
Electronic Preprint for Journal of Information Processing Vol.29

Regular Paper

Comparative Evaluation of Dataflow Component Selection
Methods in Distributed MQTT Broker Environment

Shintaro Ishihara1,a) Kazuma Yasuda1 Kota Abe2 Yuuichi Teranishi3

Toyokazu Akiyama1,b)

Received: March 10, 2021, Accepted: September 9, 2021

Abstract: Internet of Things applications often require reducing the communication delay and the traffic between
sensors and actuators. In addition, research and development of dataflow platforms is ongoing. In these platforms, to
meet the aforementioned requirements, geographically distributed dataflow components should be connected appro-
priately using edge computing environments. Existing approaches provide efficient communication considering the
geographical distance using a distributed publish/subscribe broker that uses the peer-to-peer overlay; however, they
do not consider resource information. In this paper, we propose two component selection methods – Multicast and
Anycast – for inter-component communication considering resource information. Multicast selects a component by
collecting resource information before selection, while Anycast selects a component using the aggregated resource in-
formation together with the overlay maintenance. We evaluated the hop count and amount of traffic using each method.
As a result, we clarified that Anycast provides a smaller number of hops than Multicast when the aggregated values
are sufficiently updated or there are sufficient available components. Furthermore, we examined how to use Anycast
and Multicast considering the traffic volume against the sending interval of the component reservation request and the
interval between sending the update query for maintaining the overlay. The sender node can choose the component
selection method based on the number of hops and the traffic volume.

Keywords: edge computing, Pub/Sub, structured overlay network

1. Introduction
To process massive amounts of data generated by Internet of

Things (IoT) devices, various dataflow applications have been
developed. However, there are several challenges in the opera-
tion phase. One challenge is increased running costs including
the cost of traffic to and from the cloud, while another challenge
is unsatisfied application delay requirements due to large com-
munication delays between sensors and actuators. To solve these
problems, leveraging edge computing environments has become
important. For example, the amount of traffic and delay can be
reduced by processing part of data generated from IoT devices in
an intermediate node before passing the data through the cloud
(Fig. 1).

Research and development of a dataflow platform that supports
dataflow application development is ongoing [1], [2], [3]. These
projects exploit edge computing environments and have the po-
tential to solve the above-mentioned challenges. However, most
are strongly coupled with a specific cloud service, and it is diffi-
cult to construct a large-scale platform across multi-domain net-

1 Graduate School of Frontier Informatics, Kyoto Sangyo University,
Kyoto 603–8047, Japan

2 Graduate School of Engineering, Osaka City University, Osaka 558–
8585, Japan

3 National Institute of Information and Communications Technology,
Koganei, Tokyo 184–8795, Japan

a) shintaro.stonefield@gmail.com
b) akiyama@cc.kyoto-su.ac.jp

Fig. 1 Example of inter-component selection on a dataflow platform in edge
computing.

works. In contrast, in Ref. [4], the authors utilized open source
software to construct a platform while avoiding vendor lock-in.
By adopting this approach, a platform can be constructed over
multiple edge/cloud environments. To solve the dataflow applica-
tion challenges in this platform, a component placement method
considering delay and traffic volume should be provided.

The authors of Refs. [5], [6], [7] proposed component place-
ment methods considering application requirements, such as the
delay and the amount of traffic. All of these methods require
resource information (e.g., computational load of a computing
node) of target clusters where the application components are lo-
cated. In Ref. [5], the authors assumed that the platform con-
sists of an edge server cluster in radio access networks. They
achieved appropriate component placement by real-time moni-
toring in each edge server. In their target cluster, the number

c⃝ 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

of edge servers was limited, and the resource information of all
nodes could be obtained. In Ref. [6], the authors proposed a ser-
vice deployment method targeting a specific private edge/cloud.
Although their target cluster was larger than that in Ref. [5], they
assumed centralized management and required resource informa-
tion of the entire network. The authors of Ref. [7] targeted ge-
ographically spread applications, such as a passenger counting
application for a bus service [8]. The target clusters of the com-
ponent placement are clusters located around the bus route; how-
ever, the range of clusters changes for each route. To collect re-
source information in an appropriate range, flexible resource col-
lection is necessary.

PIQT [9], which uses peer-to-peer (P2P) overlay technology,
has two functions that can be used to efficiently collect resource
information. The first is a function that aggregates multiple re-
sponse messages of a multicast message for efficient response
collection, which we refer to as a resource information request.
The second is the ability based on Ref. [10] to use aggregated re-
source information collected by a resource information request
for efficient message routing. Based on these functions, we pro-
pose two component selection methods: Multicast and Anycast.
The Multicast method simply collects information of all avail-
able components by response aggregation, and then selects one
component. Although the delay is increased by sending requests
to all nodes, reliable delivery can be guaranteed. In the Anycast
method, because the aggregation messaging involves the aggre-
gated values updated with maintenance messages, the method can
reach the appropriate component with few hops. However, in this
method, selection failure may occur depending on the accuracy
of the aggregated values. Furthermore, since the maintenance
messages for aggregation messaging are larger than the original
overlay messaging, increased traffic becomes a concern. To ap-
ply the two methods to component selection, the messaging delay
and amount of traffic must be investigated considering the char-
acteristics of the aggregated values.

The contributions of this paper are as follows:
• We investigate the influence of the accuracy of the aggre-

gated values on component selection.
• We measure the message size to obtain aggregated values.
• We investigate the applicability of the Anycast and Multicast

methods.

2. Dataflow Platform
In this section, we describe the assumed dataflow platform

considering edge computing environments. In Section 2.1, we
present an overview of the dataflow platform based on Ref. [7],
and then clarify the functions required for inter-component com-
munication. In Section 2.2, we describe two methods to realize
the required functions.

2.1 Inter-component Communication Requirements
We first present a dataflow application based on Ref. [7]. The

dataflow application can be represented as a dataflow graph, and
Fig. 2 presents an example of such a graph. Each ci (i ∈ N) rep-
resents the type of component that constitutes the dataflow appli-
cation. The dataflow graph may contain several dataflow applica-

Fig. 2 Example of dataflow.

tions. Figure 2 presents two examples of dataflow applications for
improving a bus service using drive recorder data. The first appli-
cation detects the number of people getting on and off the bus. In
this application, each person is detected from the video data cap-
tured by the drive recorder, and the number of people is counted
and stored in the database. The second application detects dan-
gerous driving and notifies it to the driver. These sample applica-
tions can be represented as the set of c0 to c5 in Fig. 2. Hereafter,
we assume the former application and describe the deployment
and connections of components constructing that application in
the dataflow platform considering edge computing environments.

In this paper, a three-layer network is assumed as the edge
computing environment, and the three network layers are the
cloud network, edge network, and device network. The cloud
network connects servers in a cloud computing environment lo-
cated at a distant data center. The edge network connects servers
deployed in a point of presence (POP), while the device network
connects IoT devices. The device and edge networks have a lower
network delay than cloud networks; however, devices have lim-
ited computational resources, and the components are thus dis-
tributed geographically considering the network delay, limited
computational resources, and other factors.

A method to deploy the components in an appropriate net-
work layer considering the required response time and resources
was proposed in Ref. [7]. The authors of Ref. [7] also pro-
posed an inter-component communication method. In this
method, the components are connected via the distributed Mes-
sage Queuing Telemetry Transport (MQTT) broker PIQT [9],
which supports the standardized publish/subscribe (pub/sub) pro-
tocol MQTT [11]. PIQT uses a P2P structured overlay called
PIAX [12] for communication between brokers deployed in each
network layer. Hereafter, one PIQT broker is represented as a
broker, and its broker ID is represented as Bi (i ∈ N). An exam-
ple of component deployment based on the proposed method for
the assumed dataflow application is illustrated in Fig. 3. Brokers
(Bi) are placed into the computing resources of all network lay-
ers, and the processes of the components (P ci) are then placed
into each computing resource located at the appropriate network
layer. P ci connects with Bi deployed in the same computing re-
source or located in the same network layer, and communicates
with other P ci via Bi using a topic-based pub/sub. To connect
all components deployed in the various network layers, at least
one broker must be deployed in each network layer. However,
if brokers connect with each other without considering the geo-
graphical distance, they may route the message through a broker
deployed at a distant location.

