

A Test Prioritization Method for Configurable Software Systems
based on Variability Mining

TOMOJI KISHI†1 TAIKI KOYAMA†2 NATSUKO NODA†3
KEISUKE HORIUCHI†1 KENSHO LI†1 CHAOQUN ZHANG†1

Abstract: Testing configurable software systems such as IoT systems is challenging since these systems have variability and
could have combinatorial number of configurations. To reduce the testing costs, test prioritization is a promising approach. There
are proposed test prioritization methods for variability-intensive systems. In such methods variability model such as FM (Feature
Model) and FTS (Featured Transition System) are given. However, if systems are configured with devices from other
manufactures, the variability model is not always known in advance. In this paper we propose a test prioritization method based
on variability mining. In our method, variability information and statistical usage information are extracted from BT (Bluetooth)
communication logs between the target system and the connected device and prioritize tests utilizing them. Our experiment
shows that the method effectively prioritizes test cases derived from the STM (state transition model) of the target system.

Keywords: Testing, Test Prioritization, Variability, Variability Mining

1. Introduction

 Variability referrers to functional and non-functional

characteristics that may differ among products[12]. This concept

is important for not only software product lines (SPLs), but also

configurable software systems such as operating systems[1] and

IoT systems[5]. For example, if we consider an audio system

that can be connected to BT (Bluetooth) speakers from several

manufacturers, the capabilities of each BT speaker can be

different and therefore used in different ways depending on how

they are configured. Namely, there are variabilities among

possible configurations.

 Testing configurable software systems is challenging since

these systems could have combinatorial number of

configurations in the number of variable characteristics. To

reduce testing costs, several testing methods have been

proposed[16]. One of these methods is statistical test

prioritization method based on usage model[7]. Usage models

are typically given as Markov chains to show how often/rare

system behaviors occur. Based on usage models, priorities of

tests are determined. In these methods, variability models such

as FM (feature model) and FTS (featured transition system) are

used to avoid generating test cases that are not possible in terms

of variability[7][19].

 In this paper, we propose a test prioritization method based on

variability mining. Variability mining is a technique to extract

variability information from some artifacts or data. In our

method, we capture BT communication logs between the system

and connected devices, extract events (each of them is the

reception of BT command defined in a BT profile), and then

determine transition sequences. We obtain multiple transition

sequences from different system-device configurations, and

extract variability information using Haslinger’s algorithm[10].

Extracted variability information includes common transitions

 †1 Waseda University.
 †2 NS Solutions Corporation
 †3 Shibaura Institute of Technology

that appear in all configurations, exclusive transitions that do

not appear in the same configurations, and so on. We also obtain

statistical information from communication logs, and prioritize

tests based utilizing mined information.

 In previous prioritization methods[7][17][19], variability

information is assumed to be given; typically, developers

construct variability model such as FM and FTS prior to the

testing. However, if we consider systems that can be connected

with devices from various manufacturers, it may be difficult to

determine variabilities among various configurations in advance.

In such situation, mining variability information from actual

usage data would be preferable.

Note that it is difficult to mine the similar variability

information as those defined by developers. Variability

information obtained by variability mining tends to be at lower

abstraction level. Nevertheless, our experiment shows that we

can effectively prioritize tests using mined variability

information.

 In section 2, we introduce related works, and in chapter 3

explains important concepts. In section 4, we denote the

problem setting and research questions. In section 5, we propose

a variability mining method for test prioritization, and .in

section 6, we explain how to extract statistical information. In

section 7, we evaluate the effectiveness of test prioritization

based on mined variability information. In section 8, we make

technical discussions, and section 9 concludes the paper.

2. Related Works

 In this section, we introduce related works.

2.1 Testing Variability-intensive Systems

 Testing variability-intensive systems such as configurable

software systems is challenging because they could have

combinatorial number of configurations in the number of

variable characteristics. As it is unrealistic to test all possible

configurations, various testing methods are proposed to reduce

the costs[11][16][17]. One approach is to select a subset of

products (configurations) as representative products. SPL

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 42

pairwise testing is a such method in which representative

products are selected so as to all possible feature pairs are

included[15]. Other approach is test prioritization, i.e., to

determine the order of tests to increase the early faut detection

rate. For example, Al-Hajjaji et al. propose a test prioritization

method utilizing similarity among products [9].

