
Parallel Calculation of Local Scores in
Bayesian Network Structure Learning using FPGA

RyotaMiyagi1,a) Hideki Takase2,b)

Abstract: A Bayesian network (BN) is a directed acyclic graph that represents the relationships among variables in
datasets. Because learning an optimal BN structure is generally NP-hard, scalability is typically limited depending on
the amount of available memory. This study proposes a novel scalable method for learning an optimal BN structure us-
ing a field-programmable gate array (FPGA). To reduce the amount of required memory, the approach limits the size of
the parent set to calculate local scores and does not store the results. Therefore, the proposed method has an advantage
over previous dynamic programming algorithms in terms of memory efficiency because these existing algorithms store
all exponentially sized local scores. Furthermore, we propose an accelerator for local scores calculation by iteratively
processing elements in parallel. When it was evaluated with a 30-variable BN, the accelerator calculated local scores
up to 230 times faster than the single-core implementation, and its performance improved drastically with increasing
FPGA resources. Moreover, structure learning with the accelerator was performed up to 3.5 times faster than structure
learning with the single-core implementation.

Keywords: FPGA, Bayesian networks, reconfigurable computing, high-level synthesis, codesign, big data

1. Introduction
Artificial intelligence technology, including machine learning,

has become one of the most active academic fields in recent years.
Currently, innumerous devices worldwide are connected to the In-
ternet, and a large amount of data is collected from them. There
is a need to accurately and efficiently analyze and utilize these big
data. A Bayesian network (BN) is a probabilistic graphical model
that encodes conditional independence relations among random
variables using a directed acyclic graph (DAG). A BN visualizes
the relationships among random variables and efficiently infers
the posterior distribution of variables from the given evidence.

Learning the optimal structure of a BN can be formulated as
a combinatorial optimization problem that maximizes a scoring
function that evaluates how well the candidate BNs represent the
relationships between events. However, because this problem is
NP-hard [1], the number of BN variables is limited in terms of
space complexity, and learning the structure of a BN is time con-
suming. Dynamic programming algorithms have been developed
to learn the provably optimal structure of a BN [2], [3], [4]. In
these methods, local scores defined by each substructure are cal-
culated in advance and stored in memory to eliminate redundant
calculations. However, owing to the significant number of local
scores, previous algorithms required considerable memory space.

This study proposes a scalable parallel calculation method of
local scores in BN structure learning using FPGA. Our method
does not store a vast number of local scores to reduce the amount
of required memory. We further calculate local scores in parallel

1 Kyoto University, Sakyo, Kyoto 606–8501, Japan
2 University of Tokyo, Bunkyo, Tokyo 113–8654, Japan
a) miyagi.ryota.86s@st.kyoto-u.ac.jp
b) takasehideki@hal.ipc.i.u-tokyo.ac.jp

using FPGA. This method promises to increase the scalability as
the FPGA resources increase.

The remainder of this paper is organized as follows. In Sec. 2,
as preliminaries, we describe BN and related works on learn-
ing the optimal structure of a BN as preliminaries. Sec. 3 in-
troduces the structure learning and parallel calculation of local
scores using the proposed method. Sec. 4 provides a detailed
overview of the system and architecture of the FPGA accelera-
tor. In Sec. 5, we describe the evaluation of the proposed method.
Finally, Sec. 6 concludes the paper and discusses future works.

2. Preliminaries
2.1 Bayesian network

BN, which was proposed in 1985 by Judea [7], is a probabilis-
tic graphical model that encodes conditional independence rela-
tions among random variables using DAG. It visualizes the rela-
tionships among random variables and efficiently infers the poste-
rior distribution of variables from the given evidence. Therefore,
BN has various applications in various fields, such as medical
diagnosis, genetic phylogenetic analysis, speech recognition, fi-
nance, and gene sequence analysis.

