
Cohesion Measures for Aspect-Oriented Programs

Jianjun Zhao
Department of Computer Science and Engineering

Fukuoka Institute of Technology
3-30-1 Wajiro-Higashi, Higashi-ku, Fukuoka 811-0295, Japan

zhao@cs.fit.ac.jp

Abstract

Cohesion is an internal software attribute that can be
used to indicate how tightly the modules of a software com-
ponent are bound together in design and implementation.
Cohesion is thought to be a desirable goal in software con-
struction, leading to better values for external attributes
such as maintainability, reusability, and reliability. Aspect-
oriented software development (AOSD) is a new technique
to support separation of concerns in software development.
AOSD introduces a new kind of component called aspect
which is like a class, also consisting of attributes (aspect
instance variables) and those modules such as advice, in-
troduction, pointcuts, and methods. The cohesion for such
an aspect is therefore about how tightly the attributes and
modules of aspects cohere. To test this hypothesis, cohesion
measures for aspects are needed. In this paper, we propose
an approach to assessing the aspect cohesion based on de-
pendence analysis. To this end, we present various types
of dependencies between attributes and/or modules in an
aspect, and the aspect dependence graph (ADG) to explic-
itly represent these dependencies. Based on the ADG, we
formally define some aspect cohesion measures. We also
discuss the properties of these dependencies, and according
to these properties, we prove that these measures satisfy the
properties that a good measure should have.

1 Introduction

Aspect-oriented software development (AOSD) is a new
technique to support separation of concerns in software de-
velopment [2, 11, 12, 13]. The techniques of AOSD make
it possible to modularize crosscutting aspects of a system.
Aspects in AOSD may arise at any stage of the software life
cycle, including requirements specification, design, imple-
mentation, etc. Some examples of crosscutting aspects are
exception handling, synchronization, and resource sharing.

The current research so far in AOSD is focused on prob-
lem analysis, software design, and implementation tech-

niques. However, efficient evaluations of this new design
technique in a rigorous and quantitative fashion are still ig-
nored during the current stage of the technical development.
For example, it has been frequently claimed that applying
an AOSD method will eventually lead to quality software,
but unfortunately, there is little data to support such claim.
Aspect-oriented software is supposed to be easy to main-
tain, reuse, and evolve, yet few quantitative studies have
been conducted, and measures to quantify the amount of
maintenance, reuse, and evolution in aspect-oriented sys-
tems are lacking. In order to verify claims concerning the
maintainability, reusability, and reliability of systems devel-
oped using aspect-oriented techniques, software measures
are required.

As with procedural and object-oriented systems, we
would like to be able to relate aspect-oriented structural
quality to critical maintainability, reusability, and reliability
process attributes. We need appropriate measures of aspect-
oriented structure to begin to relate structure to process. The
development of measures of structure appropriate to aspect-
oriented software has just begun. One example is the work
of Zhao who developed a suite of dependence-based struc-
tural measures which are specifically designed to quantify
the information flows in aspect-oriented software [14], and
also a coupling measures suite for aspect-oriented software
[16].

Cohesion is a structural attribute whose importance is
well-recognized in the software engineering community. It
is an internal software attribute that can be used to indi-
cate how tightly the modules of a software component are
bound together in design or implementation. In procedu-
ral or object-oriented paradigm, a highly cohesive compo-
nent is one with one basic function and it should be difficult
to decompose a cohesive component. Cohesion is there-
fore considered to be a desirable goal in software construc-
tion, leading to better values for external attributes such as
maintainability, reusability, and reliability. A system should
have high cohesion. Recently, many cohesion measures
and several guidelines to measure cohesion of a component
have been developed for procedural software [3, 10] and for

研究会Temp
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp
2004－SE－144　(27)

研究会Temp
2004／3／19

研究会Temp
－201－

object-oriented software [6, 8, 9, 4, 5].
Aspect-oriented language introduces a new kind of com-

ponent called aspect to model the crosscutting concerns in
a software system. An aspect with its encapsulation of state
(attributes) and associated modules (operations) such as ad-
vice, introduction, pointcuts, and methods is a different ab-
straction in comparison to a procedure within procedural
systems and a class within object-oriented systems. The co-
hesion of an aspect is therefore mainly about how tightly the
aspect’s attributes and modules cohere. However, although
cohesion has been studied widely for procedural and object-
oriented software, it has not been studied for aspect-oriented
software yet. Since an aspect contains new modules such as
advice, introduction, and pointcuts that are different from
methods in a class, existing class cohesion measures can not
be directly applied to aspects. Therefore, new measures that
are appropriate for measuring aspect cohesion are needed.