Some testing methods use usage models for prioritization.

Usage models are typically given as Markov chains to show

how often/rare system behaviors occur. Devroey et al. propose a

method in which usage model is used along with FM and FTS to

statistically select test sequences on FTS, and then, determine

representative products and their priorities[7]. Samih et al.

combine MBT (Model Based Testing) tools with OVM

(orthogonal variability model)[18] to generate usage model

variants from given set of features[19].

 Though most previous methods assume that variability

models are given, our method extract variability information

from usage data and prioritize test utilizing the extracted

information. We believe that our approach is suitable for the

situation in which variability among configurations is not

known in advance.

2.2 Variability Mining

 Variability mining is a technique to extract variability

information from some artifacts or data. In SPL field, variability

mining is typically used to construct core assets (reusable assets)

from existing set of similar software artifact and is also referred

as asset mining[2]. There are proposed various techniques and

tools that extract variability information from artifacts such as

source code[13][20] and OS configuration file[8].

 Haslinger et al. propose a reverse engineering algorithm that

construct FM from given Feature Set Table [10]. Feature Set

Table includes a set of valid feature configurations. This

algorithm identifies relations among features such as implication

and mutex, and construct FM based on these relations. In our

method, we utilize this algorithm to extract variability

information of transitions among multiple system-device

configurations. Namely, we apply the algorithm to identify

variability among different behaviors instead of static feature

configurations.

 As for variability mining for behavioral aspects, Seidl et al.

propose a method to construct state transition model that

expresses all possible behaviors of family of products from set

of cloned model variants[21]. Though this work extract

variability information from model variants, our method extracts

information from communication logs.

3. Background

3.1 Feature Model (FM)

 Features are any prominent and distinctive concepts or

characteristics that are visible to various stakeholders, and FM

depicts features in a SPL and constraints among them[14]. There

are several notations, but constraints typically include

mandatory, optional, OR, XOR, require (imply) and exclude

(mutex). A feature configuration is called valid, if features in the

feature configuration satisfy the constraints defined in the FM. A

valid configuration corresponds to a product in the SPL.

Fig. 1 shows an example of FM. Alphabets below feature

names are added to facilitate the description of FTS explained

shortly. This FM has multiple valid configurations such as (v, p,

s, c) and (v, f).

VM
v

PayDrink
p

FreeDrink
f

Cancel
c

Soda
s

Tea
t

require

exclude

feature
mandatory
optional
OR

XOR

require

exclude

Fig. 1 An Example of FM (modified from [6])

3.2 Feature Set Table (FS Table)

FS Table is a table to indicate a set of products and their

feature configurations. Each row corresponds to a product, and

each column corresponds to a feature. Selected features are

shown as ‘1’ and unselected features are shown as ‘0’. FS Table

includes a subset of all possible feature configurations, i.e., it

shows a sample. Table. 1 is an example of FS Table that

indicates some feature configurations derived from the FM (Fig.

1).

Table. 1 An Example of FS Table

. v p s t f c

p1 1 1 1 0 0 0

p2 1 1 1 1 0 1

p3 1 0 0 0 1 0

p4 1 1 0 1 0 1

3.3 Featured Transition System (FTS)

FTSs represent the behavior of possible instances of

variability-intensive systems[6]. An FTS defines a set of states

and transitions among them. Each transition has an action

associated with it, and one of states is specified as the initial

state. As an FTS represents the behavior of possible instances,

each transition defined in the FTS must appear as the behavior

of at least one possible instance of the system.

A feature expression, i.e., a Boolean expression over the

feature defined in the FM may be attached to a transition. Given

the feature configuration of an instance, features included in the

configuration are interpreted as true, otherwise false. Only

transitions whose feature expression is evaluated as true are

enabled for the configuration (instance). Transitions without

feature expressions are always enabled. In this manner, the

behavior of a system instance is determined.