To limit the local communication inside each cluster [13], pro-
poses a clustering method that groups the nodes of an overlay

c⃝ 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 3 Inter-component communication utilizing PIQT brokers.

by utilizing geographical information. For example, brokers lo-
cated in the same POP or nearby POPs are grouped and labeled as
Edge1, Edge2, and so on, and the topics in the overlay are sorted
by the labels in terms of adjacency. Here, a multi-level hierarchy
can also be defined as Edge1/EdgeA and Edge1/EdgeB, and the
target range of the cluster can be defined flexibly for deployed
brokers [13]. However, in this paper, a single hierarchy, such as
Edge1 and Edge2, is used for simplicity. Communication consid-
ering such labels is also supported in PIQT and is assumed in the
following discussion.

As shown in Fig. 3, we assume that multiple components of
the same type are deployed in the proposed system. It enables
resource adjustment considering dynamic changes of required re-
sources. For example, in the bus application, component c1 in
Fig. 2 should be allocated to each bus, however, preparing one
component per bus causes inefficient resource allocation. For re-
source efficiency, we would like to deploy several c1 (the number
is the maximum number of busses servicing simultaneously) and
dynamically allocate one of them to a bus in service. The alloca-
tion should be done considering the bus route and its current loca-
tion. For example, a component in Edge1 should be allocated to a
bus close to Edge1. Furthermore, if we assume an on-demand bus
service, the demands related to Edge1 change more dynamically
depending on the conditions (e.g., weather and bargain sale in
a supermarket), and therefore, the above-mentioned deployment
and allocation strategy becomes important.

Another problem arises in the proposed inter-component com-
munication method when a dataflow application is deployed for
multiple devices and the same type of component is used in mul-
tiple dataflow applications. In the proposed method, components
communicate with each other using a topic, which is the compo-
nent name. Since the topic-based pub/sub transmits a message
to all nodes subscribing to one topic, when multiple components

subscribe to the same topic, the pub/sub cannot transmit the mes-
sage to a single component. This can be resolved by attaching a
unique ID, such as a source device ID, or a data stream ID, to each
component when the device chooses one from candidate compo-
nents. Then, the components can communicate with each other
publishing/subscribing to the unique topic (e.g., “the component
name + the source device ID”). However, since the chosen com-
ponents are monopolized by the source device ID when the com-
ponent does not output data frequently, always reserving a com-
ponent wastes resources, and this application should instead use
a shared component. To consider such resource sharing, appli-
cations should be categorized by the processing style of the data
stream. One type of application handles data frames using the
previous data frames (e.g., comparison of captured video data for
detecting a movement of persons). For this type of application,
because the data stream must be delivered to the same component,
the application should perform reservation-based processing, in
which a data stream is delivered after reserving the component
by a component reservation request. Another type of application
handles each data frame independently. In this case, each data
frame is delivered to any shared components. Both types of ap-
plications require a method to select one component. If a message
can be delivered to a component considering the resource status,
the delivery method can be used for both application types. Thus,
in the following discussion, we assume the case of reservation-
based processing.

2.2 Proposed Methods to Select One Component
As mentioned in Section 1, we propose two component selec-

tion methods: Multicast and Anycast. PIAX provides the Suzaku
overlay proposed in Ref. [14]. As the Suzaku overlay supports ag-
gregating values, such as CPU usage, and provides message rout-
ing based on the aggregated values, a message can be routed to
the component with minimum CPU usage. The Anycast method
has the potential to cause fewer message hops than the Multicast
method. However, in this method, sending a component reser-
vation request before the update query causes component selec-
tion errors due to insufficient updates of the aggregated values.
In other words, the performance of the Anycast method depends
on the accuracy of the aggregated values and the interval of the
component reservation request. In this paper, we investigate the
characteristics of the Multicast and Anycast methods.

3. Component Selection Procedure
In this section, we provide a detailed description of the proce-

dure of the Multicast and Anycast methods. Section 3.1 describes
the relationship between the PIQT brokers and the overlay, while
Section 3.2 explains how PIQT Brokers store the node informa-
tion on the P2P overlay Suzaku, and then describes the multi-
cast query utilizing the overlay and its efficiency. Section 3.3
describes the mechanism of the aggregation messaging provided
by Suzaku, while Section 3.4 describes the component selection
methods, Multicast and Anycast.

3.1 Assumed Environments
Figure 4 displays part of the overlay network created by

c⃝ 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 4 Relationship between PIQT brokers and an overlay network.

Suzaku in the physical environment of Fig. 3. Each broker has
multiple nodes in the overlay. For example, the overlay presented
in Fig. 4 consists of nodes indicating brokers, such as B3. Bro-
ker nodes with subscribers, such as c1|Edge1|B3, are represented
as {topic}|{cluster name}|{broker ID}. The cluster name and bro-
ker ID are automatically added by a broker at the subscription
of the components. In Fig. 4, two P c1 are connected with B2;
however, because they are the same type of component, only one
c1|Edge1|B2 is registered to the overlay. Here, B2 can correctly
obtain the status of P c1 because they are directly connected.
When B2 receives a message, B2 delivers it to an appropriate P c1

considering the status. In the following, we focus on component
selection in the overlay. It should be noted that c0 is not registered
in the overlay because it only publishes and does not subscribe.

The inter-component messages in Fig. 3 are actually delivered
via the overlay network, as illustrated in Fig. 4. In Ref. [13], the
authors proposed the delegate method, in which message deliv-
ery is delegated to a node located in the target cluster, and mes-
sages are then propagated from the delegated node. This method
can be used to prevent an increase in inter-cluster traffic. Be-
cause the PIQT broker supports the delegate method, we also de-
liver the component reservation request using this method. Fig-
ure 4 presents an example in which P c0 publishes the component
reservation request to a node c1|Edge1|B1 with the topic c1|Edge1
via a broker B0. First, node B0 in the overlay owned by the bro-
ker B0 delegates the processing of the request to c1 in Edge1 us-
ing the delegate method. The delegated node delivers the request
to an appropriate node in the overlay with the Multicast or Any-
cast method. Then, the node receiving the request delivers it to
the component via the MQTT broker embedded within the PIQT
broker. In the following, we describe how to manage nodes in the
Suzaku overlay and how to deliver messages between nodes.

3.2 Inter-broker Messaging in the Suzaku Overlay
In this subsection, we describe how to store a component name

as a topic name and how to deliver messages to the components
subscribing to the topic. We first explain the node management
of the Suzaku overlay and then describe the message delivery uti-
lizing the query provided by the overlay.

Suzaku is a key-order preserving structured overlay network
that is an extended version of Chord# [15]. Each node has a key,

Fig. 5 Active and passive updates in Suzaku.

which is an element of a totally ordered set, and the nodes are ar-
ranged as a ring structure preserving the order of the keys. Each
node also has a successor, which is a pointer to the node with the
next largest key, and a predecessor, which is a pointer to the node
with the next smallest key. To preserve the ring structure, the suc-
cessor of the node with the largest key points to the node with the
smallest key, and the predecessor of the node with the smallest
key points to the node with the largest key.

Furthermore, to improve the efficiency of key search, each
node has two finger tables (FTs). A FT is an array of multiple
pointers to nodes located at a distance of a power of two away.
One FT is a forward finger table (FFT), which stores node point-
ers in the clockwise direction, while the other is a backward finger
table (BFT), which stores node pointers in the counterclockwise
direction. In the following, the key, FFT, and BFT owned by node
u are represented as u.key, u.FFT, and u.BFT, respectively. Here,
let u.FFT[i], u.FFT[i].node, and u.getFFT(i) be the i-th element
of u.FFT, the node pointed to by u.FFT[i], and the function to
obtain the i-th FFT of a remote node u, respectively. Then, as
indicated in Eq. (1), u.FFT[i] is defined as in Ref. [10], which ex-
tends Chord#. Letting k, n ∈ N be the maximum of i and the total
number of nodes, k becomes ⌈log2 n⌉ − 1.

u.FFT[i] =


u.node (i = −1)

Successor (i = 0)

u.FFT[i − 1].node.getFFT(i − 1) (i > 0)

(1)

To maintain the FTs, the node sends update queries to the nodes
in the FTs when joining/leaving the ring. In addition, each node
regularly sends update queries to detect node failures and fix the
FT. When a node joins the ring, it sends update queries in the
following order: FFT[0], BFT[0], FFT[1], BFT[1], . . . , FFT[k],
BFT[k]. When a node leaves the ring, it sends update queries to
nodes with a pointer to itself. In the case of regular updates, each
node sends update queries to FFT nodes in the following order:
FFT[0], FFT[1], . . . , FFT[k]. There are two types of updates: ac-
tive and passive updates. In an active update, the node updates
its own FT utilizing the reply to the update query. In a passive
update, the FT of the node receiving the update query is updated.
Two examples of active and passive updates in Suzaku are pre-
sented in Fig. 5. Figure 5 presents the ring when n is set to 16.

c⃝ 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 6 Example of Multicast method.

