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Abstract: Most of the existing methods for inferring human behavior such as actions or poses use visible light or
wireless signals as a clue to estimate it. However, visible light is easily restricted by poor lighting conditions (, dark
rooms, night roads). Wireless signals often have limited use (, highly instrumented patient care areas where electronic
devices must remain off). Unlike these methods, we explore how low-level acoustic signals can provide enough clues
to estimate human behavior by active acoustic sensing with a single pair of microphones and loudspeakers (see Fig. 1).
This is quite a challenging task since sound is much more diffractive than visible light or RF/WiFi that most of existing
method use and therefore covers up the shape of objects in a scene. To this end, we introduce a framework that encodes
multichannel audio features into human activity classes or 3D human poses. Our framework only requires a minimal
active sensing system with a single pair of ambisonics microphone and loudspeakers to enable estimation. Aiming
at capturing subtle sound changes to reveal detailed pose information, we explicitly extract phase features from the
recorded audio signals together with typical spectrum features, and feed them into our 1D convolutional neural net-
work to learn non-linear mappings from the features to the target. Our experiments suggest that with the use of only
low-dimensional acoustic information, our method outperforms baseline methods.

1. Introduction
The ability to capture human behavior such as poses or activi-

ties has many potential applications. Over the last decade, many
different technologies including conventional cameras [4], [8],
transient light [16], radio frequency (RF) or WiFi measure-
ments [20], [28] have been proposed to infer human activity or
pose. However, the optical signals are easily occluded and re-
stricted by poor lighting conditions such as a dark room and night
road. RF/WiFi signals are also occluded by water or metal. In
addition, the use of wireless signals is also often limited, because
electronic devices with transmissions of signals must remain off
during flights, as well as in hospital rooms with sensitive elec-
tronic systems.

Audio signals, which exist everywhere in our world, have the
potential to solve these fatal limitations. We can listen to sounds
regardless of the lighting conditions, and acoustic signals do not
affect electronic systems. If we use ultrasonic wave that is outside
of our audible range, we are not even aware of them. Moreover,
since the acoustic signals have a much longer wavelength (meter
scale) than visible light (nanometer scale) and RF/WiFi signals
(centimeter scale), the signals are less occluded.

Some very recent studies have used acoustic signals for a cross-
modal analysis with visual information including scene geom-
etry estimation [5], [23], action recognition [9], visual seman-
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tic segmentation [15], and even object understanding [24]. An-
other line of studies use acoustic signals for sensing humans, like
active hand gesture monitoring [18]. Papers that are more rele-
vant to ours are approaches which infer human joints by convert-
ing human speech or music to gestures [10], [19], [25]. These
methods use human speech as a clue of recovering human ges-
tures/motions. However, no methods have been proposed yet to
capture whole human 3D poses given only low-level acoustic sig-
nals without any environmental sound that links the signal and
target of estimation (, speech, music, sound of specific action).

All of these previous studies motivate the following three ques-
tions. First, do low-level acoustic signals have enough informa-
tion to reconstruct whole 3D human poses? Second, what is the
small set of hardware setup for the task? And third, which ones
lend themselves to effective inference algorithms?

To answer these questions, this paper takes up a new task, hu-
man activity classification and 3D human pose estimation from
only low-level acoustic signals. This is a quite challenging task.
Wavelength of acoustic signals is much longer than optical or
RF/WiFi signals. While it could be advantageous for occlusion
issues, a longer wavelength is diffractive, making it difficult to
distinguish small pose changes. In this work, we explore a solu-
tion to this task with minimal equipment configuration using only
a single ambisonics microphone as shown in Fig. 1, as opposed to
previous methods that use high-definition RGB(D) cameras and
RF/WiFi signals from multiple transmitters and receivers. While
we do use multiple channels, our microphone is located at a spe-
cific single position and has much fewer geometry clues to map
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Fig. 1 We propose human action classification and 3D pose estimation given only low-level acoustic
signals with a single pair of microphones and loudspeakers. Given an audio feature frame (right-
middle), our method estimates frame-by-frame human action labels and 3D poses (right-bottom).

the signals to human activities. Moreover, unlike most previous
works that have utilized higher-level semantics such as human
speech, music, or a dog barking, our low-level signals do not rep-
resent any of this kind of information directly.