 Fig. 2 is an example of FTS. Feature expressions are given

after actions with ‘/’ as delimiter. This FTS is based on the FM

(Fig. 1) and feature expressions refers features defined in the

FM. For example, for a valid feature configuration (v, p, s, c),

transitions with trigger “pay”, “cancel”. “soda”, and “serve” are

enabled (Fig. 3 (a)). For a valid configuration (v, f), transitions

with trigger “free”, “water” and “serve” are enabled (Fig. 3 (b)).

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 43

1 2 3

cancel/c

free/f

pay/p soda/s

water/f

serve

tea/t state

transitons

Fig. 2 An Example of FTS (modified from [6])

1 2 3

free water

serve

1 2 3

cancel

pay soda

serve

(a) (b)

Fig. 3 Examples of System Instance’s Behavior

4. Problem Statement

 In this section, we introduce an example system, explain our

problem settings, and then present our research questions.

4.1 Music Player Example

 We use a music player that can be connected with BT

speakers as an example system. There are three types of BT

speakers, from different manufacturer, say A, B and C. The

music player can be connected to one device at a time. We call

the music player as the target system, and BT speakers as

devices.

 BT communication between the target system and devices

uses AVRCP[3] that is a BT profile for audio/video remote

control. In the profile, commands for audio/video remote control

are defined. Among various commands, we focus on four

commands “play”, “pause”, “forward” and “backward”.

Fig. 4 shows the behavior of the target system defined as state

transition model (STM) with states, transitions, an initial state,

and triggers. Triggers correspond to receptions of AVRCP

command mentioned above.

1 (STOPPING)

2 (PLAYING)

pause

play

forward

backward

pause

play

forward

backward

Fig. 4 STM of the target system

 Each device has different functionality and may communicate

with the target system using different set of commands in

different sequences. Consequently, there could be common

transitions that appear in all configurations and exclusive

transitions that do not appear in the same configurations.

Namely, there is variability among possible configurations.

4.2 Test Prioritization

We consider statistical prioritization of test for the target

system. Concretely speaking, we generate (abstract) test cases

from the STM and prioritize them based on the usage model.

Test prioritization is to determine the best order in which

these test cases are executed. In case testing resources are

limited, it would be beneficial to order test cases to make

high-priority test cases appear earlier. Devroey determines

priorities of paths (transition sequences) based on usage model,

in which the priority of each path is given as the product of

probabilities of transitions included in the path[7]. In this paper,

we also use the same priority.

 When we test variability-intensive system, we need to take

variability information into account. For example, the vending

machine introduced in section 3 does not have paths such as

(free, soda) and (pay, water), because feature “free” (f) and

“pay” (p) are exclusive. If we simply give priorities to paths

using the method explained above, we may give higher priority

to paths that are not actually exist. To avoid such inadequate

prioritization, we need to exclude paths that are not possible in

terms of variability.

4.3 Variability Mining for Prioritization

In previous prioritization methods, variability information is

assumed to be given; Typically, developers construct variability

model such as FM and FTS prior to the testing [5][6][7].

However, in our settings, the target system can be connected

with devices from various manufacturers, and it is difficult to

determine variabilities among various configurations in advance.

Furthermore, even if developers suppose typical usage in

advance, it does not necessarily mean that the system will

actually be used in that way.

We assume the situation in which the STM of the target

system is known but variability information is not known. We

collect actual usage data and extract variability information

using variability mining technique. Concretely speaking, we

extract variability information from BT communication logs

between the target system and connected devices.

4.4 Research Questions

In this paper, we address the following research questions:

 RQ1: How to mine variability information from

communication logs between the target system and

devices?

 RQ2: Whether the mined variability information can be

used for effective test prioritization?

 For RQ1, we propose a variability mining method (section 5),

and for RQ2, we evaluate the effectiveness of test prioritization

based on mined variability information (section 7).

5. Variability Mining Method.

 In this section we propose a variability mining method that

construct FM and FTS from BT communication logs.

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 44

5.1 Preliminaries

We assume that STM of the target system is known, and the

STM is finite and deterministic. Triggers defined in the STM are

events of receiving commands from the connected device. In our

example, commands are four AVCRP commands (play, pause,

forward and backward).

 Prior to variability mining, we need to prepare

communication logs between the target system and connected

device. We use Wireshark[23] to capture BT packets. Each log

corresponds to a specific system-device configuration. There

may be multiple logs that correspond to the same configuration.