Each node has Ni as a key and is connected in dictionary order
of the key. For example, when N0 updates FFT[2], N0 sends an
update query to N4, and then uses the reply to the query to update
N0.FFT[2]. This is an active update. In contrast, a passive update
is performed when the node receives the update. For example, N4

updates N4.BFT[2], which points to the sender node N0, using
the information included in the received update query.

In Suzaku, messages are delivered by utilizing the range query,
as in Chord#. An example of delivering a message from N0 to the
nodes N2, N3, . . . , N8 in Fig. 5 is explained as follows. First, N0

generates a range of [N2.key, N9.key), which signifies N2.key ≤
key <N9.key. N0 divides the generated range based on the keys of
the nodes included in N0.FT, and then sends a range query to each
node specifying the divided range. In this case, the ranges pro-
vided to N2, N4, and N8 are [N2.key, N4.key), [N4.key, N8.key),
and [N8.key, N9.key), respectively. These are performed recur-
sively, and the message is finally delivered to all nodes in the
search range. The reply to the query traces back the delivery path
of the query to N0 while aggregating replies in each range.

Now, we describe message delivery between PIQT brokers us-
ing the range query of Suzaku. If brokers and components are
deployed as illustrated in Fig. 3, the overlay presented in Fig. 6 is
constructed. As described in Section 3.1, a broker is registered as
a key Bi, where Bmin < Bi < Bmax. c1|Cloud1|B6, c1|Edge1|B1,
c1|Edge1|B2, and so on presented in Fig. 6 indicate the keys in the
overlay. The nodes in the overlay are arranged with the keys in
dictionary order arranged by topic, cluster name, and broker ID.

An example of PIQT messaging is provided below, where
a message is delivered from B0 to the nodes with c1 lo-
cated at Edge1. First, B0 generates [{c1|Edge1|Bmin}.key,
{c1|Edge1|Bmax}.key) as a search range. Then, it dele-
gates the range to c1|Edge1|B1. The delegated node di-
vides the range to [{c1|Edge1|B2}.key, {c1|Edge1|B3}.key) and
[{c1|Edge1|B3}.key, {c1|Edge1|Bmax}.key), and then sends range
queries to c1|Edge1|B2 and c1|Edge1|B3. The node c1|Edge1|B3

recursively sends a range query to c1|Edge1|B4 with a range of
[{c1|Edge1|B4}.key, {c1|Edge1|Bmax}.key). Then, the receiving
brokers recursively deliver the message to the directly connected
components.

Table 1 FT of c1 |Edge1|B1.

FT[i] Aggregation range
Aggregation labels:
Aggregated values

FFT[−1] [{c1|Edge1|B1}.key, {c1|Edge1|B2}.key) c1|Edge1 : 1
FFT[0] [{c1|Edge1|B2}.key, {c1|Edge1|B3}.key) c1|Edge1 : 1
FFT[1] [{c1|Edge1|B3}.key, {c1|Edge2|B5}.key) c1|Edge1 : 2

FFT[2] [{c1|Edge2|B5}.key, B0)

c1|Edge2 : 1
c2|Edge1 : 1
c2|Edge2 : 1
c3|Cloud1 : 1

FFT[3] [B0, {c1|Edge1|B1}.key) c1|Cloud1 : 1
BFT[0] [{c1|Cloud1|B6}.key, {c1|Edge1|B1}.key) c1|Cloud1 : 1
BFT[1] [B6, {c1|Cloud1|B6}.key) null
BFT[2] [B4, B6) null

3.3 Aggregated Values Maintained in Each Finger Table
(FT) of Suzaku Nodes

Aggregated values are the values in each FT[i], which is main-
tained by Suzaku nodes. A specified attribute value is aggregated
with a specified function. The node range to be aggregated by
each FT[i] is [FT[i].node.key, FT[i + 1].node.key). The overhead
to aggregate values is smaller than querying because the aggrega-
tion is performed along with overlay ring maintenance. In other
words, after a FT update, the aggregation results are cached in the
FT. In the following, we describe the mechanism for maintaining
aggregated values.

In the following notation, u.value represents the specified
attribute value of node u, FFT[i].range represents the aggre-
gation range of FFT[i], and FFT[i].value is a cached value
of the aggregated values. FFT[i].range is [FFT[i].node.key,
FFT[i + 1].node.key), and contains 2i nodes clockwise from
FFT[i].node.key. BFT[i].range is [BFT[i].node.key, BFT[i −
1].node.key), and the number of nodes is 2i−1 (1 if i = 0). As
an example, Table 1 presents the aggregation ranges and aggre-
gated values in the FT of node c1|Edge1|B1 in Fig. 6. In Table 1,
the number of components connected to the broker is a target
value for the aggregation, and each node aggregates the num-
ber of components labeled {topic}|{cluster name}. FFT[-1] points
to itself, and the aggregation range only contains its own node.
Therefore, u.FFT[-1].value = u.value. Here, the accuracy of the
aggregated values depends on the frequency of FT updates. For
example, when an active update of {c1|Edge1|B1}.FFT[2] is exe-
cuted, the node c1|Edge1|B1 (requester) generates the aggregation
range [FFT[0].node.key, FFT[1].node.key), and then prepares ag-
gregated values of FFT[-1], FFT[0], and FFT[1] for a passive up-
date of the node c1|Edge2|B5 (responder). Then, the requester
sends an update query including the range and the aggregated val-
ues to the responder. The responder receives the query and sends
an update query reply including the aggregated values to the re-
quester. At the same time, the responder c1|Edge2|B5 updates the
aggregated values of {c1|Edge2|B5}.BFT[2] based on the update
query.

The accuracy of the aggregated values should be discussed to
evaluate their effectiveness. When an update query of FFT[k]
is sent, the responder must prepare aggregated values FFT[0],
FFT[1], . . . , FFT[k−1]. Whereas FFT[-1] always contains the lat-
est value, the others, such as FFT[0], FFT[1], . . . , depend on the

c⃝ 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

status of the FT of the node pointed to by FFT[i]. Here, let T sec-
onds be the interval between sending update queries. One node
takes (k + 1)T seconds to update all aggregated values after a tar-
get value change at a certain node since all the aggregated values
of FFT must be updated. Furthermore, to update the values cor-
rectly, the aggregated values of the other nodes to be used must
also be correctly updated. For example, if {c3|Cloud1|B6}.value
is changed, to update {c1|Edge1|B1}.FFT[2] correctly, the ag-
gregated values {c1|Edge2|B5}.FFT[0] and {c1|Edge2|B5}.FFT[1]
must be updated. From the above, at worst, (k + 1)2T seconds
are required to correctly update all aggregated values of all nodes
after a target value change at a given node. For example, if T is
set to 60, which is the default value of PIAX, and the number of
nodes is 100, it will take more than 1 hour to correctly update all
aggregated values. T must be set appropriately depending on the
accuracy requirements of the use case.

