with a gain of
2 dBi for the tag, the USRP, and the exciter. We generated the
carrier signal by BLE channel 39 (center frequency 2,480 MHz)
unless otherwise specified. In the experiment, instead of the os-
cillators, we used a signal generator Kuman FY6600 to easily
change the oscillation frequency. We used EVAL-ADG902EBZ
of Analog Devices as the RF switch and a CR2032 coin cell as a
power supply.

5.2 Detection of Multiple Tags
To confirm the performance of the frequency shift detection,

we deployed ten tags between the exciter and the receiver, as
shown in Fig. 6. We set the oscillation frequency of the tag clos-
est to the exciter to 410 kHz. We then increased the frequency of
the next tag in steps of 10 kHz. We continued to transmit the car-
rier signal and kept the motion switches on. We have calculated
the average power spectrum for 10 seconds.

The spectrum in Fig. 7 shows multiple peaks around the shift
frequencies. This means we can identify different tags by associ-
ated frequencies. However, as we mentioned in Section 4.3, we
do not consider the influence of the BLE carrier frequency offset
and drift in this paper. Figure 8 shows the recall and precision
of the peak detection for tags placed at each distance. We note
that the distance between the exciter and the receiver is 2.2 m.
The quality of the signal observed at the receiver depends on
the exciter-tag distance, the tag-receiver distance, and the exciter-
receiver distance. Therefore, recall and precision do not always
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Fig. 8 Recall and precision (Inter-tag distance = 20 cm).

Fig. 9 CDF of the signal level at shift frequency.

Fig. 10 Layout of single tag experiment.

decrease as the distance from the exciter increases. Since preci-
sion is almost 1 in most cases, we rarely find false positives. We
also see a decrease of recall at 1 m and 1.6 m. When the obser-
vation of the frequency shift is difficult, false negatives increase,
leading to a decrease of recall. The cause of the decrease of re-
call is fading since it is not linear to the distance and specific to
1 m and 1.6 m. The peak detection threshold T HP = 2 achieves
higher recall than T HP = 3.

For detailed analysis, Fig. 9 shows the cumulative frequency
distribution (CDF) of peak levels at the shift frequencies by the
tags with low recall and/or precision. The farther the CDFs of
the two curves are, the higher the peak detection performance is.
From the result in Fig. 9, we see that a larger T HP increases the
false negative rate, while a smaller T HP increases the false posi-
tive rate, which is a trade-off. From the above results, T HP = 2 is
used in the following evaluation.

5.3 Sensing Range
To confirm the effect of the placement of the exciter, the re-

ceiver, and the tag, we conducted an experiment as shown in
Fig. 10. The distance between the exciter and the receiver was

Fig. 11 Result of single tag experiment.

Fig. 12 Layout of Wi-Fi interference experiment.

Fig. 13 Effect of Wi-Fi communication.

fixed at 1.5 m. We then placed the tag at different positions on
the perpendicular bisector of the segment connecting the exciter
and the receiver. Figure 11 shows that the recall was more than
0.9 when the distance is shorter than 3 m. On the other hand,
when the tag is placed farther than 3.5 m, the recall is less than
0.5. This is because the carrier signal from the exciter and the
backscattered signal from the tag attenuated with the distance in-
crease. When the distance is 3 m, the distance between the tag
and the exciter/receiver is approximately 3 m. The above results
indicate that we can recognize the context of the tag when both
of the exciter-tag and tag-receiver distance are within 3 m.

5.4 Wi-Fi Interference
To investigate the performance under interference by Wi-Fi

communication, we placed a Wi-Fi device and an access point,
as shown in Fig. 12. We set the Wi-Fi communication channel
to 4 (center frequency 2,427 MHz), which overlaps with the peak
frequency generated by the backscatter tag. Intermittent Wi-Fi
traffic was generated by continuously transmitting UDP packets
from the Wi-Fi device. The exciter’s carrier signal was set to the
BLE channel 38 with the center frequency of 2,426 MHz. Fig-
ure 13 (a) shows the time series of the signal level at the shift
frequency. We started OFDM transmission at 6 seconds. We
clearly see that the peak level at the shift frequency decreases
during Wi-Fi transmission. The result indicates the difficulty of
peak detection under Wi-Fi interference.