To capture human status effectively under such a severe con-
dition, we propose a convolutional neural network (CNN)-based
framework designed to employ multi-channel audio features as
its inputs and directly output the predicted result of human action
classes or 3D body parts joints. If humans occlude acoustic sig-
nals emitted from loudspeakers, the subtle “shifts” of arrival time
of the incoming acoustic signals occur. Our network model cap-
tures these small shifts by explicitly integrate phase features that
represent the time difference of arrival (TDOA) and utilizes them
to infer human behavior. Since no previous method could tackle
this task, there is no public dataset available. Therefore, to train
our network, we set up an active acoustic sensing system using a
single pair of ambisonics microphones and loudspeakers. Then
we actively record the sounds of a time-stretched pulse (TSP)
signal emitted from the speaker, synchronized with motion cap-
ture (Mocap) data.

To summarize, our contributions are as follows: (1) We are the
first to tackle a new task: human activity classification and 3D
human pose estimation given only low-level audio signals. (2)
We describe a network architecture that directly maps acoustic
features to human activity labels and 3D human poses. (3) Since
there are no previous methods to carry out this task, we describe
how to create a new dataset to train our network model. (4) We
provide extensive experimentation and show the effectiveness of
our method.

2. Related Work
Table 1 summarizes where our method is positioned among

existing approaches that are relevant to ours. Although this paper
also describes action recognition as a classification task, Table 1
focuses on the pose estimation task. However, note that our clas-
sification task can make a similar argument. The following of
this section introduces each work and other relevant approaches
in detail.

Human Activity Estimation. Estimating human pose has long
been studied by the computer vision community [4], [8]. Al-
though a majority of existing work leverages the fact that the
human body is visible from conventional cameras, this line of
researches includes a wide variety of solutions in terms of hard-
ware systems and reconstruction algorithms that operate in dif-
ferent parts of the spectrum. Besides visible spectrum (380-
740 nm) [16] or near-IR (740-1500 nm) light [6], WiFi and
RF (centimeter scale) [20], [28] or even sound waves(meter
scale) [18] are used to estimate human behavior.

Operating in a specific part of the spectrum affects the nature of
the signal that can be used for human activity or pose estimation.
For example, visible signals are easily restricted by poor light-
ing conditions (, a dark room, night road) and occluded by other
objects (, buildings, etc.). RF or WiFi signals enable through-the-
wall pose estimation [1], [20], [28] since longer electromagnetic
waves tend to pass through objects; however, these signal spec-
trum are also occluded by some materials (, metal, water, etc.)
and are often limited to being used. We have to turn off elec-
tronic devices with transmissions of signals during the flights as
well as in the hospital rooms with sensitive electronic systems.
Audio signals have the potential to overcome such occlusion than
other signals due to the longer wavelength. However, this also
presents a number of fundamental limitations when estimating
human pose: the spatial and angular resolution must be limited,
making it hard to distinguish small differences of poses. We in
this paper will address these limitations and explore the funda-
mental potential of active acoustic sensing for action classifica-
tion and 3D pose estimation.

Acoustic Sensing for Capturing Human Behavior. In this
paper, we leveraged active acoustic sensing using a single pair
of ambisonics microphones and loudspeakers; hence, our work
highly relates to those that leveraged acoustic sensing of some
form for capturing human behavior. Passive acoustic sensing has
used for gesture recognition [7], [11], [12], on-body sensing [13],
activity [9], or even body joints estimation [10], [19], [25]. How-
ever, these methods require uses to put wearable devices [7], [11],
[12], [13], requires higher level of acoustic information such as
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Method Modality Occluded by Required semantics level Invasiveness
RGB-based [4], [8] RGB Any opaque objects High (image required) Non-invasive

RF/WiFi-based [1], [20], [26], [28] RF/WiFi Metal, water Low Non-invasive
Audio to joint [10], [19], [25] Audio Soundproof room High (speech required) Non-invasive

Audio to hand micro gesture [18] Audio Soundproof room Low Invasive
Ours Audio Soundproof room Low Non-invasive

Table 1 Comparisons between existing pose estimation methods and our method.