3.4 Component Selection Methods
In this subsection, we present two methods to select a compo-

nent: the Multicast method, which aggregates the component in-
formation by utilizing a range query described in Section 3.2, and
the Anycast method, which utilizes aggregated values described
in Section 3.3. Here, to reduce the number of wasted hops, we
also use the delegate method proposed in Ref. [13]. In both meth-
ods, a sender first delegates the selection to the delegated node in
the search range, and the delegated node then selects a compo-
nent based on each component selection method. Hereafter, the
delegated node is called a sender.
3.4.1 Multicast Method

In the Multicast method, the sender collects the resource in-
formation affecting the components using a range query, and
then delivers the request to the appropriate component consid-
ering the corrected information. Figure 6 presents the procedure
in which c1|Edge1|B1, which is delegated the component reser-
vation request from B0, collects the candidate list of c1 located
at Edge1, and transmits the request to the selected node. First,
c1|Edge1|B1 sends a resource information request with the range
[{c1|Edge1|Bmin}.key, {c1|Edge1|Bmax}.key) and receives an ag-
gregated reply. Then, it sends a component reservation request.
In the following, the resource information request and its reply
are called InfoReq and InfoRep, respectively. In the Multicast
method, although the sender must send InfoReq to all candidate
nodes once, the sender can select the appropriate component reli-
ably.
3.4.2 Anycast Method

In Ref. [10], the authors proposed a conditional multicast deliv-
ering the message to nodes that match conditions utilizing aggre-
gated values. By extending the conditional multicast, we propose
the Anycast method, which sends the message to only one node
selected from the matching nodes.

Algorithm 1 presents the procedure of the Anycast method.
Variables r, rmin, and e represent the search range, the minimum
key of the search range, and an element of FT, respectively. The
match function returns a Boolean value based on whether e.value
meets the conditions. selectOne, without definition here, has the
selection logic to select an element from multiple candidate ele-

Algorithm 1 Anycast method using aggregated values
1: ▷ r: a search range
2: ▷ rmin: minimum key in r
3: ▷ match: function to return Boolean true if value meets the conditions
4: ▷ selectOne: function to select one from candidate nodes
5: ▷ e: one element of FT
6: function condAnycast(r, match, selectOne)
7: candidateElems← [e|(e ∈ FT)∧ match(e.value) ∧ (e.range ∧ r , ∅)]
8: if candidateElems is not empty then
9: selectedElem← selectOne(candidateElems)

10: if selectedElem.node is FFT[−1].node then
11: ▷ Finish selection
12: else
13: selectedElem.node. condAnycast((selectedElem.range ∧ r), match,
selectOne)

14: end if
15: else
16: r← initializes a range
17: FFT[−1].node. condAnycast(r, match, selectOne)
18: end if
19: end function

Fig. 7 Example of Anycast method.

ments, and can be switched for different purposes. Simple strate-
gies to select a proper node based on the number of components
are described in Section 4.1.

First, the sender node s calls s.condAnycast(r, match, selec-
tOne). candidateElems is the list of elements in FT satisfying
match, and (e.range ∧ r , ∅). selectedElem is an element se-
lected from candidateElems by selectOne. If the selected node
is the current node self (self.FFT[-1]), it finishes the selection.
Otherwise, the current node lets the selectedElem.node call the
condAnycast() with a narrower r, which is an intersection of se-
lectedElem.range and r. The message is delivered recursively and
is finally received by a single node that satisfies the conditions. If
there is no candidate element with a candidate component, the
selection is considered a failure, and the current node retransmits
from itself by initializing the range.

Figure 7 presents an example of delivery with the Anycast
method in the same environment as in Section 3.2. The condi-
tions specified by the match function here are that the aggregation
labels contain the group c1|Edge1|. In this example, selectOne
is defined to select a node with larger aggregated values for the
label (i.e., with a large number of candidate nodes). From Ta-
ble 1, which presents the FTs of the delegated node c1|Edge1|B1,
FFT[0].value has one candidate, and FFT[1].value has two can-
didates. In this case, the FFT[1].node is selected ((1) in Fig. 7).
Then, the selected node FFT[1].node also calls condAnycast(),
and then, c1|Edge1|B3 or c1|Edge1|B4 is selected ((2) in Fig. 7).
Here, if FT elements have the same number of candidate compo-

c⃝ 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

nents, one of them is randomly selected. Furthermore, if multi-
ple nodes call condAnycast() simultaneously, there is a possibil-
ity that the delivery may be biased to a certain node, which may
cause a reservation conflict. To avoid this, we adopt a weighted
random algorithm in selectOne. The algorithms are described in
detail in Section 4.1.

Figure 7 demonstrates that the message can be delivered in two
hops. This signifies that the Anycast method can reduce the num-
ber of hops to half of that of the Multicast case. However, the
performance of the Anycast method depends on the accuracy of
the aggregated values. When the values are insufficiently updated
or the selection logic is not suitable for the aggregated values, the
performance degrades. To verify the effectiveness of the proposed
method, it is necessary to clarify the influence of the accuracy of
the aggregated values and the selection logic on the performance.
Here, CPU usage and memory usage should be used as aggre-
gated values to select the appropriate node based on the resource
usage. However, in this paper, we focus on the influence of the ac-
curacy of the aggregated values on the performance and evaluate
the Anycast method by simply using the component availability
information as the aggregated values.

There is a case in which the performance of Anycast decreases
when the aggregated values are not sufficiently updated. Initially,
all components are available; however, as the reservation pro-
ceeds, the number of remaining candidate nodes decreases. If the
aggregated values are not sufficiently updated, the actual number
of remaining candidate nodes may differ from the aggregated val-
ues. In this case, the selection is more likely to fail. In Section 4,
we investigate the change in the number of hops for the number
of nodes contained in the search range. The total number of nodes
in the overlay also affects the number of hops. In our proposal,
the Anycast method delivers the messages after using the dele-
gate method. Therefore, it only affects the first delegation, and
the performance is estimated as normal Suzaku messaging. For
this reason, the following evaluation focuses on message delivery
from the delegated node (sender) to the nodes in the search range.

4. Comparison of Proposed Component Selec-
tion Methods

In this section, we measure the number of hops and the amount
of traffic using our proposed methods and then consider the ap-
plicability of these methods. In Sections 4.1 and 4.2, we present
the assumption of aggregated values and the details of the selec-
tion logics. In Sections 4.3 and 4.4, the evaluation environment
and procedure are described. The number of hops for the number
of nodes contained in the search range according to the selection
logics is described in Section 4.5. Then, the effect of the accuracy
of the aggregated values on the performance is described in Sec-
tion 4.6. Furthermore, in Section 4.7, we discuss the amount of
increased traffic with an increase in the message size of the update
query to update the aggregated values. Finally, in Section 4.8, we
compare the two methods and discuss their applicability.

4.1 Assumptions and Investigated Points of Aggregated Val-
ues

In this paper, we adopt the number of available components as

the target aggregation attribute, as in Ref. [16]. As mentioned, the
number of hops of messaging using the Anycast method depends
on the accuracy of the aggregated values. In Ref. [16], the authors
clarified that the number of hops converges sufficiently when the
transmission interval of the component reservation request Tw is
longer than (k + 1)T . However, cases in which Tw is between 0
and (k + 1)T have not been examined with sufficient granularity,
and it is difficult to judge the delay required for an application
with a shorter Tw. Thus, in this paper, Tw is set to the range
0 ≤ Tw ≤ (k + 1)T . Although shortening the update query in-
terval T may satisfy the delay requirements of applications with
shorter Tw, it also increases the traffic. Therefore, T should be
set appropriately considering both the delay requirement and the
amount of traffic.

4.2 Details of Selection Logics
In this subsection, we describe the details of the selection log-

ics. The selection logics is used in a function selectOne in Al-
gorithm 1. There may be several strategies to select one ele-
ment from the FT. We consider four strategies: Random, Many,
Few, and Close. Random selects one element randomly. In Al-
gorithm 1, the logic selects one element from candidateElems,
which are elements of the FT filtered by match. However, to in-
vestigate the number of hops without using aggregated values,
the Random strategy is prepared. In this case, match does not fil-
ter candidates for the strategy. Many selects one element using
an algorithm similar to the one described in Section 3.4.2. The
difference is the weighted random algorithm in selectOne illus-
trated in Algorithm 2. While the FT element selected by Many
may have many candidate components in the aggregation range,
it tends to select an element with a larger aggregation range, and
as a result, the candidates reside in distant nodes.