However, typical applications do not always transmit the pack-
ets. Figure 13 (b) shows the signal level at 2,411.7 MHz in the
Wi-Fi channel when watching a YouTube live. The traffic shows
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Fig. 14 Shadowing effect experiment.

Fig. 15 Shadowing effect on recall and precision.

Table 1 Energy consumption of backscatter tag.

Component Energy consumption [μA]
RF switch 1.0
Oscillator 10.0
Total 11.0

bursts of transmissions with intervals. We can still observe the
frequency shift by the backscatter tag during the intervals of the
bursty traffic. For example, even in the presence of Wi-Fi traf-
fic, the frequency shift can be observed once every few seconds,
which is still applicable to some applications. It is also possible
to apply the RTS/CTS mechanism to reserve time slots for the
monitoring of the frequency shift.

5.5 Effect of Shadowing
We evaluated the shadowing effect due to the human body. As

shown in Fig. 14 (a), the distance between the exciter and the
receiver was fixed at 2 m, and the tag was placed at the mid-
point. Then, a person stood at 6 positions shown by black dots
in Fig. 14 (a) on the line-of-sight. Figure 14 (b) shows the snap-
shot of the experiment.

The result is shown in Fig. 15. When the person stood at p3
(10 cm from the tag) and p6 (10 cm from the exciter), the recall
is less than 0.7. On the other hand, the recall exceeds 0.9 at the
other positions. Compared with the other positions, at p3 and
p6, the carrier signal and the backscattered signal are blocked by
the human body immediately after transmission from the exciter
and the tag. On the other hand, at the other positions, even if the
line-of-sight is blocked, the carrier signal and the backscattered
signal reach the tag and the receiver due to the diffraction and the
reflection by surrounding objects such as walls and desks. For
this reason, the shadowing effect is large if the signal is blocked
immediately after the transmission or the backscatter.

5.6 Energy Consumption
Table 1 shows the estimated energy consumption of the

backscatter tag calculated from the data sheets of each com-
ponent. For the oscillator, we refer to a low-power oscilla-
tor SiT1569. Since the energy consumption is μW-order, the
backscatter tag is expected to continue working for more than 2

Table 2 Energy consumption of backscatter communication
(MSP430F2013).

Transmission rate Energy consumption [μA]
1 kbps 23.17
2 kbps 34.28
3 kbps 39.83

Fig. 16 Seating sensor.

years without any sleep mode approximately with a CR2032 coin
cell (225 mAh). Furthermore, the backscatter tag is supposed to
work forever with energy harvesting.

For comparison, we measured the energy consumption of
backscatter communication using a low-power microcontroller
MSP430F2013. In the comparison, we ignore the energy con-
sumption of MEMS sensors since they are typically on the or-
der of micro watts *3. In our implementation, the microcontroller
switches the state of its pin according to a configured transmission
rate, assuming the state of the pin indicates either a reflective or
absorptive state of the antenna. We assumed FM0 coding accord-
ing to the original implementation of ambient backscatter [6]. We
note that the microcontroller goes back to the sleep mode after
waking up to switch the pin state for saving energy consumption
as much as possible.

Table 2 lists the energy consumption of backscatter commu-
nication for different transmission rates. It is clear that higher
transmission rates require more energy because of the frequent
wake-ups of the microcontroller. According to Ref. [36], typical
activity recognition using a 3-axis accelerometer needs a sam-
pling rate higher than 25 Hz. If we assume a float data type (4
bytes) for acceleration samples, the data generation rate is ap-
proximately 2.4 kbps. This means backscatter communication re-
quires 34–39 μA to transmit the measured data. Therefore, the
energy consumption of the backscatter tag is less than half of
backscatter communication. We also note that the energy con-
sumption of the backscatter tag can be further reduced according
to the state of the motion switch.

5.7 Concept Applications
5.7.1 Seating Sensor

As one of the concept applications, we have implemented a
seating sensor as shown in Fig. 16 (a). When seated, the motion
switch (see Fig. 16 (b)) is turned on, and the frequency shift ap-
pears in the backscattered signal.