There is significant interest in learning BNs from data. The log
marginal likelihood with Dirichlet priors over the BN parameters
is commonly used to quantitatively evaluate how well the DAG
structure of the BN candidate encodes the conditional indepen-
dence relations among events in the dataset. Let G be the DAG
structure of the BN, and D be the observed data. Then, the log
marginal likelihood score of the BN is written in the following
form:

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 69

log P(G|D)

=

n∑
i=0

 qi∑
j=1

log
Γ(αi j)

Γ(αi j + Nik)
+

ri∑
k=1

log
Γ(αi jk + Ni jk)
Γ(αi jk)

 (1)

where

αi j =

ri∑
k=1

αi jk, Ni j =

ri∑
k=1

Ni jk (2)

where n is the number of variables in BN, qi is the number
of combinations of the ith variable’s parent variable values, ri is
the number of ith variable values, and Ni jk is the number of data
whose ith variable is k. The ith variable’s parent variable is the jth
combination and αi jk is the hyperparameter of the Dirichlet prior,
which represents the prior knowledge corresponding to Ni jk.

These scores can be re-written as follows.

log P(G|D) =
n∑

i=0

LocalS core(vi, Pa(vi),D) (3)

where Pa(vi) represents the parent variable set of vi in G. In
other words, the score of the whole graph is decomposed into
local scores defined by each variable vi and its parent variables
Pa(vi). In general, local scores are calculated in advance, which
simplifies the evaluation of DAG candidates. However, it is not
easy to calculate and store all local scores because their number
is O(n2n). Many parent variables are rarely chosen as a single
variable. In some cases, the number of parent variables can be
guaranteed to be less than a specific value by mathematical anal-
ysis of the scoring function [5]. For these reasons, it is expedient
to limit the number of parent variables. However, even if the num-
ber of parent variables is limited, the calculation of local scores
still takes a long time.

LocalS core(x2, {x1, x4}) (4)

= logΓ(N00∗0 + 1) + log Γ(N01∗0 + 1) − logΓ(N0∗∗0 + 2)

+ logΓ(N00∗1 + 1) + log Γ(N01∗1 + 1) − logΓ(N0∗∗1 + 2)

+ logΓ(N00∗2 + 1) + log Γ(N01∗2 + 1) − logΓ(N0∗∗2 + 2)

+ logΓ(N10∗0 + 1) + log Γ(N11∗0 + 1) − logΓ(N1∗∗0 + 2)

+ logΓ(N10∗1 + 1) + log Γ(N11∗1 + 1) − logΓ(N1∗∗1 + 2)

+ logΓ(N10∗2 + 1) + log Γ(N11∗2 + 1) − logΓ(N1∗∗2 + 2)

Eq. (4) shows an example of a local score. Assume a uni-
form distribution (∀i,∀ j,∀k αi jk = 1) as the non-informative
prior. This log marginal likelihood score was used as the K2
score [6]. There are four variables: x1, x2, x3, andx4. x1 and
x2 are assumed to be binary in {0, 1}; x3 and x4 are assumed
to be ternary in {0, 1, 2}. Because the parent variable set is
{x1andx4}, there are six combinations of parent variable val-
ues: (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2). Here, Np1 p2 p3 p4 rep-
resents the number of data in D for which x1 = p1, x2 = p2,
x3 = p3 and x4 = p4. pi = ∗ represents a wildcard (i.e.,
N00∗0 = N0000 + N0010 + N0020).

Thus, the calculation of local scores depends on the number of
data points corresponding to each combination of parent variable
values. Other log marginal likelihood scores, such as BDe(u), can
be calculated similarly.

2.2 Related Work
The value of LocalS core(vi, Pa(vi),D) can be calculated using

the contingency table of D for the set of variables {vi} ⊔ Pa(vi).
Sillader et al. [2] start by calculating the contingency table for
all the variables and then recursively calculate contingency tables
for smaller variable subsets by marginalizing a variable out of
them. Once a contingency table is obtained, local scores can be
calculated regardless of the size of the large dataset. However,
it is difficult to limit the number of parent variables because the
smaller set contingency table is obtained from the larger set con-
tingency table. As a result, the calculation takes a long time.

BFBnB [4] uses a data structure called AD-Tree [8] to calcu-
late local scores, exploiting the fact that the number of parent
variables is guaranteed to be at most log(2N

logN) by mathemati-
cal analysis of MDL scores. AD-Tree is a method for collecting
count statistics from a dataset using an unbalanced tree structure.
It can be constructed memory-efficiently and quickly for sparse
data. However, this method requires memory space to store the
local scores calculated in advance. Therefore, the local scores are
written to the disk and read as needed.