In contrast to Many, Few selects an element with a smaller
value with priority, and the logic tends to select the element with
a smaller aggregation range and send a message with fewer hops.
Close selects the element pointing to the closer node in the over-
lay. Since the aggregated values of close nodes are more fre-

Algorithm 2 Weighting algorithm for each selectOne
1: ▷ candidateElems: stores filtered FT elements and keeps the element order of FT
2: function setWeight(strategy, candidateElems)
3: if strategy is Many then
4: totalNum← sum(e.value | e ∈ candidateElems)
5: for e in candidateElems do
6: e.weight← e.value/totalNum
7: end for
8: end if
9: if strategy is Few then

10: maxNum← max(e.value | e ∈ candidateElems)
11: for e in candidateElems do
12: e.weight← (maxNum + 1) − e.value
13: end for
14: totalNum← sum(e.weight | e ∈ candidateElems)
15: for e in candidateElems do
16: e.weight← e.weight / totalNum
17: end for
18: end if
19: if strategy is Close then
20: maxLevel← max(candidateElems.level(e) | e ∈ candidateElems)
21: for e in candidateElems do
22: e.weight← (maxLevel + 1) − candidateElems.level(e)
23: end for
24: totalNum← sum(e.weight | e ∈ candidateElems)
25: for e in candidateElems do
26: e.weight← e.weight / totalNum
27: end for
28: end if
29: return candidateElems
30: end function

c⃝ 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 8 Overview of the evaluation environment.

quently updated than those of distant nodes, selecting a closer
element leads to using more accurate aggregated values, leading
to a reduction of the number of hops.

As mentioned, we adopt a weighted random algorithm in se-
lectOne, and the method of weighting the elements is different in
Many, Few, and Close. In Random, a weighted random algorithm
is not introduced. Algorithm 2 illustrates the setWeight function
used in selectOne. The logic of Many weights the elements in a
decreasing order of the aggregated values. In contrast, the logic
of Few weights the elements in an increasing order. This is re-
alized by subtracting the aggregated values from the maximum
aggregated values plus 1. Here, if we call i of FT[i] as the level,
the logic of Close weights the elements in an increasing order of
the level of the FT.

4.3 Evaluation Environment
The network layer of the component location is determined by

the component placement method proposed in Ref. [7]. Dataflow
components of bus applications are geographically distributed.
To connect the components located at various locations and to
support local communication in each area, brokers should also be
geographically distributed. In this paper, we assume that brokers
are evenly deployed in all clusters. Although the construction
is simple, it enables an easy analysis of the basic properties of
the aggregated values and the selection logics. In this evaluation,
we prepare three types of components based on an example of a
dataflow application; that is, the number of topics is three. Fig-
ure 8 presents an overview of the evaluation environment.

In Fig. 8, as explained in Fig. 4, each broker can have only
one topic in one cluster in the overlay. To increase the number
of nodes with the same key (Nr) (i.e., the same {topic}|{cluster
name}) in the overlay, the number of brokers with the same key
(which also becomes Nr) should be added. Nr represents a search
range in which the proposed delivery methods search candidate
components. Since the size of Nr greatly affects the performance
of the delivery methods, we change Nr in the evaluation. Al-
though each broker can have different topics in a real environ-
ment, we assume a simple configuration in which every broker
has the same three topics. We focus on analyzing the search
behavior for a specified key prefix {topic}|{cluster name} with a
specified range size Nr, and omit the variation of the topics here.
With this assumption, each cluster has the same number of bro-
kers, Nr. If the total number of brokers is given as Nb, the number
of clusters Nc is as follows:

Nc =
Nb

Nr
. (2)

Since we simply assume that each broker has the same three
topics, each broker registers four nodes to the overlay, including
a broker node. Thus, the total number of nodes in the overlay Nn

can be represented as

Nn = 4Nb. (3)

From the above, Nc and Nn can be calculated from Nb and Nr.
In the following, we evaluate the performance of proposed deliv-
ery methods while changing Nb and Nr.

Here, we construct the overlay using the P2P framework PIAX.
PIAX code is designed to work in a large-scale distributed envi-
ronment. However, verifying our proposal with the code requires
many computing resources. PIAX implements a message level
event simulator without the use of a network [14], and we evalu-
ate the proposed algorithm using the simulator.

4.4 Evaluation Scenario
In this subsection, we describe the evaluation scenarios. As

mentioned, we focus on the reservation request of a specified type
of component and measure the number of hops for the reserva-
tion. As described in Section 3.4, we assume that a delegated
node of a component reservation request is a sender node. The
number of hops in the evaluation targets the message exchanges
after the delegation. As described in Section 3.3, the component
reservation status is used as the aggregated values in the evalua-
tion. Status 0 signifies occupied, while 1 signifies available. The
component status is registered to a broker, and the summation of
the status is provided as a target attribute of the aggregated values.

In the evaluation, one trial involves sending component reser-
vation requests until all components with a specified topic are
reserved based on the component selection methods described in
Sections 3.2 and 3.4.2. Before starting a trial, all aggregated val-
ues are updated by waiting for (k+1)2T seconds. In the Multicast
method, since InfoReq is sent to all nodes in the search range and
InfoRep traces back to the sender node while aggregating the re-
sults, the paths of the query and reply construct a tree. The num-
ber of edges in the tree traced during the query is measured as the
total number of hops in the query phase of the Multicast method.
Since these are sent in parallel, the height of the tree is measured
as the maximum number of hops. Thereafter, the number of hops
in the reservation phase of the Multicast method is also measured.
In Section 4.5, to evaluate the delay due to the number of hops,
the number of hops in the Multicast method is calculated as the
sum of the maximum number of hops in the query phase and the
number of hops in the reservation phase. In Section 4.7, to eval-
uate the amount of traffic, the sum of the total number of hops in
the query phase and the number of hops in the reservation phase
are used. The number of trials is 50, and the number of hops
for the two methods is measured while changing the parameters
presented in Table 2.

In addition, for comparison, we evaluate a method with the
minimum number of hops, which is called the Optimal method.
In this method, we obtain the status of all nodes before evalua-
tion, and the sender then reserves all nodes in the order of the

c⃝ 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 9 Transition in hops due to changes in Nr .

Table 2 Parameters.

Parameter types

Sending interval of the component reservation request: Tw
Number of nodes contained in the search range: Nr

Number of brokers: Nb

smallest number of hops using the information. In the following,
we compare the number of hops between the Optimal, Multicast,
and Anycast methods.

4.5 Number of Hops for the Selection Logics and Nr

In this subsection, we first measure the number of hops for the
selection logics while changing Nr, and investigate the influence
of Nr. Thereafter, to investigate the differences in the number of
hops between the selection logics, we analyze the utilization rate
of each FT element.

Figure 9 presents the measurement results (where Nb = 128).
In each graph, the vertical axis indicates the number of average
hops, while the horizontal axis indicates the number of delivered
component reservation requests. The legends in Fig. 9 represent
the total number of hops and the number of hops for retransmis-
sions in each selection logic. The top and bottom rows illustrate
Tw = 0 and Tw = (k + 1)T results. Nr is set to 8, 16, 32, and 64
by the power of two as in the FT from the left to right columns.
Here, Tw = 0 signifies that no aggregated values are updated. In
this case, we measure the number of hops without the update.

The results indicate that when using the Anycast method, the
number of hops increases with the increase in Nr, and the Tw = 0
results show a greater increase than Tw = (k+1)T . By comparing
the retransmissions between Tw = 0 and Tw = (k+1)T , the Tw = 0
results demonstrate larger hops. This appears to be caused by in-
sufficient updates of the aggregated values. When Tw = 0, the
number of hops in the latter requests, where few available com-
ponents remain, is larger than the Multicast and Optimal methods.
In contrast, even if the accuracy of the aggregated values is low,
the request can reach the target node with few hops when there
are sufficient available nodes. The Close and Few strategies have
this characteristic. In contrast, when Tw = (k + 1)T , the results of

Fig. 10 Utilization rate of each level of finger table (FT) for selection logic
(Tw = 0, (k + 1)T , Nr = 64).