Received Signal

Transmitted TSP Signal (Sec. 3.2) Intensity Vector

Log-Mel Spectrum

3D Poses p

Action Labels
Loudspeakers

Ambisonics
microphone

Audio Signal Features
(Sec. 3.3)

c

Action and Pose Estimation 
Network (Sec. 3.1)

fp

fc

1D Convolution

Fig. 2 The overview of our human behavior estimation framework. We transmit TSP signals and receive
multichannel audio signals that are encoded into audio signal features. Our method feeds the fea-
tures into our 1D convolutional neural network to infer human activity class and 3D human poses.

human speech [10], [19], [25], or daily activity sound [9]. Also,
these approaches basically reconstruct “gestures”, thus are not
designed to estimate more “subtle” differences of poses. This
is because higher level of acoustic signals often lack enough in-
formation to recover finer human poses. Active acoustic sensing
has been also researched to monitor a more detailed level of ges-
ture recognition [18], [22], [27]. However, these methods also re-
quired to put wearable devices to capture a part of a human body.
Inspired by these previous works, we tackle capturing 3D human
poses in a non-invasive manner, given acoustic signals only.

3. Methodology
3.1 Acoustic Human Behavior Estimation

Given only a sequence s = [s1, s2, ..., sT ] of raw audio signals,
this paper tackles two types of tasks to infer human behavior: (1)
inferring detailed human activity class c = [c1, c2, ..., cT ], and (2)
estimating 3D human poses p = [p1, p2, ..., pT ], where ct and pt

represents the action labels and joint 3D positions of frame t, re-
spectively.

The overview of our method is illustrated in Fig. 2. Our pro-
posed framework is made up of an audio feature extraction mod-
ule that encodes raw audio signals into a sequence of acoustic
feature vectors a = [a1, a2, ..., aT ], an action prediction network
fc, and human 3D pose estimation network fp. Both fc and fp

are consisted of a 1D CNN with six convolution layers and two
fully connected (FC) layers to output c = fc(a) or p = fp(a). fc
and fp are trained separately, depending on which task to choose.
With the variable θ that contains all trainable parameters, the
training objective for our classification task takes softmax cross-
entropy lossLclass , while our pose estimation task uses MSE loss
Lpose(θ) = 1

T Σ
T
i (p̂i − pi)2, Here, L denotes loss function, T in-

dicates the number of samples, p̂ represent ground-truth of pose.
The following subsections describe the active acoustic sensing in
Sec. 3.2 and audio features that are fed into fc and fp in Sec. 3.3.

3.2 Active Acoustic Sensing
Suppose we have a known sound source and a microphone.

The sound emitted from the source bounces off objects in the
space and reaches the microphone. Hence, the recorded signal
reflects information about the structure of the scene and the po-
sition and shape of the objects in the scene. The information we
want is the change made to the original sound generated from the
source until it is captured by the microphone, which is equivalent
to the problem of identifying the room impulse response (RIR),
the system transfer function of the environment. Since measuring
the RIRs for any given state in advance is impossible, we estimate
them using our network in an active acoustic sensing manner.

Following succeeded existing active acoustic sensing [18], we
transmit a modulated acoustic signal and pre-process the received
signal to emulate RIR. This is a similar approach with “chirp
signal” generally applied to FMCW radar which transmits lin-
ear sweep frequency-modulated signals. We specifically use time
stretched pulse (TSP) as our sound s′(t), which is a kind of swept
sine waves designed for RIR measurements.

s′(k) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp(
−4π jmk2

N2 ) (0 ≤ k ≤ N
2

),

s
′∗(N − k) (

N
2
< k < N),

(1)

where N is the entire waveform length (number of samples), m
is a parameter that determines the pulse length of the TSP, k is
a parameter that determines a frequency, and superscript ∗ repre-
sents a complex conjugate. The inverted TSP signal is defined as
a complex conjugate of the TSP signal in a frequency range. For
measurement, s′(k) is subjected to inverted Fourier conversion
and thereby converted into a signal that takes time as a parameter.
The converted signal is reproduced and used. In our system, we
emitted TSP signal with the sampling rate 48 kHz.