An optimal BN structure learning method using integer pro-
gramming has also been proposed [9], [10]. In this method, the
number of candidate BNs is drastically reduced by the directed
graph constraint, the constraint on the number of parent variables,
and the cutting planes with acyclicity constraints. As a result, the
method successfully finds the optimal structure of a BN with a
maximum of 60 variables and a parent variable limit of three or
less. However, if good cutting planes cannot be found, the num-
ber of candidate BNs cannot be reduced significantly; hence, the
calculation may be time consuming.

We have already proposed an FPGA-based BN structure learn-
ing accelerator [11]. In this method, multiple processing modules
for calculating sub problems are placed on the FPGA and used
in parallel. However, it consumes a large amount of FPGA re-
sources because a large number of sub problem solutions and the
dataset are stored on the FPGA. As a result, the upper limit for
the number of BN variables and dataset size are 10 and 1000 re-
spectively.

3. Algorithm of Structure Learning
This section describes the algorithms for structure learning and

the parallel calculation of the local scores used in the proposed
method.

3.1 Dynamic Programming
The optimal BN structure was constructed using the local

scores. All provably optimal DAG structures of variables can be
determined by recursively adding a leaf variable to the optimal
DAG structure of a subset of variables while selecting the opti-
mal parent variables. We define the best graph score BGS (V) as
the score of the optimal DAG structure of the variable set V . The
best parent score BPS (xi,V) is the maximum local score when
choosing the parent variables of variable xi from the variable set
V . Subsequently, optimal structure learning by dynamic program-
ming can be divided into three steps as follows:

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 70

Φ

{x1} {x2} {x3} {x4}

{x1,x2} {x1,x3} {x1,x4} {x2,x3} {x2,x4} {x3,x4}

{x1,x2,x3} {x1,x2,x4} {x1,x3,x4} {x2,x3,x4}

{x1,x2,x3,x4}

Φ

{x2} {x3} {x4}

{x2,x3} {x2,x4} {x3,x4}

{x2,x3,x4}

Φ

{x1} {x3} {x4}

{x1,x3} {x1,x4} {x3,x4}

{x1,x3,x4}

Φ

{x1} {x2} {x4}

{x1,x2} {x1,x4} {x2,x4}

{x1,x2,x4}

Φ

{x1} {x2} {x3}

{x1,x2} {x1,x3} {x2,x3}

{x1,x2,x3}

Parent Graph

Order Graph

x1 x2 x3 x4

Fig. 1 Parent graph and order graph (n=4)

(1) Calculate n2n−1 LocalS core(xi,V).

(2) Calculate n2n−1 BPS (xi,V) recursively.

BPS (xi,V) = max

 LocalS core(xi,V)
maxx j∈V BPS (xi,V\{x j})

(5)

(3) Calculate 2n BGS(V) recursively.

BGS (V) = max
xi∈V

(BGS (V\{xi}) + BPS (xi,V\{xi})) (6)

This formulation enables us to achieve optimal structural learn-
ing without redundant calculations. Notably, localscore(xi,V)
is used only once in the calculation of BPS (xi,V), as shown in
Eq. (5).

The dependences of the best parent score and best graph score
are called the parent graph and the order graph respectively. Fig. 1
shows the parent and order graphs for n = 4. Each node has
a set of variables V that correspond to BPS (xi,V) and BPG(V)
respectively. There are n parent graphs, each of which is an (n-
1)-dimensional hypercube with 2n−1 nodes. The order graph is an
n-dimensional hypercube with 2n−1 nodes.

Both graphs can be divided into layers according to the variable
set V size, and each node depends only on the previous layer.
Therefore, by expanding the parent and order graphs layer by
layer, except for the calculation of local scores, the maximum
amount of memory used during the calculation can be reduced
from O(n2n) to O(nnC n

2
). BFBnB uses this technique to reduce

the amount of memory used at a time [4]. Notably, to expand the
mth layer of the parent graphs, we need {localscore(x,V) | |V | =
m}.