At the start of logging, the target system should be in its initial

state.

 From each communication log, we construct an Event List

(EL), that is a list of AVRCP commands received by the target

system sorted by the time they were received. Though

communication logs include various AVRCP commands, we

only extract commands that appear as triggers in the STM. This

process simply extracts specific rows and columns from the

Wireshark’s data, so we will not go into details. Each EL has a

label to indicates the corresponding configuration.

5.2 Overview

 Input of our method is STM of the target system and a set of

ELs explained above. In our example, each EL is constructed

from a communication log between the target system and one of

devices, i.e., device A, device B or device C.

 Output of our variability mining method is FM and FTS for

the target system.

Wireshark
出⼒Wireshark

出⼒event list
(EL)

step1

step2

spte3

利⽤ログ
（遷移列）利⽤ログ

（遷移列）transition list
(TL)

variability
information

step4

FTS

FM

state transition
model
(STM)

Fig. 5 Method Overview

Fig. 5 shows the overview of our method. The method

consists of the following steps:

Step1: Construct Transition Lists

Step2: Extract Variability Information

Step3: Construct FM

Step4: Construct FTS

 We will explain these steps in the following subsections.

5.3 Step1: Construct Transition List

For each EL, construct a Transition List (TL). Since events in

EL are triggers of STM, the event sequence in an EL causes a

transition sequence of the STM. TL is an ordered list of

transitions. Each transition is specified by a pair of a state and a

trigger where the state is the transition’s source state, and the

event is an event (trigger) attached to the transition.

As mentioned above, we assume that the target system is in

its initial state at the start of logging. Therefore, the first

transition of TL can be obtained by pairing the initial state with

the first event in EL. The next transition of TL is obtained by

pairing the destination state of the first transition and the next

event in EL. TL can be constructed by repeating this operation

until the end of EL. For example, in the example system, from a

EL (play, play, pause), we can obtain a TL (<1, play>, <2, play>,

<2, pause>).

To indicate the corresponding configuration, the TL is labeled

with the same label as the corresponding EL.

5.4 Step2: Extract Variability Information

We extract variability information using the following

procedure.

5.4.1 Construct FS Table

From TLs constructed in Step 1, construct a FS Table. Though

FS Table is originally used to indicate the features included in

each product, it is used to indicate the transitions appeared in

each system-device configuration. Each row of FS Table

corresponds to a system-device configuration, and each column

corresponds to a transition defined in the STM of the target

system. If a transition appears in a configuration, the

corresponding cell is marked as ‘1’, otherwise ‘0’.

As each TL has a label that indicates the corresponding

configuration, the FS Table can be constructed by checking each

TL to identify transitions included in it. In case there are two or

more TLs for the same configuration, we simply accumulate

them, i.e., we assume that a transition is used in the

configuration if the transition appears at least one of these TLs.

Table. 2 shows an example of FS Table for the Target System.

Table. 2 FS Table for the Target System

 1

play

1

pau

1

fwd

1

bwd

2

play

2

pau

2

fwd

2

bwd

A 1 1 0 0 0 1 0 0

B 0 0 0 1 1 0 1 1

C 1 0 0 0 0 1 1 1

(pau: pause, fwd: forward, bwd: backward)

5.4.2 Apply Haslinger’s Algorithm [10]

Haslinger et al. propose a reverse engineering algorithm that

construct FM from a Feature Set Table. In the algorithm, various

variability information are extracted from the FS Table. We

apply the algorithm to the FT Table constructed in 5.4.1 to

extract variability information among different configurations in

terms of transitions. Namely, we assume that a system-device

configuration and a transition as a product and feature

respectively.

Firstly, we extract the following information by applying the

algorithm.

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 45

 Common Features: a set of features that appear in all

products.

 Atomic Sets: An atomic set is a set of features that

always appear together in all products.

For the FS Table shown in Table. 2, we can obtain Common

Features = {}, and Atomic Set = {(<1, play>, <2, pause>), (<1,

backward>, <2, play>), (<2, forward>, <2, backward>)}.

 Secondly, we extract the following relationships among

features, also applying the algorithm.