To effectively capture the 3D structure of the scene, we used
a single ambisonics microphone, which consists of four micro-
phones. Each acoustic signal was synchronized and exported as a
b-format that has four channels of signals representing a different
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(b) Received Multichannel Signal(a) Transmitted TSP Signal

(d) Intensity Vector(c) Log-Mel Spectrum
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Fig. 3 Signals and features. (a) The transmitted signal is a time stretched

pulse (TSP) signal. (b) The multichannel received signals are trans-
formed as (c) log Mel spectrum and (d) intensity vector, which are
concatenated to be fed into our network.

microphone polar pattern, pointing in a specific direction.

3.3 Audio Signal Features
To generate the sequence of the audio feature vectors a =

[a1, a2, ..., aT ] as input to our network, one straightforward way
would be to directly feed raw signals into a CNN as attempted be-
fore in [2] for audio feature learning. However, the multichannel
audio that we use is far richer than the monaural sound assumed
in their work; hence, it is more important to extract the informa-
tion needed to make learning stable. Therefore, we extract the
(i) intensity vector Iintensity that has b × 3 dimension, including
three channels of (x, y, z)-directional components, and (ii) the log
Mel spectrum Ilogmel with b × 4 channels that are often used for
sound source localization and audio event detection, respectively.
Here, b denotes the number of frequency bins. Since the range of
each signal is different between the intensity vector and log Mel
spectrum, we standardized them before concatenation. The same
standardization is applied at the validation and test time. The fi-
nal a is then computed to be a b × 7 tensor. We use b = 128 in
our implementation.

Intensity Vector. The acoustic signal s(t) that we capture
includes four channels: w, x, y, and z. These four-channels of
signals include omni-directional, , XYZ-directional components.
The instantaneous sound intensity vector can be expressed as
Î = pv, where p is the sound pressure obtained from w and
v = (vx, vy, vz)T is the particle velocity vector obtained from x, y,
and z. This intensity vector represents the acoustical energy di-
rection of a sound wave. Hence, it can be used to estimate the
direction of arrival (DoA) of the sound source, which would be
a clue to perceive the scene geometry. In order to concatenate
the intensity vector and the log Mel spectrum that we describe
later, following [3], we compute intensity vector in the short-time
Fourier transform (STFT) domain and the Mel space as follows:

Î( f , t) = R

W∗( f , t) ·


X( f , t)
Y( f , t)
Z( f , t)


 , (2)

Î′(k, t) = Hmel(k, f )
I( f , t)
||I( f , t)|| , (3)

where W, X,Y,Z are the STFT domain of w, x, y, z, respectively.
R{·} indicates the real part, ∗ denotes the conjugate, k is the index
of the mel bins, Hmel is the mel-bank filter, and || · || represents
L1 norm. We then standardize Î(k, t) as follows to extract final
intensity vector I that we input into the network:

Iintensity
i =

Î′i − Î′

α
, α =

√√√
1
T

T∑
i=1

(Î′i − Î′)2 (4)

where Iintensity
i , Î′i denote ith frame of intensity vector feature af-

ter/before standardization and T represents the number of data
samples.