3.2 Calculation of Local Scores
Algorithm 1 shows the pseudocode used to calculate the lo-

cal score of the log marginal likelihood score shown in Eq. (1).
The count-up, calc-term, and add-term phases are iterated for all
combinations of the parent variable values. In the count-up phase,
the number of data corresponding to a particular combination of
parent variable values is counted. In the calc-term phase, one
term of the local score is calculated using the values counted in

Algorithm 1 CalcLocalS core(vi,V,D[N])
lsi ← 0
for j, · · · ,Numo fCombinations(V) do

for k = 1, · · · , ri do
Ni j[k]← 0

end for

/* count-up phase */
for all d ∈ D do

for k = 1, · · · , ri do
if d matches vi = k ∧ V = j then

Ni j[k] += 1
end if

end for
end for

/* calc-term phase */
Ni j ← 0
αi j ← 0
lsi j ← 0
for k = 1, · · · , ri do

Ni j += Ni j[k]
αi j += αi jk

lsi j += logΓ(αi jk + Ni j[k]) − logΓ(αi jk)
end for
lsi j ∗= (logΓ(αi j) − logΓ(αi j + Ni j))

/* add-term phase */
lsi += lsi j

end for
return lsi

the count-up phase. In the add-term phase, the terms calculated
in the calc-term phase are added to the partial sum of the local
scores.

As the pseudocode shows, the calculation of different local
scores is not dependent on each other. Thus, we can calculate
the local scores in parallel. However, each parallel calculation
requires a dataset D, which may be very large. Therefore, it is
difficult to store a dataset for each parallel calculation.

Subsequently, the dataset is stored in one place and streamed to
each parallel calculation module at the appropriate time. As a re-

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 71

PCIe

Host FPGA

...

...

calc-term module

query:0

local_score:0

count_cache:0
query:1 query:P-1

count_cache:1 count_cache:P-1

local_score:1 local_score:P-1

Data[N]

Global Memory

Query[chunk][P] Answer[chunk][P]

Host Memory

count-up

calc-term

add-term ls_term:0 ls_term:1 ls_term:P-1

(1)

(2-a)

(2-b)

(2-b)

(2-c)

(3)

Fig. 2 Overview of the system and the architecture of the parallel calculation module

sult, a high degree of parallelism can be extracted with very few
memory resources. FPGAs are ideal devices for such dataflow
calculations.

3.3 Strategy of the Proposed Algorithm
First, we expand the parent graphs and order graph layer-by-

layer as in BFBnB, which reduces the maximum size of memory
required in the computation from O(n2n) to O(nnC n

2
).

Second, we calculate the local scores as needed and do not
store their results. On the contrary, previous dynamic program-
ming algorithms calculate large local scores in advance and store
them until they are used, even if they are used only once. Thus,
the proposed method has an advantage over previous dynamic
programming algorithms in terms of memory efficiency.

Finally, we use an FPGA to calculate the local scores in paral-
lel. Notably, we do not store a dataset for each parallel calculation
module. Instead, as we mentioned earlier, we store the dataset in
one place and stream it to each parallel calculation module at the
appropriate time. As a result, a high degree of parallelism can be
extracted with very few memory resources.

4. Architecture
4.1 Overview

Fig. 2 shows the overview and architecture of the proposed ac-
celerator. The accelerator is connected to the host PC via the PCI
Express interface, on the FPGA board. It is implemented on the
FPGA as an OpenCL kernel.

The FPGA accelerator consists of a global memory and an
FPGA. We allocate a data, query, and answer regions in the global
memory. The data region stores the dataset D; the query region
stores an array of local score argument pairs (x,V), and the an-
swer region stores an array of calculated localscore(x,V,D). The

FPGA contains P count-up, calc-term, and P add-term modules.
The count-up and add-term modules are placed side by side, and
the calc-term module is pipelined. The accelerator calculates the
P local scores in parallel.

The accelerator streams the dataset from the global memory
and does not store it in the FPGA. Therefore, this architecture
can be applied to a large dataset of several GB sizes.