 Implication Relationships: An implication relationship is

a binary relation between two features f1 and f2 where the

appearance of f1 implies the appearance of f2 in all

products.

 Mutex Relationships: A mutex relationship is a binary

relation between two features f1 and f2 where f1 and f2 do

not appear together in all products.

 If a feature in an atomic set has a relationship with other

feature f, other features in the same atomic set also have

relationship with f. To avoid extracting such duplicate

relationships, select a representative feature for each atomic set,

and then extract the relationship.

Suppose that we select <1, play>, <1, backward> and <2,

forward> as representative features for atomic sets. Then, we

can extract one implication relationship (<1, pause>, <1, play>),

and two mutex relationships (<1, pause>, <2, forward)>) and

(<1, play>, <1, backward>).

5.5 Step3: Construct FM

Using the variability information extracted in Step 2,

construct a FM. Generally, multiple FMs can be constructed

from the same variability information. For example, implication

relationship can be expressed using either an optional

relationship or a require relationship.

Hence, we apply a simple strategy, as follows:

1. Put a root feature.

2. Put a feature representing common features as mandatory

child of the root feature.

3. Put features each of which representing to an atomic set

as optional children of the root feature.

4. Put other features as optional children of the root feature.

5. Define require relationships representing implication

relationships.

6. Define exclude relationships representing mutex

relationships.

R

A1
<1, play>
<2.pause>

A2
<1, backward>

<2.play>

A3
<2, forward>
<2.backward>

F1
<1, pause>

require
excludeexclude

Fig. 6 FM for the Target System

Fig. 6 shows FM obtained by this procedure. Feature name R,

A1, A2, A3 and F1 are mechanically given. In the Figure,

corresponding transitions are written under feature names for

convenience.

5.6 Step4: Construct FTS

Based on the FM constructed in Step 3, construct the FTS

for the target system. This is done by attaching feature

expressions to the STM of the target system. For each feature

in the FM, identify corresponding transitions, and put the

feature name as feature expressions of the transitions. If a

transition has no corresponding feature, put “false” as

expressions because the transition does not appear in any

configurations.

Fig. 7 shows the FTS constructed from the STM (Fig. 4) and

FM (Fig. 6).

1 (STOPPING)

2 (PLAYING)

pause / F1

play / A1

forward / false

backward / A2

pause / A1

play / A2

forward / A3

backward / A3

Fig. 7 FTS for the Target System

6. Extracting Statistical Information

 For statistical prioritization, we need the usage model for the

target system. We construct usage model from TLs constructed

in Step 1. of our variability mining method. We count the

number of occurrences of each transition in TLs, and calculate

the probabilities based on that.

 Suppose that the numbers of occurrence of transitions are as

the second column of the Table. 3. Probability of each transition

can be calculated by dividing the number of occurrences by the

total number of occurrences of transitions that originate from the

same state. For example, the probability of <1, play> can be

calculated by 11/(11+1+1+0) since there are four transitions

originated from the sate 1. Likewise, other probabilities can be

calculated. The third column shows probabilities of the

transition to two decimal places.

Table. 3 Probability of Each Transition

transition N of occurrences probability

<1, play> 11 0.85

<1, pause> 1 0.08

<1, forward> 1 0.08

<1, backward> 0 0.00

<2, play> 10 0.29

<2, pause> 10 0.29

<2, forward> 6 0.17

<2, backward> 9 0.26

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 46

Fig. 8 shows the usage model of the target system obtained by

attaching probabilities to transitions of the STM. The probability

of each transition is described after the trigger, enclosed in

‘[‘ and ’]’.

1 (STOPPING)

2 (PLAYING)

pause [0.08]

play [0.85]
/

forward [0.00]

backward [0.08]

pause [0.29]

play [0.29]

forward [0.26]

backward [0.17]

Fig. 8 Usage Model of the Target System

7. An Experiment: Test Prioritization

 In this section, we introduce an experiment of test

prioritization based on mined variability information. Though

constructed FTS, FM and usage model could be used in various

testing methods such as prioritization of representative

products[7], we use them for prioritization for n-switch testing.

Namely, we generate test cases from STM based on n-switch

coverage criterion, and then prioritize them.