Few and Close demonstrate similar hops to Optimal.
As mentioned, the aggregated values of the FT with a higher

level (i) are updated slowly. We believe that this causes the dif-
ferences in the number of hops among the selection logics. In
Fig. 10, we analyze the utilization rate of each FT node for the
selection logics with the above measurement results in the case
of Tw = 0, (k + 1)T (Nr = 64). In each graph, the vertical axis
displays the utilization rate of each FFT and BFT node, while the
horizontal axis displays the level of FFT or BFT used in the selec-
tion logic. The rates are calculated by dividing the average usage
of each FT element in the 50 trials by their sum.

In Tw = 0, Few and Close, which demonstrate a larger number
of hops, tend to use the FT of the low level frequently, as de-
scribed in Section 4.2. Since the FT of the low level has a narrow
aggregation range, the number of candidate elements decreases.
Therefore, retransmissions frequently occur by using incorrect
aggregated values, and the number of hops is also increased. It
is possible to reduce the number of hops by caching occupied FT
elements based on the reservation results in the implementation;
however, this extension is left for future work. In contrast, Many,
which demonstrates a small number of hops, uses the FT with a
higher level because it has a larger aggregate range. This signifies
that even if it transmits the reservation request to the FT with a
higher level using invalid aggregated values, there are alternative
candidates, and it thus enables fewer retransmissions and hops.

In Tw = (k + 1)T , all logics tend to use FFTs rather than BFTs.

c⃝ 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Few and Close use higher levels around FFT[3] compared to the
result in Tw = 0. It is thought that the logics do not use the
FT of the low level, which is already occupied, and the status is
reflected in the cache by sufficient updates of the aggregated val-
ues. In contrast, Many has a similar utilization rate in Tw = 0 and
Tw = (k + 1)T ; however, it has a larger number of hops. Since it
delivers to nodes with more candidates, even if the selected node
is an available node, the number of hops is increased by repeat-
edly delivering to the FT with a higher level. The number of hops
can be reduced by extending the algorithm; for example, if the
current node satisfies the conditions, it finishes the selection.

Random has the same number of hops even if Tw is changed,
as illustrated in Fig. 9. Since the Random method does not use
the aggregated values, the tendency is not changed. This method
does not have a bias to choose an element, and the number of hops
can be lower than in Few and Close when Tw = 0. In contrast, if
Tw = (k+1)T , the selection logics utilizing the aggregated values
has a small number of hops.

The BFT utilization rate is significantly lower than that of the
FFT in Fig. 10. In this evaluation, since we assume using the del-
egate method, the sender is always located at the left end of the
search range based on the logic in Ref. [13]. Thus, the sender al-
ways uses the FFT as long as it does not fail the selection. When
the selection fails, the node that failed the selection becomes the
sender and retransmits the request. However, in this case, the
sender is not located at the left end, and it is possible to use the
BFT. Therefore, the utilization rate of the BFT in Tw = 0 is higher
than Tw = (k+1)T because the number of retransmissions is larger
in Tw = 0.

The above results indicate that when sufficient updates are per-
formed, Few and Close can reach a node with an available com-
ponent with few hops. Few simply uses the node with a narrow
range but does not always use the neighbor node. Therefore, in
the following, we focus on the only Close method whose logic is
to select the closest node in the overlay, and we investigate the
case in which the Anycast method provides better performance
than the Multicast method.

Here, for both the FFT and BFT, if the level is higher than 6,
the FT is not used, as illustrated in Fig. 10 (where Nr = 64). This
indicates that when the level is higher than log2 Nr, the FFT is not
used. Therefore, the change in Nb, which affects the size of the
FT, has no influence on the number of hops for the Anycast and
Multicast methods.

4.6 Number of Hops for the Accuracy of Aggregated Values
In this subsection, to investigate how the accuracy of the ag-

gregated values affects the performance of the Anycast method,
we measure the number of hops while changing Tw, especially in
the range 0 ≤ Tw ≤ (k + 1)T .

Figure 11 presents the average number of hops when using the
Close logic with the following parameters: Nr = 64, Nb = 128
and Tw = 0,T, 2T, . . . , 8T, 9T . The vertical axis represents the
average number of hops, while the horizontal axis represents the
elapsed time. The results indicate that if Tw = (k + 1)T (= 9T),
it takes 64(k + 1)T (= 576T) seconds to reserve all components.
The results also indicate that a shorter Tw increases the number

Fig. 11 Number of hops for changes in Tw when using the Close logic (Nr
= 64, Nb = 128).

Fig. 12 Update message size comparison with/without aggregated values.

of hops. When Tw = T , the number of hops to reserve all com-
ponents is lower than the result using the Multicast method pre-
sented in Fig. 9. This indicates that the aggregated values to be
used are sufficiently updated and that the Anycast method is more
effective than the Multicast method when Tw ≥ T .

However, when using the Anycast methods, the overlay must
support aggregated values, and it increases the amount of over-
lay maintenance traffic. In the following, to clarify the amount of
traffic, we investigate the message size to be added for maintain-
ing the aggregated values.

4.7 Increased Total Message Size of the Update Query and
Reply of Each FT Element for Maintaining Aggregated
Values

The message for updating the aggregated values of each FT is
included in the update query and the update query reply. As de-
scribed in Section 3.3, since an FT element with a higher level has
a wider aggregation range, it requires a larger update message. In
this subsection, we measure the message size of the update query
and the reply generated during (k + 1)2T seconds in the scenario
described in Section 4.3, where Nb = 128 and Nr = 8.

Figure 12 (a) and (b) present the message size of the update
query and the reply for a level of FT. The vertical axes represent
the average message size of each message sent and received in
(k + 1)2T seconds, while the horizontal axes represent the level
of FT. Error bars indicate the maximum and minimum size. The

c⃝ 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

blue bar represents the size with aggregated values, and the red
bar represents the size without aggregated values. As explained,
the number of nodes included in the aggregation range increases
with an increase in the level of the FT. Since the proposed method
aggregates all values of the nodes in the aggregate range, the more
the level of the FT increases, the more the number of aggregated
label and value sets increases. As a result, the message size is
increased.

As explained in Section 3.2, the update query of the FT ele-
ment is sent with the interval T in the following order: FFT[0],
. . . FFT[k]. Thus, the amount of traffic generated by a node in
(k + 1)T (= 9T) seconds can be calculated by summing all of
the message sizes from 0 to 8 in Fig. 12 (a) and (b) (where k =
8). The total message size with aggregated values becomes ap-
proximately 20.00 KB. By averaging the size, the amount of up-
date traffic generated by a node per second becomes 37.04 B/s
(where T = 60.00). Similarly, the total message size without
the aggregated values becomes approximately 13.80 KB, and the
amount of update traffic generated by a node per second becomes
25.56 B/s (where T = 60.00).

The larger message size increases the communication charges
of carriers. As described in Section 4.5, the FT element that has
a level higher than log2 Nr is not used for the reservation request
delivery. For example, by implementing a function to skip aggre-
gation of the FT with a level higher than log2 Nr, the amount of
traffic can be reduced. This extension is left for future work.

4.8 Consideration of Component Selection Methods
Since both the Anycast and Multicast methods have advantages

and disadvantages, the component selection method should be
chosen according to the condition. In this subsection, we discuss
the condition focusing on the sending interval of the component
reservation request.

We calculate the amount of traffic based on the measurements
in the evaluation to compare the two methods. First, we describe
the variables used in the calculation. Let Ha be the total number
of hops to deliver component reservation requests to all nodes in
the Anycast method, and let Hm be the number of hops in the
Multicast method described in Section 4.4. Here, since all mes-
sage sizes are approximately the same as the size of the update
query without aggregated values, for simplicity of calculation, all
message sizes are represented as S . The total amount of traffic
for the component reservation request in Anycast and Multicast
can be calculated by HaS and HmS .

We calculate the amount of traffic while changing Tw as 0, T ,
2T , 3T in the Close logic of the Anycast method and in the Mul-
ticast method (where S = 800.0 bytes, Nr = 64, Nb = 128). To
calculate Ha and Hm, the average number of hops measured in
Fig. 9 and Fig. 11 is used. Table 3 presents the calculation results
of HaS , HmS .