We deployed an exciter and a receiver as shown in Fig. 17. The
tag is placed on the back of the chair, and the exciter is placed in a

*3 For example, an ultra low power accelerometer Analog Devices
ADXL362 consumes 3.6 μW in the active mode according to the data
sheet.

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Fig. 17 Layout of seating sensor experiment.

Fig. 18 Recall and precision of seating sensor.

position that assumes a router. The distance between the tag and
the exciter is 1.4 m. Assuming that the receiver is a smartphone,
data was acquired in three positions: left chest pocket, right pants
pocket, and desk (180◦ direction). To evaluate the influence of the
human body sitting on the chair, the person sat at different chair
angles as shown in Fig. 17 and acquired data in 30◦ increments
from 0◦ to 180◦.

Figure 18 shows the evaluation results. When the receiver was
in the pants pocket, the recall was about 0.8 at all angles. This is
mainly because the position of the pants pocket was close to the
tag. On the other hand, when the receiver was in the chest pocket,
the recall was less than 0.8 except for the angle of 180◦. This is
because the backscattered signal was blocked by the human body
between the tag and the receiver. For the angle of 180◦, the re-
call exceeded 0.8 because the shadowing effect was small due to
the position relation between the receiver, the tag, and the body.
When the receiver was placed on the desk, the recall was more
than 0.9 at angles less than 120◦. In contrast, the recall decreased
at 150◦ and 180◦. This is because the body between the receiver
and the tag blocked the backscattered signal as in the case of the
chest pocket. From the above results, we found that the place-
ment of the tag and the receiver should be carefully designed to
avoid the shadowing due to the human body.
5.7.2 Pedometer

We implemented a pedometer as shown in Fig. 19 (a). A low-
power oscillator SiT1569 was used with the oscillation frequency
of 393 kHz. Figure 19 (b) shows the motion switch. The mo-

Fig. 19 Pedometer.

Fig. 20 Pedometer experiment.

tion switch is turned on when the foot lands on the floor while
it is turned off when the foot leaves the floor. Therefore, the ex-
istence/absence of the frequency shift indicates the states of the
foot landing/leaving. In some cases, false negatives of the fre-
quency shift can occur owing to moving out of sensing range and
shadowing. The effect of such false negatives can be mitigated
by applying a simple filter based on motion periodicity. We leave
further investigation on such application-specific designs out of
scope of this paper.

Figure 20 (a) shows the experiment layout to see the perfor-
mance of the pedometer. We placed the exciter and the receiver
on two desks 1.5 meters apart. A person put the pedometer slipper
on the left foot and stood on the 15 positions shown in Fig. 20 (a).
The person faced to the left side or the other side in Fig. 20 (a).
Figure 20 (b) shows the snapshot of the experiment.

Figure 20 (a) also shows the results of the peak detection at
each position for each direction. In the figure, arrows indicate
the direction of the person. The colors of the arrows also indi-
cate success or failure in the peak detection. We see that the peak
detection fails at 3 positions far from the receiver. This result is
consistent with the result in Section 5.3, considering the height
from the foot to the antenna on the desk. We also found that the
shadowing effect due to the leg is limited because it is smaller
than the body.

6. Conclusion

In this paper, we proposed BAAS, a novel platform for wire-
less context sensing. We designed and evaluated the frequency
shift backscatter tag to achieve context recognition with ultra-low
power consumption. Unlike conventional backscatter for commu-
nication purposes, BAAS uses backscatter as a sensor to recog-
nize context. As a result of the performance evaluation, we found
that we can recognize the context by the tag if the exciter-tag and
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the tag-receiver distance are within 3 m. For future work, we are
planning to design a method to identify multiple tags considering
the BLE frequency offset and drift. We also plan to develop a
backscatter tag combined with energy harvesting to demonstrate
ever-lasting sensors for context recognition. Another future work
is to analyze the backscattered signal according to its movement
for detailed motion sensing.
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Editor’s Recommendation
This paper shows a design and implementation of a context

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

recognition system that utilized backscatter as a sensor. The pro-
posed method is simple, but highly useful, as it can be easily ap-
plied to different environments. In addition, it was evaluated with
various types of situation recognition as the actual system, which
is a promising result for future industrial applications. Thus it is
selected as a recommended paper.
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