In this paper, we propose an approach to assessing the
aspect cohesion based on dependence analysis. To this end,
we present various types of dependencies between attributes
and/or modules such as advice, introduction, pointcuts, and
methods of an aspect, and a dependence-based represen-
tation called aspect dependence graph (ADG) to represent
these dependencies. Based on the ADG, we formally define
some aspect cohesion measures. We also discuss the prop-
erties of these dependencies, and according to these proper-
ties, we prove that these measures satisfy the properties that
a good measure should have.

We hope that by studying the ideas of aspect cohesion
from several different viewpoints and through well devel-
oped cohesion measures, we can obtain a better under-
standing of what the cohesion is meant in aspect-oriented
paradigm and the role that cohesion plays in the develop-
ment of quality aspect-oriented software. As the first step
to study the aspect cohesion, the goal of this paper is to
provide a sound and formal basis for aspect cohesion mea-
sures before applying them to real aspect-oriented software
design.

The rest of the paper is organized as follows. Section
2 briefly introduces AspectJ, a general aspect-oriented pro-
gramming language based on Java. Section 3 defines three
types of dependencies in an aspect and discusses some ba-
sic properties of these dependencies. Section 4 proposes an
approach to measuring aspect cohesion from three facets:
inter-attribute, module-attribute and inter-module. Section
5 discusses some related work. Concluding remarks are
given in Section 6.

2 Aspect-Oriented Programming and As-
pectJ

We present our basic ideas of aspect cohesion measure-
ment approach for aspect-oriented programs in the context
of AspectJ, the most widely used aspect-oriented program-

ming language [1]. Our basic ideas, however, deal with the
basic concepts of aspect-oriented programming and there-
fore apply to the general class of aspect-oriented languages.

AspectJ [1] is a seamless aspect-oriented extension to
Java. AspectJ adds to Java some new concepts and asso-
ciated constructs. These concepts and associated constructs
are called join point, pointcut, advice, introduction, and as-
pect.

Aspect is a modular unit of crosscutting implementa-
tion in AspectJ. Each aspect encapsulates functionality that
crosscuts other classes in a program. An aspect is defined
by aspect declaration, which has a similar form of class dec-
laration in Java. Similar to a class, an aspect can be in-
stantiated and can contain state and methods, and also may
be specialized in its sub-aspects. An aspect is then com-
bined with the classes it crosscuts according to specifica-
tions given within the aspect. Moreover, an aspect can in-
troduce methods, attributes, and interface implementation
declarations into types by using the introduction construct.
Introduced members may be made visible to all classes and
aspects (public introduction) or only within the aspect (pri-
vate introduction), allowing one to avoid name conflicts
with pre-existing members.

The essential mechanism provided for composing an as-
pect with other classes is called a join point. A join point is
a well-defined point in the execution of a program, such as
a call to a method, an access to an attribute, an object ini-
tialization, exception handler, etc. Sets of join points may
be represented by pointcuts, implying that such sets may
crosscut the system. Pointcuts can be composed and new
pointcut designators can be defined according to these com-
binations. AspectJ provides various pointcut designators
that may be combined through logical operators to build up
complete descriptions of pointcuts of interest. For a com-
plete listing of possible designators one can refer to [1].

An aspect can specify advice that is used to define some
code that should be executed when a pointcut is reached.
Advice is a method-like mechanism which consists of code
that is executed before, after, or around a pointcut. Around
advice executes in place of the indicated pointcut, allowing
a method to be replaced.

An AspectJ program can be divided into two parts: base
code part which includes classes, interfaces, and other lan-
guage constructs for implementing the basic functionality
of the program, and aspect code part which includes aspects
for modeling crosscutting concerns in the program. More-
over, any implementation of AspectJ should ensure that the
base and aspect code run together in a properly coordinated
fashion. Such a process is called aspect weaving and in-
volves making sure that applicable advice runs at the appro-
priate join points. For detailed information about AspectJ,
one can refer to [1].
Example. Figure 1 1 shows an AspectJ program that as-
sociates shadow points with every Point object. The pro-
gram contains one aspect PS_Protocol and two classes