From HaS in Table 3 (a), since the number of hops decreases,
the amount of traffic for the reservation also decreases with an in-
crease in Tw. From HmS in Table 3 (b), the number of hops does
not depend on Tw, and the amount of traffic for the reservation is
constant. This result demonstrates that even if Tw = 0, HaS is
smaller than HmS because the Multicast method sends the com-

Table 3 Comparison of the amount of traffic for the reservation.

(a) Amount of traffic for Tw and Nr in HaS .

Nr

Tw 0 T 2T 3T

64 920.5 KB 283.3 KB 194.8 KB 182.1 KB

(b) Amount of traffic for Tw and Nr in HmS .

Nr

Tw 0

64 6,450 KB

Table 4 Comparison of the amount of traffic generated per second.

(a) Amount of traffic for Tw and Nr in Atotal.

Nr

Tw T 2T 3T

Ua HaS/TwNr Ua HaS/TwNr Ua HaS/TwNr

8 18.92 36.51 × 10−3 18.92 13.76 × 10−3 18.92 78.59 × 10−4

16 18.92 46.89 × 10−3 18.92 18.11 × 10−3 18.92 10.84 × 10−3

32 18.92 56.75 × 10−3 18.92 21.83 × 10−3 18.92 13.19 × 10−3

64 18.92 62.08 × 10−3 18.92 25.37 × 10−3 18.92 15.81 × 10−3

(b) Amount of traffic for Tw and Nr in Mtotal.

Nr

Tw T 2T 3T

Um HmS/TwNr Um HmS/TwNr Um HmS/TwNr

8 13.08 20.18 × 10−2 13.08 10.19 × 10−2 13.08 67.27 × 10−3

16 13.08 41.67 × 10−2 13.08 20.83 × 10−2 13.08 13.89 × 10−2

32 13.08 84.03 × 10−2 13.08 42.01 × 10−2 13.08 28.01 × 10−2

64 13.08 16.80 × 10−1 13.08 83.98 × 10−2 13.08 55.99 × 10−2

ponent information request to all candidate nodes. Therefore, the
amount of traffic for the reservation in Anycast is smaller than in
Multicast.

As described in Section 4.7, to maintain the aggregated values,
the message size of the update query is increased in the Anycast
method. To investigate the amount of increased traffic, we cal-
culate the amount of traffic for update queries for both methods.
In this calculation, we introduce new variables in addition to the
conditions in Table 3. The amount of traffic generated by up-
date queries per second in the Anycast and Multicast methods is
represented as Ua and Um, respectively. Ua and Um can be calcu-
lated using the amount of update traffic measured in Section 4.7
and Nn. Here, the total amount of traffic per second in Anycast,
Atotal, and Multicast, Mtotal can be represented as follows (where
T = 60.00 and k = 8):

Ua = 37.04Nn (4)

Um = 25.56Nn (5)

Atotal = Ua +
HaS
TwNr

(6)

Mtotal = Ub +
HmS
TwNr

(7)

With the conditions in Table 3, we calculate the amount of traf-
fic while changing Nr to 8, 16, 32, and 64. Table 4 presents the
calculation results of Atotal, Mtotal.

Table 4 presents the amount of traffic for the reservation and
update queries per second separately, while Atotal and Mtotal are

c⃝ 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

the sum of the two. As indicated in Table 4, Ua and Um are dom-
inant in Atotal and Mtotal in every case. In other words, almost
all traffic is generated by update queries, and the total amount of
traffic in Anycast is larger than in Multicast when Tw ≥ T .

Whereas the update query and reply target all nodes in the
overlay (Nn), the reservation request targets only one key prefix
{topic}|{cluster name}, as described in Section 4.3. If we assume
that the reservation requests are sent to all other key prefixes si-
multaneously, the number of hops for each key prefix becomes
similar, as discussed in Section 4.5, and the reservation traffic in-
creases with the number of key prefixes. For example, the reser-
vation traffic becomes 16 (the number of clusters) × 3 (the num-
ber of topics) times larger when Nr = 8. In this situation, when Tw
is approximately the same as T , Anycast produces better results
than Multicast. The results indicate that since Anycast provides a
smaller number of hops than Multicast when Tw ≥ T , the compo-
nent selection method can be chosen at the sender node based on
the importance of the traffic volume using the estimated values.
However, when Tw < T , both Multicast and Anycast increase the
traffic volume and the delay compared to the other situations, and
the additional condition should be considered. The details are
discussed below.

Although the Anycast method can reduce the number of hops,
it increases them in a situation with few available components;
thus, the Multicast method should be used. In contrast, even if
Tw < T , the Anycast method can deliver the component reser-
vation request with few hops when there are sufficient available
components. For example, Fig. 9 (Nr = 64 and Tw = 0) demon-
strates that when there are over 30 available components, the
number of hops of Anycast (Close) is smaller than Multicast.
From this consideration, switching the selection method based on
the remaining components may be efficient, where the Anycast
method is used at the beginning and the Multicast method is used
when the number of available components is reduced. However,
it is currently difficult to determine the switching condition with-
out assuming more concrete application requirements, deployed
environments, and reservation strategies. In future work, it is nec-
essary to investigate the number of hops when Tw < T and to con-
sider a method that combines the Anycast and Multicast methods
for practical environments.

5. Related Work
In Reference [17], the authors also targeted dataflow applica-

tions, and a load-balancing method among the components sub-
scribing to the same topic in the overlay network was proposed.
In the proposed method, each component has an index range, and
when one component publishes a message, it also specifies the
index in addition to a topic. For example, a publisher can choose
a scheduling strategy, such as Round Robin. However, the pub-
lisher can only distribute by the ratio of an index, and load balanc-
ing according to the resource status (e.g., CPU load and memory
consumption) cannot be realized. We propose novel component
selection methods using aggregated component information, and
they have the potential to achieve load balancing considering the
resource status.

P2P-based resource discovery methods include [18] and [19].

In Ref. [18], the authors proposed an efficient resource search
method considering the geographical distance. In this method,
the resource status, such as the CPU usage and memory usage of
the nodes, is stored as a key of the overlay. This method can real-
ize component selection considering the resource status; however,
since such information is often changed, it causes the occurrence
of frequently joining/leaving the overlay, which is a well-known
churn problem. It is thus difficult to store all information as the
key of the overlay. In our approach, this information is collected
using aggregated values, and this method does not directly affect
the overlay structure. In Ref. [19], the authors proposed an effi-
cient service search method for constructing an application con-
sisting of multiple services. In the method, each P2P node has a
matrix of services that groups services frequently used together
in an application. This matrix is updated by agents that are con-
stantly moving between nodes. In our proposal, we use the struc-
tured overlay; however, the problem mentioned in Ref. [19], in
which distributed hash tables cannot realize range queries, was
solved in Suzaku. Furthermore, a more efficient range search can
be achieved in Suzaku.

6. Summary and Future Work
In this paper, we aim to realize inter-component communica-

tion considering resource information in a dataflow platform over
hierarchical networks. We assume two phases in component com-
munication. The first phase is component reservation while the
second phase is actual data transfer. We focus on component
reservation considering resource information, and propose two
component selection methods (i.e., Anycast and Multicast) utiliz-
ing P2P overlay technology.

The Multicast method is able to select an available component
because it collects the resource status of the candidate compo-
nents before requesting. In contrast, the Anycast method realizes
an efficient component selection using the aggregated values up-
dated during overlay maintenance. However, inconsistently ag-
gregated values cause request retransmissions and increased hop
counts. To determine how to choose component selection meth-
ods, we evaluated the number of hops and the amount of traffic,
including the maintenance messages, focusing on the interval of
the component reservation request.

The results elucidate the characteristics of the two component
selection methods. Since Anycast provides a smaller number of
hops than Multicast when Tw is approximately the same as T , the
component selection method can be chosen at the sender node
based on the importance of the traffic volume using the estimated
values. If Tw < T , Anycast can still deliver the component reser-
vation request with few hops when there are sufficient available
components even if the aggregated values are not completely up-
dated. However, in cases in which the available components are
insufficient to avoid an increase in hops, Multicast should be used.
To choose the selection method under the condition Tw < T , the
number of remaining components should also be considered.