Log Mel Spectrum represents an acoustic time-frequency
representation and is known for its better performance as the in-
put of convolutional neural network. The Fast Fourier Transform
is performed over the received audio signal s(t), and we convert
it to the Mel scale as follow:

Imel(k, t) = Hmel(k, f ) · F (s( f , t)), (5)

where k is the index of the Mel bins and Hmel represents the Mel-
bank filter, and F is the Fourier transform operation. We then
convert it to log scale, and standardize the feature as follows:

Îlogmel = ln(Imel) (6)

Ilogmel
i =

Îlogmel
i − Îlogmel

α
, (7)

α =

√√√
1
T

T∑
i=1

(Îlogmel
i − Îlogmel)2, (8)

where Ilogmel
i and Îlogmel

i denote i-th frame of log Mel spectrum
after/before standardization and T represents the number of data
samples.

4. Experimental Settings
4.1 Datasets

Motion Capture Suits Dataset. We captured a large set of
acoustic measurement data synchronized with Mocap data cap-
tured with eight cameras (OptiTrack Prime 17W). As shown in
Fig. 4, we used a pair of ambisonics microphone (Zoom H3-VR)
and loudspeakers (Sanwa Supply MM-SPU9BK). The acoustic
signals were captured in an echoic chamber environment, where
the reverberation or other noise can be reduced. The dataset is 1
hour long (equal to 3.6K frames with 10 fps of the frame rate). It
consists of eight subjects who were asked to wear Mocap suit and
stand between a microphone and loudspeakers while the subjects
take action.

In the classification dataset, the subjects took four types of dif-
ferent actions (, standing, sitting, bowing, and even not existing).
In the 3D pose estimation dataset, the subjects performed various
complex poses: walking, sitting, bending forward, raising both
hands, and transitioning between all of these motions. While
we labeled each frame in classification datasets following most
vision-based methods, note that our 3D pose estimation frame-
work does not require segmenting the pose sequences or labeling
them. For pose ground-truth annotation, we used the skeleton of
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Ambisonics
Microphones

Loudspeakers

Motion Capture 
Cameras

Fig. 4 The setup of our experiments. We used a single pair of loudspeak-
ers and an ambisonics microphone for emitting and receiving audio
signals. Subjects were asked to stand between a microphone and
loudspeakers while the subjects take action. The ground truth poses
were captured via a motion capture system with eight cameras.

21 joints including head, neck, shoulders, arms, forearms, hands,
hips, legs, foots, toes, pelvis, and spine. This paper uses this
dataset for both training and testing.

In Plain Clothes Dataset. To further showcase our methodâs
applicability, we also tested our method on the acoustic signal
captured with subjects who do not wear Mocap suits. Although
audio signals do pass through normal clothes, the signal attenu-
ation or diffraction may change, depending on what the subjects
put on and whether their clothes are tight-fitting. Two subjects
were asked to put on plain clothes and act the same as the motion
capture suits dataset. Since this dataset does not include ground-
truth poses, it is used only for testing purposes.

4.2 Baseline Methods
There is no existing work on 3D full-body human pose esti-

mation from low-level acoustic signals without any environmen-
tal sound such as human speeches or music. Therefore, follow-
ing [10], we compare our network model against the approaches
that use audio signals that include music [14], [25]. Both net-
works were trained with our own dataset for fair architecture com-
parisons. The detail of each method is as follows:

• ResNet50-based [14]: Following [14] that investigates effec-
tive CNN-based network architecture for audio classification,
we used ResNet50 based baseline.

• Shlizerman [25]: We compare our network against one of
the state-of-the-art methods for capturing 2D hand and arm
poses from passively captured acoustic music [25]. The net-
work employs a unidirectional single layer LSTM and a fully
connected layer. To train the network with our own dataset,
we modified the input and the last layer of the network so that
the network takes our audio feature and outputs 3D poses as
regression.

4.3 Evaluation Metrics
For human pose estimation task, we use three types of met-

rics to evaluate our method: root mean square error (RMSE),
mean absolute error (MAE), and percentage of correct key

Table 2 Human action recognition results.