7.1 Objective

The objective of the experiment is to evaluate the

effectiveness of test prioritization based on extracted variability

information (section 5) and statistical information (section 6).

7.2 Method

7.2.1 construct FM, FTS and usage model

 We applied our variability mining method to the example

system to generate FM, FTS and usage model. We implement

the program for Step 1 and Step 2 of our variability mining

method explained in section 5. Step 3 is done manually, and for

Step 4, we did similar process on spread sheet. We also make

program to calculate probabilities.

7.2.2 test case generation

 We generate (abstract) test cases from the STM using

n-switch coverage criterion [4]. Each test case corresponds to a

sequence of transitions defined in the STM. To satisfy the

criterion, we generate test cases to cover n-switch set that

consists of all transition sequences of length n+1. For the target

system’s STM (Fig. 4), 1-switch set includes test cases such as

(<1, play>, <2, play>) and (<2, pause, 1, pause>), and 2-switch

set includes test cases such as (<1, play>, <2, play>, <2,

forward>) and (<2, pause>, <1, pause>, <1, play>). For this

STM, 1-switch set contains 32 test cases, and 2-swithc set

contains 128 test cases.

7.2.3 test case prioritization

 We determine the order of test cases to important test cases

appear earlier. We determine the weight (importance) of each

test case (transition sequence) using the same method as [7], in

which the weights are calculated as the product of probabilities

of transition included in the test case.

However, as explained in 4.2, for variability-intensive

systems, it is important to consider variability information. Here,

we make the weight of a test case to be 0, if the test case

contains mutually exclusive transitions, because such transition

sequence is not possible. After that, we order test cases to make

test cases with higher weights come earlier.

7.2.4 comparison

 To evaluate the effectiveness of our prioritization method, we

compare the following four prioritization method.

 PM1 (Proposed): This method is our method explained in

7.2.3 that uses both variability information and statistical

information defined in usage model.

 PM2 (Usage only): This method is to order test cases to

make higher weights come earlier without considering

variability information.

 PM3 (Variability only): This method removes test cases

that include mutually exclusive transitions, and then

randomly order other test cases (removed test cases are

attached at the end.

 PM4 (Random): This method determines the order

randomly.

7.2.5 metrics

 Accumulate the weights of the test cases according to the

determined order. The firster the accumulated weights increase,

the order is better, because this means important test cases

appear earlier. We can examine it by plotting accumulated

weights. Fig. 9 shows an example of accumulation graph. Here,

the horizontal axis shows the number of test cases, and the

vertical axis shows the accumulated weights. The weights are

normalized to the sum of all weights becomes 1.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132
Fig. 9 An Accumulation Graph

A similar comparison can be made with a quantitative

measure called exponential decay [22]. Fig. 10 shows a decay

graph corresponding to Fig. 9. Here the vertical axis shows sum

of weights of untested test cases in logarithm scale. A dotted line

is exponential trendline expressed as . The slope of

exponential decay is indicated by ; the larger number indicates
the faster decay, i.e., better prioritization. R2 is coefficient of

determination: higher value shows good correlation between

actual values and regression model.

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 47

y = e‐0.2x

R² = 0.9625

0.001

0.01

0.1

1

0 5 10 15 20 25

Fig. 10 A Decay Graph

 We use accumulation graphs and exponential decay as

metrics.

7.3 Comparison

We generate test cases from the STM of example system

based on 1-switch criterion and 2-switch criterion using a

commercial tool. Then, prioritize test cases using the four

methods explained in 7.2.4. and compare four methods in terms

of accumulation graphs and exponential decay. Since PM3 and

PM4 includes randomness, we use the average of 10 times to

make comparison.

7.3.1 1-switch Coverage

 We prioritize 32 test cases generated by 1-switch coverage

criterion by four methods. Fig. 11 shows the comparison using

accumulation graphs. Also, Table. 4 shows the comparison using

exponential decay.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Prioritizatin (1 switch)

PM1(Proposed) PM2(Usage only) PM3(Variability only) PM4(Random)

Fig. 11 Results for 1-switch Coverage (Accumulation Graphs)

Table. 4 Results for 1-switch Coverage (Exponential Decay)

 PM1 PM2 PM3 PM4

 0.2 0.194 0.078 0.073

R2 0.9625 0.9229 0.921 0.8961

 Both comparisons show that the PM1 is the best, followed by

PM2, PM3 and PM4.