4.2 Calculation Flow
First, at the beginning of structure learning, the dataset is trans-

ferred from the host PC to the data region of the global memory.
When expanding each layer of the parent and order graphs, the
host PC lists the necessary local scores and transfers the argu-
ment array of those local scores to the query region of the global
memory.

The accelerator works as follows:

(1) Initialize phase Burst transfer arguments of each local
score from the query region to each count-up module. Each
count-up module identifies the target data pattern using this
argument.

(2) Running phase Iterate the following three phases for all
combinations of parent variable values.

(2-a) Count-up phase Stream dataset from the data region
to each count-up module, which counts the number
of data corresponding to the target combination of
parent variable values in parallel.

(2-b) Calc-term phase Calculate a term of each local
score in the calc-term pipeline using the number
counted in each count-up module.

(2-c) Add-term phase Add each term calculated in the
calc-term pipeline to each partial sum.

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 72

(3) Terminate phase Burst transfer all local scores to the an-
swer region.

Thus, the accelerator calculates P local scores at a time.
If there are more than P queries, the accelerator iterates until

all of them are calculated. Subsequently, the accelerator transfers
all local scores from the answer region of the global memory to
the host PC.

Finally, the host PC expands the parent and order graphs us-
ing the local scores and calculates the next layer. If the number
of parent variables is limited to m or less, the host PC expands
the parent and order graphs to m + 1 or more layers without local
scores.

4.3 Calculate Log-Gamma Function
In the calc-term phase, we need the value of the logarithm of

the gamma function of a given value. The lanczos approximation
is a method for numerically calculating the gamma function [12].
It approximates the gamma function with high accuracy. In addi-
tion, it can be calculated using only the constants and elementary
functions. Therefore, the lanczos approximation is ideal for cal-
culating the gamma function on an FPGA. The implementation
uses the single-precision floating-point log function of the Xilinx
Vitis high-level synthesis (HLS) math library.

The floating-point log-gamma function consumes many DSP
resources in the FPGA. Therefore, it is impossible to place many
log-gamma modules, such as the count-up and add-term modules,
in the system. Thus, we pipelined the log-gamma module to save
the DSP resources.

4.4 Approximate Calculation Time
When calculating local scores with many parent variables, the

running phase takes up most of the total calculation time. Let the
size of all datasets be N, and let the number of count-up modules
be P. Because the size of the dataset is N, the count-up phase re-
quires N clocks. Because the calc-term module is pipelined, the
calc-term phase takes P + c1 clocks, where c1 is constant. The
add-term phase takes a constant c2 clock. The accelerator calcu-
lates P local scores at a time. Thus, the number of clocks required
to calculate a local score is proportional to N+P+c1+c2

P ∼ N
P + 1. As

a result, parallelism does not contribute significantly to accelera-
tion when N and P are close in value. Conversely, if N is suffi-
ciently larger than P, the acceleration is expected to be close to
P.

Table 1 Result of logic synthesis (P=1024)

Resource LUT LUTRAM FF BRAM DSP
kernel 324129 16861 441186 213 490
Available 870016 402016 1740032 1344 5940
Utilization(%) 37.26 4.19 25.36 15.85 8.25

Table 2 Result of logic synthesis (P=2048)

Resource LUT LUTRAM FF BRAM DSP
kernel 476544 12417 656236 200 490
Available 870016 402016 1740032 1344 5940
Utilization(%) 54.77 3.02 37.71 14.88 8.25

5. Evaluation
We prepared two accelerators with parallelism P of 1024 and

2048 and compared three implementations: a single-core soft-
ware execution (SW), single-core software execution using an
FPGA accelerator with parallelism 1024 (HW (P = 1024)), and
single-core software execution using an accelerator with paral-
lelism 2048 (HW (P = 2048)).

For the evaluation, we employed Xilinx Alveo U50 [13], which
is an FPGA board used for data center accelerators. We used Vi-
tis 2020.2 to design the entire system, including the host appli-
cation and accelerator. The host PC employs Intel Xeon W-2265
(3.5GHz 12-core/24-thread processor), 64 gigabytes of memory
and runs on Ubuntu version 18.04. We designed the accelerator
in C++ and applied high-level synthesis to generate RTL circuit
descriptions. We used the K2 score, which is a log marginal like-
lihood score.

