画像異常検知における事前学習モデルを用いた 特徴抽出に関する考察

小野 拓也,森 純一郎[†] 東京大学大学院 情報理工学系研究科[†]

1 はじめに

画像の異常検知は工業製品の外観検査、医療画 像の診断、監視カメラシステムでの不正な行動 検出など幅広いタスクに応用がなされている。 この分野において従来は教師なし手法が主流で あったが、最近では ImageNet 等の大規模デー タセットで事前学習した CNN による特徴抽出 の有効性が示されている [1],[2]。これらのアプ ローチでは一般に、データ拡張、特徴抽出、次 元削減、異常の推定、などが要素として存在す る。しかしながら、従来研究はいずれも各要素 をヒューリスティックに組み合わせたものであ り、異常検知タスクにおける各要素の有効性に ついては統一的な知見が示されるに至っていな い。本研究では、MVTec データセット [3] を用 い、転移学習アプローチによる異常検知(転移 異常検知)の網羅的な評価実験を行った。その 結果、CNN の深い層かつ主成分分析で寄与率の 低い特徴量が有効であること。それらの特徴量 を元にした k-NN や多変量ガウス分布 (MVG) などの単純な手法で十分な性能が得られること を確認した。

2 手法

転移異常検知の流れは以下のようである。

 訓練済み CNN の活性化層に任意の pooling を適用し1次元特徴を得る

- 抽出した特徴に対して PCA による次元削 減を行う
- 3. 推定モデルを用い、正常データの特徴量と 類似度が低いサンプルを異常と分類する

従来研究では、ImageNet で学習した CNN を 用いた画像からの特徴抽出と MVG による密度 推定によって異常検知精度が向上すること、特 徴量を PCA で次元削減を行い寄与率が小さい 方から採用する negated PCA(NPCA) が有効で あることが示されている [2]。

本研究では、まず事前学習モデルとして ResNet-18と EfficientNet-B5(ENB5)を用いる。 その上で、データ拡張や CNN から特徴を抽 出する際の pooling の方法、PCA による次元 削減における次元サイズ、それぞれについて 比較実験を行い、それらの効果の検証を行っ た。また、推定モデルとして MVG に加えて、 k-NN や Normalizing Flow(NF)[4]を用いて評価 を行った。

3 実験

3.1 データセットと実験方法

MVTec AD は計 15 種の工業製品からなる 5,000 枚ほどのデータセットである。画像に部 分的な破損や染みが存在する場合に異常とみな され、問題設定としては実際の工業製品外観検 査に近い。実験において考慮した各手法とその ハイパーパラメータを表1に示す。すべての組 み合わせを MVTec の 15 クラスに対して実行 すると、実験の総試行回数は 11,550 通りにな る。性能は 15 クラスの平均 AUC で評価する。

A study on Feature Extraction using Pre-trained Deep Convolutional Neural Networks for Image Anomaly Detection

[†] Takuya Ono, Mori Junichiro, The University of Tokyo

			活性化層									
事前学習モデル	ResNet	ResNet-18			3	4	5			all		
	Efficien	EfficientNet-B5			3	4	5	6	7	all		
					次元削減率 [%]							
PCA による次元圧縮	PCA	PCA		20	30	40	50					
	NPCA	NPCA			30	40	50					
	削減な	削減なし										
推定モデル	MVG											
	k-NN	k-NN			近傍数=1,5,10							
	Normal	izing Flow										
表 1: 実験のパラメータ												
次元削減率	0.1 0.2		0.	3		0.4		0.5				
PCA	0.808	0.847	0.	864	. (0.87	73	0.	88	0		
NPCA	0.919	0.956	0.	964	:	0.96	57	0	.97	2		
削減なし			0	.889)							

表 2: PCA による次元削減と AUC

3.2 実験結果

以下では、実験で性能が優れていた ENB5 を 事前学習モデルに用いた際の結果を示す。表 3 に示すように、事前学習した CNN の活性化層 からの特徴抽出については、ENB5 の第 7 層の 特徴を用いる時、性能が最もよい。特徴量の次 元削減について、表 2 に示すように NPCA が 有効であり、削減なしよりも良好な性能を示し た。また、次元削減率は 20% から 50% が適当 である。