研究会Temp
－202－

public class Point {
 protected int x, y;
 public Point(int _x, int _y) {
 x = _x;
 y = _y;
 }
 public int getX() {
 return x;
 }
 public int getY() {
 return y;
 }
 public void setX(int _x) {
 x = _x;
 }
 public void setY(int _y) {
 y = _y;
 }
 public void printPosition() {
 System.out.println("Point
 at("+x+","+y+")");
 }
 public static void main(String[] args) {
 Point p = new Point(1,1);
 p.setX(2);
 p.setY(2);
 }
}

aspect PS_Protocol {
 private int shadowCount = 0;
 public static int getCount() {
 return PS_Protocol.aspectOf().shadowCount;
 }
 private Shadow Point.shadow;
 public static void associate(Point p, Shadow s){
 p.shadow = s;
 }
 public static Shadow getShadow(Point p) {
 return p.shadow;
 }

 pointcut setting(int x, int y, Point p):
 args(x,y) && call(Point.new(int,int));
 pointcut settingX(Point p):
 target(p) && call(void Point.setX(int));
 pointcut settingY(Point p):
 target(p) && call(void Point.setY(int));

 after(int x, int y, Point p) returning :
 setting(x, y, p) {
 Shadow s = new Shadow(x,y);
 associate(p,s);
 shadowCount++;
 }
 after(Point p): settingX(p) {
 Shadow s = new getShadow(p);
 s.x = p.getX() + Shadow.offset;
 p.printPosition();
 s.printPosition();
 }
 after(Point p): settingY(p) {
 Shadow s = new getShadow(p);
 s.y = p.getY() + Shadow.offset;
 p.printPosition();
 s.printPosition();
 }
}

class Shadow {
 public static final int offset = 10;
 public int x, y;

 Shadow(int x, int y) {
 this.x = x;
 this.y = y;
 public void printPosition() {
 System.outprintln("Shadow at
 ("+x+","+y+")");
 }
}

Figure 1. A sample AspectJ program.

Point and Shadow. The aspect has three methods
getCount, associate and getShadow, and three
pieces of advice related to pointcutssetting, settingX
and settingY respectively1. The aspect also has two at-
tributes, i.e., shadowCount which is an attribute of the
aspect itself and shadow which is an attribute that is pri-
vately introduced to class Point.

In the rest of the paper, we use this example to demon-
strate our basic ideas of aspect cohesion measurement. We
also assume that an aspect is composed of attributes (aspect
instance variables), and modules2 such as advice, introduc-
tion, pointcuts and methods.

3 Aspect Dependencies

In this section we define various types of dependencies
between modules and/or attributes in an aspect and discuss
some properties of these dependencies.

1Since advice in AspectJ has no name. So for easy expression, we use
the name of a pointcut to stand for the name of advice it associated with.

2For unification, we use the word “module” to stand for a piece of ad-
vice, a piece of introduction, a pointcut, or a method declared in an aspect.

3.1 Dependence Definitions

We define three types of dependencies between attributes
and/or modules in an aspect, that is, inter-attribute, inter-
module, and module-attribute dependence.

Definition 1 Let ��, �� be attributes in an aspect. �� is
inter-attribute-dependent on ��, denoted by �� �� ��, if one
of the following conditions holds:
� The definition of �� uses (refers) �� directly or indi-

rectly, or

� Whether �� can be defined is determined by the state
of ��.

Generally, if �� is used in the condition part of a control
statement (such as if and while), and the definition of ��
is in the inner statement of the control statement, then the
definition of �� depends on the state of ��. For example,
according to Definition 1, we know that there is no inter-
attribute dependence in aspect PS_Protocol of Figure 1.

There are two types of dependencies between aspect
modules: inter-module call dependence and inter-module
potential dependence.

Definition 2 Let ��, �� be two modules and � be an at-
tribute in an aspect. �� is inter-module-dependent on ��,

研究会Temp
－203－

denoted by �� � ��, if one of the following conditions
holds:
� �� is called in ��. (inter-module call dependence)

� � is used in �� before it is defined, and � is defined in
��. (inter-module potential dependence)

Given an aspect, we can not assume which piece of in-
troduction or which method in the aspect might be invoked
before another1. So we assume that all the introduction and
methods in the aspect can be invoked at any time and in
any order. Therefore, if �� might use an attribute �, and
� is defined in ��, and if �� is invoked first and then ��

is invoked, then �� might use � defined in ��, i.e. �� is
inter-module potentially-dependent on ��.