Method Accuracy(%)

ResNet50-based [14] 88.36
Ours 89.38

points (PCK). RMSE and MAE measure the average magnitude
of the error and the absolute differences between predicted and
actual observation of each human joint as:

RMSE =

√
1

T J
ΣT

t=1Σ
J
j=1(x j

t − x̂ j
t )2, (9)

MAE =
1

T J
ΣT

t=1Σ
J
j=1|x

j
t − x̂ j

t |, (10)

where x j
t is the jth joint position of the estimated pose and x̂ j

t is
the ground truth. The length of the data and the number of total
joints are denoted as T and J, respectively. PCK measures the
percentage of the predicted joint locations that are within a spe-
cific range from the ground truth. Specifically, this paper applies
PCKh@0.5 score that uses a threshold=50% of the head–neck
bone link.

4.4 Implementation Details
Audio Signal Features. We used librosa [21] as an audio sig-

nal processing library. In the main experiments, we sampled
acoustic frames to extract audio features at 30 fps for the clas-
sification task, while we used 10 fps for the pose estimation task.

Networks and Training. We use Adam [17] to optimize our
network with learning rate 0.003. The network function typi-
cally converges after 100 epochs, which takes about an hour for
pose estimation and about 10 minutes for pose classification on a
GeForce GTX 1080 Ti.

5. Experiments and Results
We conducted five different experiments to investigate our

method’s efficacy: (1) performance comparison with a baseline
method in classification task, (2) comparison with a baseline
method in pose estimation task, (3) ablative analysis regarding the
audio features, and (4) investigating about the trade-off between
the length of time window and estimation accuracy. While these
four tests use motion capture suits dataset that includes ground
truth, we also conducted (5) qualitative analysis with “in plain
clothes” dataset for pose estimation task.

Comparison with Baseline in Action Classification. We first
investigated the efficacy of our action recognition network fc. We
trained fc with the data of randomly selected four subjects and
tested the data from two subjects. As shown in the quantita-
tive results in Table 2, we can see our model infers human action
classes with 89.38% of estimation accuracy, which outperforms
the ResNet50-based baseline by 1.02 points. We consider that our
effective audio feature extractor enables the lightweight network
with fewer layers when compared with baselines to better fit to
capture human actions.

Comparison with Baseline in Pose Estimation. Same as
the previous experiment, we use a four-two subjects data split.
The quantitative results are shown in Table 3 that shows that our
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Fig. 5 Qualitative results in pose estimation with motion capture suits dataset. While the baseline method
fails to reconstruct finer poses, our method outputs closer poses to ground truth.

Table 3 Human 3D pose estimation results.

Method RMSE(↓) MAE(↓) PCKh@0.5(↑)
Shlizerman [25] 1.17 0.65 0.53
Ours 0.59 0.36 0.72

method outperforms Shlizerman ’s model. We also present qual-
itative results in Fig. 5. As the green arrows show, Shlizerman
’s model was not able to reproduce finer human poses like “bow-
ing” (see the leftmost plot which is outputting the transition-like
pose between bowing and sitting). Also, Shlizerman ’s model of-
ten fails to estimate finer poses such as “hand rising” pose (see
the rightmost plot shown with the red arrow). In contrast, our
method outputs closer poses to ground truth. We consider that
our network model with six convolution layers and two FC layers
perceives finer poses compared with the baseline network with a
single LSTM and FC layers.

Ablative Analysis. Our method uses two types of acoustic fea-
tures, , intensity vector and log Mel spectrum, as described in 3.3.
This ablation test investigates the effect of these two features for
both classification and 3D pose estimation task. To this end, we
trained our model in three settings with audio features sampled
with 30 fps for the classification, and 10 fps for the pose estima-
tion: (i) full set, (ii) exclude intensity vector, and (iii) exclude
log Mel spectrum. As indicated in Table 4, the combination of
both two features results in the best estimation accuracy, while
intensity vector was of more critical importance regarding per-
formance.

Investigation on FPS for Feature Extraction. As described

Table 4 Ablative analysis results.

Recognition 3D Pose Estimation

Method Accuracy RMSE MAE PCKh@0.5
(%) (↓) (↓) (↑)

Ours 89.38 0.59 0.36 0.72
w/o Iintensity 87.55 0.69 0.42 0.63
w/o Ilogmel 88.47 0.65 0.39 0.69

Table 5 Investigation on FPS for feature extraction.