活性化層を ENB5 の第 7 層、次元削減を NPCA 50% に固定した上で、表 4 は、近傍数 1 の k-NN および MVG を異常の推定モデルに 用いた時の性能を表している。k-NN では AUC 0.973 の性能を示した。なお近傍数 5, 10 と増 やしたときの性能の向上は確認されなかった。 MVG では AUC 0.975 と最も性能が高く、従来 研究 [2] に従う結果が得られた。

pooling に関して、avg pooling が最もよい結 果になった。また、データ拡張についてノイズ のみのシンプルな方法では AUC は減少したも のの、その差は MVG, k-NN 双方において 0.1 ポイント未満に留まった。よって、転移異常検 知では従来議論されているようなデータ拡張の 重要性は低いと考えられる。

活性化層	1	2	3	4	5	6	7	all
Bottle	0.74	0.84	0.93	0.97	0.99	1.00	1.00	1.00
Cable	0.70	0.71	0.77	0.78	0.80	0.90	0.99	0.99
Capsule	0.73	0.73	0.72	0.90	0.98	0.95	0.98	0.98
Carpet	0.53	0.47	0.47	0.39	0.70	0.99	1.00	1.00
Grid	0.43	0.48	0.41	0.39	0.55	0.76	0.84	0.83
Hazelnut	0.77	0.84	0.82	0.81	0.95	0.98	1.00	1.00
Leather	0.52	0.25	0.34	0.65	0.81	0.98	1.00	1.00
Metal Nut	0.71	0.62	0.81	0.77	0.87	0.94	0.98	0.97
Pill	0.61	0.68	0.69	0.81	0.82	0.80	0.94	0.95
Screw	0.13	0.15	0.35	0.63	0.73	0.85	0.95	0.96
Tile	0.80	0.75	0.92	0.86	0.96	1.00	1.00	1.00
Toothbrush	0.85	0.93	0.94	0.96	0.89	0.89	0.95	0.96
Transistor	0.73	0.80	0.83	0.85	0.92	0.89	0.98	0.98
Wood	0.79	0.79	0.52	0.47	0.82	0.91	1.00	0.99
Zipper	0.59	0.74	0.67	0.87	0.95	0.97	0.98	0.98
平均	0.64	0.65	0.68	0.74	0.85	0.92	0.97	0.97
表 3: k-NN と NPCA 50% による MVTec の AUC								

MVG 0.952 0.957 0.975 0.962 0.972 0.973 0.966		\min	max	avg	$\min + \max$	$\min + avg$	$\max + avg$	$\min + \max + avg$
k-NN (n=1) 0.953 0.955 0.973 0.962 0.960 0.961 0.960	MVG	0.952	0.957	0.975	0.962	0.972	0.973	0.966
	k-NN $(n=1)$	0.953	0.955	0.973	0.962	0.960	0.961	0.960

表 4: pooling と AUC の関係

4 結論

本論文では転移学習アプローチによる異常検 知の網羅的な評価実験を行った。実験の結果、 CNN の深い活性化層における分散が小さい特 徴を選択することで、MVG や k-NN など単純 なモデルにおいて高い性能を得られることが確 認された。今後の展望として、転移学習による 異常領域のセグメンテーション、抽出された特 徴量に対する分析と動作解明、MVTec 以外の データセットに対する有効性の検証などを行っ ていく。

参考文献

- Thomas Defard, Aleksandr Setkov, Angelique Loesch, and Romaric Audigier. Padim: a patch distribution modeling framework for anomaly detection and localization, 2020.
- [2] Oliver Rippel, Patrick Mertens, and Dorit Merhof. Modeling the distribution of normal data in pretrained deep features for anomaly detection, 2020.
- [3] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger. Mvtec ad — a comprehensive real-world dataset for unsupervised anomaly detection. 2019.
- [4] Marco Rudolph, Bastian Wandt, and Bodo Rosenhahn. Same same but different: Semi-supervised defect detection with normalizing flows, 2020.