To obtain the inter-module dependencies, for each mod-
ule �, we introduce two sets, ��� and ���� , where
������ is the set of attributes referred before modifying
their values in �, and ���� ��� is the set of attributes
modified in �. Thus, for an attribute � and modules �
and ��, if � � �����

�� ����� ���, then �� � �.
In addition to attributes, since there are four types of dif-

ferent modules in an aspect, i.e., advice, introduction, point-
cuts and methods, there may have the following possible
types of inter-module dependencies, i.e., dependencies be-
tween advice and advice, advice and introduction, advice
and method, advice and pointcut2, introduction and intro-
duction, introduction and method, or method and method.

Example. In order to compute inter-module dependen-
cies in aspect PS_Protocol, we first compute the ��� and
���� sets for each module in PS_Protocol. They are:
��� �getCount� � �shadowCount�, ���� �getCount� � �,
��� �getShadow� � �shadow�, ���� �getShadow� � �,
��� �associate� � �, ���� �associate� � �shadow�,
��� �setting� � �shadowCount�, ���� �setting� �
�shadowCount�, ��� �settingX� � ���� �settingX� � �,
��� �settingY� � ���� �settingY� � �.

Since there also exist inter-module dependencies between each point-
cut and its corresponding advice, we finally get the following inter-module
dependencies in PS_Protocol.

(method getCount� advicesetting), (advice setting� method

associate), (advice settingX � method getShadow), (advice

settingY � advice getShadow), (pointcut setting � advice

setting), (pointcut settingX � advice settingX), and (pointcut

settingY� advice settingX).

Definition 3 Let � be a module and � be an attribute in an
aspect. � is module-attribute-dependent on �, denoted by
� �� �, if � is referred in �.

Since there are four types of different modules in an as-
pect, module-attribute dependencies may have four differ-
ent types: advice-attribute, introduction-attribute, pointcut-
attribute, or method-attribute dependencies.

1In AspectJ, advice is automatically woven into some methods in a
class by the compiler, and therefore no call exists for the advice.

2A pointcut is only related to its corresponding advice. Therefore, there
is no dependence between pointcut and method, pointcut and introduction,
or pointcut and pointcut.

Example. According to Definition 3, the module-attribute
dependencies in aspect PS_Protocol are: (method
getCount �� attribute shadowCount), (method getShadow
�� attribute shadowCount), (advice settingX �� attribute
shadowCount).

Note that all these types of dependencies defined above
can be derived by performing control flow and data flow
analysis using existing flow analysis algorithms [15]. Due
to the space limitation, we do not discuss this issue here.

3.2 Dependence Properties

This section discusses some properties of dependencies
defined in Section 3.1, and refines the definition of inter-
module dependence to fit for measuring aspect cohesion.

According to definition 1, if �� �� �� and �� �� ��, then
�� �� ��. Therefore, we have

Property 1 The inter-attribute dependencies are transitive.

Based on Property 1, we can define the inter-attribute
transitive dependence as follows.

Definition 4 Let � be an aspect and �� �� � �� be at-
tributes in �. If there exist attributes ��� ��� � � � � ����� ��
�	 � ��, where �� �� ��, � � �, ���� �� ��, . . . , ���� �� ��,
then �� is inter-attribute-transitive-dependent on ��, de-

noted by ��
�
�� ��.

According to definition 2, for modules ��, ��, and ��,
if �� � �� and �� � ��, then �� � �� may not hold.
Consider an example of inter-module call dependence, if
�� is called in �� and �� is called in ��, then �� is not
necessarily called in ��. For inter-module potential depen-
dence, if �� � �� and �� � �� are introduced by un-
related, different attributes, then �� might have no relation
with ��. Therefore, we have

Property 2 The inter-module dependencies are not transi-
tive.

The intransitivity among inter-module dependencies
leads to great difficulties when performing analysis. Thus,
we should redefine the inter-module dependencies.

Definition 5 Let ��, �� be modules and � be an attribute
in an aspect. If � is used in �� and defined in ��, then
� used in �� is dependent on � defined in ��, denoted by
��

���
�� ��, where
a, a� is named as a tag.

For unification, add a tag
*, *� for each inter-
module call dependence arc, i.e., if �� is inter-module-call-
dependent on ��, then we have ��

���
�� ��.

Definition 5 is the basic definition. Since the dependen-
cies between attributes are transitive, we can obtain a more
general definition according to Property 3.

研究会Temp
－204－

To obtain such dependencies, we introduce two sets for
each module � of an aspect, i.e., �	 and �	�, each el-
ement of which has the form ��� ���, where � and �� are
attributes of the aspect.