Method RMSE(↓) MAE(↓) PCKh@0.5(↑)
Ours (10 fps) 0.59 0.36 0.72
Ours (20 fps) 0.85 0.48 0.60
Ours (30 fps) 1.06 0.58 0.57

in 3.3, we extract the acoustic features at a fixed window length
(frame rate). A longer window length (i.e., lower frame rate) pro-
vides more information per window due to the increase in the
number of samples, but at the same time, the temporal resolu-
tion per window decreases, which may result in degradation of
the estimation accuracy. We empirically investigate the optimal
window length. Table 5 shows the results with 10, 20 and 30 fps.

As the table shows, the model trained with the features with 10
fps achieved the highest performance, and the accuracy decreases
as fps is increased. However, note that our model trained with 30
fps still outperforms the baseline model trained with 10 fps (see
Table 3 for the performance by the baseline), which shows the
efficacy of our model.

Evaluation with In Plain Clothes Dataset. To show our ap-
proach’s possibility to work with real-world data, we further test
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Fig. 6 Qualitative results in pose estimation with “in plain clothes” dataset. Our method reconstruct poses
closer to ground truth compared with the baseline method. The results show that our acoustic sens-
ing system and the inferring model are robust to the clothes that the subjects put on.

our method on the “in plain clothes” dataset described in Sec. 4.1
in which the subjects were asked not to wear Mocap suits. As
shown in Fig. 6, our approach produces better poses than the
baselines in varied cases, including “T-pose” (see the second and
third from the left, shown with the green arrows) and “sitting”
(see the rightmost plot, annotated with the red arrow). The results
show that our acoustic sensing system and the inferring model are
robust to the clothes that the subjects put on, which shows the po-
tential of our system to be used in real-world data.

6. Discussion and Limitations
This paper explored the ability to capture human behavior us-

ing low-level acoustic signals. While we showed promising re-
sults in this paper, there remain some limitations. This section
discusses them to give some promising directions to future re-
search.

Frequency Range Used for TSP Signals. For active acoustic
sensing, we emitted TSP signals with audible range of signal fre-
quency. However, we are planning to test our system with over 20
kHz, which is inaudible to the human ear and hence the approach
can be entirely silent to the user.

Practicality of the Approach. In this paper, as the first step
toward tackling the new task, we have conducted experiments in
an echoic chamber environment, where the reverberation or other
noise can be reduced. However, in order to test the practicality in
more general situations, we plan to use data recorded in natural
reverberant rooms with more noise and echoes.

Spatial Resolution. Due to the longer wavelength compared
with other modalities, , visual spectrum or RF/WiFi, the spatial
resolution of the acoustic signal-based approach that we applied
is lower than those other methods. Although this characteristic of
acoustic signal brings an important advantage of the robustness to
occlusions, it results in missing some small motion behaviors of

the targets. Our results showed that changes in arms and legs can
be captured, but we will verify if more detailed changes (such as
hand and head tilt) can be estimated.

Dataset Size. Since we tackled the new task, we captured our
own dataset. Compared with datasets captured with conventional
cameras [4], [8], our data collection process requires audio sig-
nals synchronized with Mocap data, and thus collecting large-
scale datasets would be more difficult. We will explore more
efficient way to collect larger-scale datasets, as well as to auto-
matically generate synthetic data.

7. Conclusion
This work proposes a framework to infer human behavior, ,

action categories or 3D poses of humans, given only low-level
acoustic signals. Our framework uses audio features that include
the direction of arrival of the sound as well as signals that mimic
the non-linear human ear perception of sound. As a result, we
have shown for the first time that it is possible to take low-level
audio signals into a high-level understanding of human behavior
aided by the power of the data-driven approach. Though more
research is necessary to make the approach practical, we believe
that this preliminary work brings to the community a new possi-
bility for acoustic inference of essentially visual information and
remarkable potential for higher-level reasoning based on acoustic
measurement.
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