5.1 Synthesis Results
High-level synthesis and logic synthesis were performed using

the Vitis 2020.2 toolchain. Table 1 and 2 show the resource uti-
lization of HW (P = 1024) and HW (P = 2048), respectively. The
operating frequencies of both were 300 MHz.

The accelerator does not use many BRAMs because it does
not store the dataset on the FPGA. In addition, it does not use
much DSP because the log-gamma module is implemented as a
pipeline. However, it uses many LUTs to transfer data to each
module. Thus, the amount of LUT resources determines the up-
per limit of parallelism.

Table 3 Comparison of local scores calculation time on SW/HW [s]

N m SW HW(P=1024) HW(P=2048)
1000 1 0.004 0.020 0.022
1000 2 0.085 0.021 0.023
1000 3 1.290 0.037 0.036
1000 4 14.483 0.205 0.192
1000 5 130.059 1.824 1.667
1000 6 949.879 14.270 12.987
1000 7 5930.838 93.125 84.612
1000 8 N/A 510.549 463.556
1000 9 N/A 2378.568 2158.771
10000 1 0.079 0.020 0.024
10000 2 1.390 0.023 0.026
10000 3 16.216 0.080 0.064
10000 4 154.459 0.778 0.528
10000 5 1268.540 7.552 5.010
10000 6 9175.792 60.080 39.712
10000 7 N/A 394.153 260.212
10000 8 N/A 2166.152 1429.310
10000 9 N/A 10104.604 6665.651

Table 4 Comparison of structure learning time on SW/HW [s]

N m SW HW(P=1024) HW(P=2048)
1000 5 4250 4128 4102
1000 6 5180 4146 4113
1000 7 11678 4229 4237
1000 8 N/A 4769 4660
1000 9 N/A 7134 6812
10000 5 5580 4156 4131
10000 6 14816 4174 4132
10000 7 N/A 4603 4450
10000 8 N/A 6794 5876
10000 9 N/A 16868 12532

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 73

5.2 Performance of the Accelerator
Using a BN with 30 variables, we measured and compared the

time required to calculate all local scores for a specific number of
parent variables with datasets of size 1000 or 10000. We assume
that the value of each random variable is binary. Table 3 shows
the execution time results for each configuration. It should be
noted that N is the size of the dataset, and m is the number of par-
ent variables. Each execution was terminated after 5 h (18,000 s).
Therefore, N/A indicates that the calculation takes at least 18,000
s.

When m = 1 and N = 1000, SW is faster than HW because
of the latency of communication. In other cases, however, HW
is faster. The calculation time for SW increases as the number of
parent variables increases. As a result, SW can be calculated only
when N = 1000 and m < 7, or N = 10000 and m < 6. HW (P
= 1024) and HW (P = 2048) calculated all local scores over time
in all cases. Furthermore, HW (P = 2048) is approximately 70
times faster than SW when N = 1000 and m = 7, and 230 times
when N = 10000 and m = 6.

The comparison of HW (P = 1024) and HW (P = 2048) proves
that the more the FPGA resources, the faster is the calculation of
local scores. When N = 1000, there is not much difference in
the calculation time because the values of N and P are close. In
contrast, when N = 10000, there is a significant difference in the
computational time.

5.3 Performance of the Structure Learning
Using the same BN discussed in Sec. 5.2, we measured and

compared the time for structure learning when varying the upper
limit of the number of parent variables with datasets of size 1000
or 10000, respectively. Table 4 shows the execution time results
for each configuration. Each execution was terminated after 5 h
(18,000 s). The calculation for structure learning, except for the
calculation of local scores, is common and takes approximately
4100 s.

In all cases, the HW performed structure learning faster than
SW. HW (P = 2048) is approximately 2.7 times faster when
N = 1000 and m = 7, and approximately 3.5 times faster when
N = 10000 and m = 6, respectively. Furthermore, HW (P =
2048) performs fast structure learning even when N = 10000 and
m = 9.