7.3.2 2-switch Coverage

We prioritize 128 test cases generated by 2-switch coverage

criterion by four methods. Fig. 12 shows the comparison using

accumulation graphs. Also, Table. 5Table. 4 shows the

comparison using exponential decay.

0

0.2

0.4

0.6

0.8

1

1.2

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101105109113117121125

Prioritization (2 switch)

PM1(Proposed) PM2(Usage only) PM3(Variability only) PM4(Random)

Fig. 12 Results for 2-switch Coverage (Accumulation Graphs)

Table. 5 Results for 2-switch Coverage (Exponential Decay)

 PM1 PM2 PM3 PM4

 0.092 0.066 0.025 0.018

R2 0.8669 0.9102 0.8946 0.8668

As same as 1-switch Coverage, both comparisons show that

the PM1 is the best, followed by PM2, PM3 and PM4.

7.4 Results

In this experiment, our proposed method PM1 was found to

be the best prioritization method. In both cases (1-switch

criterion and 2-switch criterion), PM1 shows the best result.

The second is PM2, that order test cases using statistical

information without considering variability information. For

2-switch coverage, difference between PM1 and PM2 are bigger

than that for 1-swithc coverage. This is because, the longer the

test cases, more chance to include mutually exclusive transitions,

and effect of removing them becomes larger.

Compared with PM1 and PM2, PM3 and PM4 are less

effective. However, for 2-switch coverage, difference between

PM3 and PM4 becomes larger because of the same reason

explained above. Therefore, when the test case is long,

considering only the variability information is also expected to

have some effectiveness.

8. Discussion

 In this paper, we proposed a variability mining method to

extract the variability information among multiple

device-system configurations. Our contributions are two folds,

to propose a variability mining method from BT communication

logs and demonstrate the effectiveness of test prioritization

based on mined variability information.

Since we extract variability information from data, the

validity of the data is the essential issue. There are various

factors that affect the extracted variability information such as

functionalities of devices, user’s operation. Also, it is difficult to

determine if the data is sufficient or not. How to prepare the data

is an issue for the future.

 It is not new to obtain probabilities from event logs to

construct usage models. However, it should be noted that there

are two aspects to variability-intensive systems, one is the

probability of user operation, and the other is the probability of

the occurrence of the product (configuration). The latter is

specific to variability-intensive systems. As there could be

combinatorial number of configurations, we cannot use all of

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 48

them, and pick up some configurations from them. Namely, the

probabilities of the product occurrence become a matter. How to

handle these two aspects of probability is also the future issue.

 We evaluated the effectiveness of our method by an

experiment. Though this is one of typical experiment methods

for test prioritization, it is necessary to further examine the

validity of the experiment. As described above, the validity of

the data is an issue, and we need to evaluate using different data.

It is also desirable to apply methods other than the n-switch

testing.

9. Concluding Remarks

 In this paper, we proposed a test prioritization method for

configurable systems. We believe that testing based on

variability mining is effective in situations where variability is

not known in advance. We would like to develop the method for

more diverse situations in the future.

Reference
[1] T. Berger, S. She, R. Lotufo, A Wąsowski and K. Czarnecki:

Variability Modeling in the Real: A Perspective form the Operating
System Domain, in Proc. of Automated Software Engineering 2010
(ASE’10), pp.73-82, (2010).

[2] J. Bergey, L. O’Brian and D. Smith: Mining Existing Assets for
Software Product Lines, Technical Report CMU/SEI-2000-TN-008,
Software Eng. Inst., (2000).

[3] Bluetooth SIG: Audio/Video Remote Control, Bluetooth Profile,
Specification, v1.6.2. (2019).

[4] T.S. Chow: Testing Software Design Modeled by Finite-State
Machines, IEEE Transactions on Software Engineering, Vol.SE-4,
No.3, pp.178-187, (1978).

[5] L. Chumpitaz, A. Furda and S. Loke: Evolving Variability
Requirements of IoT Systems, Chapter 14, Software Engineering
for Variability Intensive Systems, CRC Press, (2019).