To optimize the component selection methods, the switching
of the two methods should be considered as part of future work.
To clarify the switching condition, the component reservation re-
quest under a higher transaction rate (e.g., 0 < Tw < T) should be

c⃝ 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

examined. Furthermore, reducing the update query traffic (e.g.,
removing the unnecessary payload of aggregated values) is also
important in considering a mobile environment.

To realize load balancing using aggregated values, information
on how to aggregate CPU usage, memory usage, disk space, and
other factors should be considered. Such information is likely
to be changed frequently; therefore, further investigation is re-
quired, such as an update interval and aggregation granularity.

In the current implementation, if there are no available com-
ponents in the search range, the retransmissions are repeated. In
actual operation, we should consider introducing TTL and other
parameters to the Anycast method. For example, if the number
of transmissions exceeds the TTL, it is necessary to switch the
component selection method to Multicast to verify whether an
available component remains. Because the total remaining com-
ponents can be counted using the aggregated value cache, a time
series forecasting method can be applied to detect resource short-
age in advance. With such an extension, further improvements
should be applied for use in a practical environment.

As described in Section 4.8, when the interval of the compo-
nent reservation request decreases, the Anycast method creates a
larger amount of traffic, and the number of applicable situations
of the method is reduced. This is mainly caused by the large size
of the FT update query reply message, which includes the entire
aggregation labels and values. In our proposal, since the delegate
method is adopted, only the aggregation labels and values inside
the aggregation range should be collected. This filtering can re-
duce the size of the messages. The message size reduction and its
evaluation is left for future work.

Acknowledgments This work was partially supported by
JSPS KAKENHI Grant Numbers 20H04183 and 20H04186. The
authors would like to thank Enago (www.enago.jp) for the En-
glish language review.

References
[1] Amazon Web Services, Inc.: Amazon Kinesis Data Streams (on-

line), available from ⟨https://aws.amazon.com/kinesis/data-streams/⟩
(accessed 2019-11-09).

[2] Microsoft, Inc.: Azure Stream Analytics (online), available from
⟨https://azure.microsoft.com/services/stream-analytics/⟩
(accessed 2020-06-20).

[3] Google, Inc.: Cloud Dataflow (online), available from ⟨https://cloud.
google.com/dataflow⟩ (accessed 2020-06-20).

[4] Satyanarayanan, M.: The Emergence of Edge Computing, IEEE Com-
puter, Vol.50, No.1, pp.30–39 (2017).

[5] Zhang, W., Li, S., Liu, L., Jia, Z., Zhang, Y. and Raychaudhuri,
D.: Hetero-Edge: Orchestration of Real-time Vision Applications on
Heterogeneous Edge Clouds, Proc. IEEE INFOCOM, pp.1270–1278
(2019).

[6] Ascigil, O., Phan, T.K., Tasiopoulos, A.G., Sourlas, V., Psaras, I. and
Pavlou, G.: On Uncoordinated Service Placement in Edge-Clouds,
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), pp.41–48 (2017).

[7] Ishihara, S., Tanita, S. and Akiyama, T.: A Dataflow Application De-
ployment Strategy for Hierarchical Networks, 2019 IEEE 43rd An-
nual Computer Software and Applications Conference (COMPSAC),
pp.15–19 (2019).

[8] Nakashima, H., Arai, I. and Fujikawa, K.: Passenger Counter Based
on Random Forest Regressor Using Drive Recorder and Sensors in
Buses, IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops) (2018).

[9] PIQT, distributed pub/sub broker (online), available from ⟨http://www.
piqt.org/⟩ (accessed 2020-06-20).

[10] Abe, K.: Proposal of “Conditional Multicasting” using Structured
Overlay Networks, Multimedia, Distributed, Cooperative, and Mobile

Symposium (in Japanese), pp.195–204 (2019).
[11] MQTT (online), available from ⟨http://mqtt.org/⟩ (accessed 2020-06-

20).
[12] Yoshida, M., Teranishi, T., Harumoto, K. and Shimojo, S.: PIAX:

A P2P Platform for Integration of Multi-Overlay and Distributed
Agent Mechanisms, IPSJ SIG Technical Reports 2006-DPS-128 (in
Japanese), pp.43–48 (2006).

[13] Teranishi, Y., Banno, R. and Akiyama, T.: Scalable and Locality-
Aware Distributed Topic-based Pub/Sub Messaging for IoT, Proc.
IEEE Global Communications Conference (GLOBECOM), pp.1–7
(2015).

[14] Abe, K. and Teranishi, Y.: Suzaku: A Churn Resilient and Lookup-
Efficient Key-Order Preserving Structured Overlay Network, IEICE
Trans. Communications, Vol.E102-B, No.9, pp.1885–1894 (2019).

[15] Schutt, T., Schintke, F. and Reinefeld, A.: Range Queries on Struc-
tured Overlay Networks, Computer Communications, Vol.31, No.2,
pp.280–291 (2008).

[16] Ishihara, S., Yasuda, K., Akiyama, T., Abe, K. and Teranishi, Y.: A
Proposal of an Inter Dataflow Component Communication Method us-
ing Distributed MQTT Broker, Multimedia, Distributed, Cooperative,
and Mobile Symposium (in Japanese), pp.1571–1580 (2019).

[17] Teranishi, Y., Kimata, T., Yamanaka, H., Kawai, E. and Harai, H.: Dy-
namic Data Flow Processing in Edge Computing Environments, IEEE
41st Annual Computer Software and Applications Conference (2017).

[18] Shen, H., Li, Z. and Zhu, Y.: PIRD: P2P-based intelligent resource
discovery in Internet-based distributed systems, Proc. IEEE ICDCS,
pp.858–865 (2008).

[19] Mastroianni, C. and Papuzzo, G.: A Self-Organizing P2P Framework
for Collective Service Discovery, Journal of Network and Computer
Applications, Vol.39, pp.214–222 (2014).

Shintaro Ishihara received his M.E. and
Ph.D. degrees in Graduate school of Fron-
tier Informatics from Kyoto Sangyo Uni-
versity, in Japan in 2018 and 2021, respec-
tively. Currently, he is a Research Fellow
of the same university. His research inter-
ests include Edge Computing and IoT.

Kazuma Yasuda received his M.E. de-
grees in Graduate school of Frontier In-
formatics from Kyoto Sangyo University,
in Japan in 2019 and 2021, respectively.

Kota Abe received his M.E. and Ph.D.
degrees from Osaka University, Japan, in
1994 and 2000, respectively. In 1994, he
joined Nippon Telegraph and Telephone
Corporation, Japan. In 1996, he started
working as a Research Associate with
the Media Center, Osaka City University,
Japan, where he has been a Professor with

the Graduate School of Engineering, since 2018. Also, since
2015, he has been a Cooperative Visiting Researcher with the
National Institute of Information and Communications Technol-
ogy. His research interests include distributed systems and sys-
tem software. He received the Information Processing Society of
Japan Best Paper Award in 2013.

c⃝ 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Yuuichi Teranishi received his M.E. and
Ph.D. degrees from Osaka University,
Japan, in 1995 and 2004, respectively.
From 1995 to 2004, he was engaged Nip-
pon Telegraph and Telephone Corpora-
tion. From 2005 to 2007, he was a Lec-
turer with the Cybermedia Center, Osaka
University, where he was an Associate

Professor with Graduate School of Information Science and Tech-
nology, from 2007 to 2011. Since August 2011, he has been a
Research Manager with the National Institute of Information and
Communications Technology and a Guest Associate Professor
with the Cybermedia Center, Osaka University. His research in-
terests include technologies for distributed network systems and
applications. He received the IPSJ Best Paper Award in 2011.

Toyokazu Akiyama received his B.E.,
M.E. and Ph.D. degrees in Information
Systems Engineering from Osaka Univer-
sity, Japan in 1997, 1999 and 2003, re-
spectively. Since 2000, he worked as a
Research Associate (Assistant Professor)
at the Cybermedia Center, Osaka Univer-
sity. Currently, he is a Professor of the

Faculty of Information Science and Engineering, Kyoto Sangyo
University. His research interests include distributed systems and
applications. He is a member of the IEEE Computer Society, IE-
ICE.

c⃝ 2021 Information Processing Society of Japan