6. Conclusion
In this paper, we proposed an FPGA-based parallel calculation

of local scores for BN structure learning. By expanding the parent
and order graphs layer by layer, we reduced the required memory
space from O(n2n) to O(nnC n

2
). The proposed method calculates

local scores as needed and does not store them, thus perform-
ing structure learning with less memory. In addition, we placed
a large number of local score computation modules on FPGAs
and used them repeatedly in parallel. The dataset was streamed
to each calculation module at the appropriate time and was not
stored in the FPGA. This allowed us to extract a high degree of
parallelism with a small amount of memory.

The accelerator evaluation shows that the accelerator calculates
the local score up to 230 times faster than the single-core imple-

mentation and proves that the more the FPGA resources there are,
the faster is the calculation of local scores. Furthermore, struc-
ture learning using the accelerator was 3.5 times faster than using
a single-core implementation. The proposed method promises to
exploit higher parallelism using multiple FPGA cards.

As shown in the evaluation results of structure learning, it takes
a long time to expand the parent and order graphs. We plan to fo-
cus on this problem to achieve further acceleration of structure
learning.

Acknowledgments The part of this work was supported by
JST PRESTO Grant Number JPMJPR18M8. The authors would
like to thank Prof. Kentaro Sano at RIKEN R-CCS for helpful
discussions.

References
[1] David Maxwell Chickering, David Heckerman, and Christopher

Meek. Large-sample learning of Bayesian networks is NP-hard. Jour-
nal of Machine Learning Research, 20:1287–1330, October 2004.

[2] Tomi Silander and Petri Myllymaki. A simple approach for finding the
globally optimal bayesian network structure. Proceedings of the 22nd
Conference in Uncertainty in Artificial Intelligence, Cambridge, MA,
USA, July 13-16, 2006.

[3] Mikko Koivisto, Kismat Sood, and Maxwell Chickering. Exact
Bayesian structure discovery in Bayesian networks. Journal of Ma-
chine Learning Research, 5:549–573, 2004.

[4] Brandon Malone, Changhe Yuan, Eric A. Hansen, and Susan Bridges.
Improving the Scalability of Optimal Bayesian Network Learn-
ing withExternal-Memory Frontier Breadth-First Branch and Bound
Search. Proceedings of the Twenty-Seventh Conference on Uncer-
tainty in Artificial IntelligenceJuly 2011.

[5] Jin Tian. A branch-and-bound algorithm for MDL learning Bayesian
networks. Proceedings of the 16th Conference on Uncertainty in Arti-
ficial Intelligence, 580–588. Morgan Kaufmann Publishers Inc.

[6] Gregory F. Cooper, and Edward Herskovits. A Bayesian method for
the induction of probabilistic networks from data. Machine Learning,
9, 309-347, (1992).

[7] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks
ofPlausible Inference. San Francisco, CA, USA: Morgan Kaufman-
nPublishers Inc., 1988.

[8] Andrew W. Moore and Mary Soon Lee. Cached sufficient statistics
for efficient machine learning with large datasets. J. Artif. Int. Res.
8:67–91. 1998.

[9] James Cussens. Bayesian network learning with cutting planes.
UAI’11: Proceedings of the Twenty-Seventh Conference on Uncer-
tainty in Artificial IntelligenceJuly, 153–160, 2011.

[10] Tommi Jaakkola, David Sontag, Amir Globerson, Marina Meila.
Learning Bayesian Network Structure using LP Relaxations. Proceed-
ings of the Thirteenth International Conference on Artificial Intelli-
gence and Statistics, PMLR 9:358-365, 2010.

[11] Yasuhiro Nitta, Hideki Takase. An FPGA Accelerator for Bayesian
Network Structure Learning with Iterative Use of Processing Ele-
ments. 2020 International Conference on Field-Programmable Tech-
nology (ICFPT).

[12] Lanczos, Cornelius. A Precision Approximation of the Gamma Func-
tion. Journal of the Society for Industrial and Applied Mathematics,
Series B: Numerical Analysis, vol. 1, no. 1, pp. 86-96, January, 1964.

[13] Xilinx Inc., ”Alveo U50 Data Center Accelerator Card” https://
xilinx.com/products/boards-and-kits/alveo/u50.html

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 74