[6] A. Classen, M. Cordy, Pierre-Yves Schobbens, P. Heymans, A.
Legay and Jean-Francois Raskin: Featured Transition Systems:
Foundations for verifying Variability-Intensive Systems and Their
Application to LTL Model Checking, IEEE Trans. on Software
Engineering, Vol.39, No.8, pp.1069-1089, (2013).

[7] X. Devroey, G. Perrouin., M. Cordy, H. Samih, A. Legay, P.
Schobbens and P. Heymans: Statistical prioritization for software
product line testing: an experience report, Software and Systems
Modelling, Volume 16, Issue 1, pp.153-171, (2017).

[8] D. Fernandez-Amoros, R. Heradio, C. Mayr-Dorn and A. Egyed: A
Kconfig Traslation to Logic with One-Way Validation System, in
Proc. of the 23rd System and Software Product-Line Conference
(SPLC’19), pp.303-308, (2019).

[9] M. Al-Hajjaji, T. Thun, J. Meinicke, M. Lochau and G. Saake:
Similarity-Based Prioritization in Software Product Line Testing,
in Proc. of Software Product Line Conference (SPLC), pp.197-206,
(2014).

[10] E. N. Haslinger, R. Erick L. Herrejon and A. Egyed: On
Extracting Feature Models from Sets of Valid Feature
Combinations, in Proc. of the 16th International Conference on
Fundamental Approaches to Software Engineering (FASE 2013),
pp.53-67, (2013).

[11] A. Y. Hassan: A Survey on Software Product-Line Testing,
International Journal of Advanced Research, 9(01), pp.90-96,
(2020).

[12] ISO/IEC: ISO/IEC 26550, Reference Model for Product Line
Engineering and Management, (2015).

[13] C. Kaestner, A. Dreiling and K. Ostermann: Variability Mining:
Consistent Semi-automatic Detection of Product-Line Features,
IEEE Transaction on Software Engineering, Vol.40, No.1, (2014).

[14] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak and A. S.
Peterson: Feature-Oriented Domain Analysis (FODA) Feasibility
Study, CMU/SEI-90-TR-21, ESD-90-TR-222, (1990).

[15] B. P. Lamancha and M. P. Usola: Testing Product Generation in
Software Product Lines Using Pairwise for Features Coverage, in
Proc. of the 22nd IFIP WG 6.1 International Conference on Testing
Software and Systems (ICTSS’10), pp.111-125, (2010).

[16] I. do C. Machado, J. D. McGregor, Y. C. Cavalcanti and E. S. de
Almeida: On Strategies for testing software product lines: A
systematic literature review, Information and Software Technology,
56, pp1183-1199, (2014).

[17] K. L. Petry, E. OliveiraJr and A. F. Zorzo: Model-based testing of
software product lines: Mapping study and research roadmap, The
Journal of Systems and Software, vol.167, (2020).

[18] K. Pohl, G. Boeckle and F. van der Linden: Software Product
Line Engineering - Foundation, Principles, and Techniques,
Sprinter, (2005).

[19] H. Samih, M. Acher, R. Bogusch, H. Le Guen and B. Baudry:
Deriving Usage Model Variants for Model-based Testing: An
Industrial Case Study, in Proc. of 19th International Conference on
Engineering of Complex Computer Systems (ICECCS), pp.77-80,
(2014).

[20] T. Savage, M. Revelle and D. Poshyvanyk: FLAT3: Feature
Location and Textual Tracing Tool, in Proc. of International
Conference of Software Engineering (ICSE), pp. 255-258, (2010).

[21] C. Seidl, D. Wille and I. Schaefer: Software Reuse: From Cloned
Variants to Managed Software Product Lines, in Automotive
Systems and Software Engineering State of the Art and Future
Trends (ed. Y. Dajsuren, M. van den Brand), Springer, (2019).

[22] I. Segall: Repeated Combinatorial Test Design – Unleashing the
Potential in Multiple Testing Iterations, Proc. of International
Conference on Software Testing, Verification and Validation,
pp.12-21, (2016).

[23] Wireshark: https://www.wireshark.org/ (access 2021, Oct. 1st).

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 49