� �	��� is the set of dependencies which records the
dependencies from the attributes referred in � to the
attributes defined out �. �	��� is a subset of inter-
attribute dependencies.

� �	���� is the set of dependencies which records the
dependencies from the attributes referred in � to the
attribute defined out � when exiting �.

In general, the intermediate results are invisible outside,
and an attribute might be modified many times in a piece
of advice, a piece of introduction, or a method. We intro-
duce �	� to improve the precision. Obviously, we have
�	���� � �	���.

Definition 6 Let ��, �� be modules and ��, �� be at-
tributes in an aspect. If ���� ��� � �	���� and �� �
���� ����, then �� is dependent on ��, denoted by
��

�����
�� ��.

According to Definition 6, we have the following prop-
erties:

Property 3 Let ��, ��, �� be modules and ��, ��, ��
be attributes in an aspect. If ��

�����
�� ��, and ����� ���,

���� ��� � �	����� and �� � ���� ����, then ��
�����
��

��.

Because �	����� � �	����, according to Definition
6, if ���� ��� � �	�����, and �� � ���� ����, then
��

�����
�� ��. Thus, we have Corollary 1.

Corollary 1 Let ��, ��, �� be modules and ��, ��, �� be
attributes in an aspect. If ��

�����
�� �� and ��

�����
�� ��,

then ��
�����
�� ��.

Property 4 Let ��, ��, �� be modules and ��, �� be at-
tributes in an aspect. If ��

���
�� �� and ��

�����
�� ��, then

��
�����
�� ��.

From Properties 2-4, we can define the inter-module
transitive dependence as follows.

Definition 7 Let � be an aspect, �� �� � �� be modules,
and �� �� � �� be attributes in �. If there exist mod-
ules ��� � � � ��� and attributes ��� � � � � �� �	 � �� �� need
not be unique, and �� may be ����, which models calls be-
tween modules), where ��

�����
�� ��, . . . , ����

�������
�� ��,

. . . , ����
�������
�� ��, then �� is inter-module-transitive-

dependent on ��, denoted by ��
�
�� ��.

To present our cohesion measure in a unified model, we
introduce the aspect dependence graph to explicitly repre-
sent all types of dependencies in an aspect.

Definition 8 The aspect dependence graph (ADG) of an as-
pect� is a directed graph3, �	
� � �����
 � where � �
�� 	 ��, � � ��� 	 ��� 	 ���, and
 � �
 �� �� � ��
are the sets of vertex, arc, and tag respectively, such that:

� �� is the set of attribute vertices: each represents a
unique attribute (the name of a vertex is the name of
the attribute it represents) in �.

� �� is the set of module vertices: each represents a
unique module (the name of a vertex is the name of the
module it represents) in �.

� � � is the union of �� and ���, i.e., � � � �� 	 ���.

� ��� is the set of inter-attribute dependence arcs that
represents dependencies between attributes, such that
for ��, ��� � �� if � �� ��, then ���� ���� � ���.

� ��� is the set of inter-module dependence arcs that
represent dependencies between modules, such that for
��, ��� � �� if �� ��, then ���� ���� � ���.

� ��� is the set of module-attribute dependence arcs
that represents dependencies between modules and at-
tributes, such that for �� � ��, �� � �� if � �� �,
then ���� ��� � ���.

Generally, �	
� consists of three sub-graphs, i.e.,
inter-attribute dependence graph �		� � ���� ����,
inter-module dependence graph �

� � ���� ����
 �,
and module-attribute dependence graph �
	� �
�������, which can be used to define the inter-attribute,
inter-module, and module-attribute cohesion in an aspect
respectively. Figure 2 shows the �
	� and �

� of as-
pect PS_Protocol. Since there exists no inter-attribute
dependence in the aspect, the �		� is not available. Note
that we omit the Tags in both graphs for convenience.

4 Measuring Aspect Cohesion

Briand et al. [4] have stated that a good cohesion mea-
sure should have properties such as non-negative and stan-
dardization, minimum and maximum, monotony, and cohe-
sion does not increase when combining two components.
We believe that these properties provide also a useful guide-
line even in aiding the development of an aspect cohesion
measure. In this section, we propose our aspect cohesion
measures, and show that our aspect cohesion measures sat-
isfy the properties given by Briand et al. [4].

3A directed graph � � ���	�, where � is a set of vertices and 	 � � � �
is a set of arcs. Each arc ��� ��� � 	 is directed from � to ��; we say that � is the
source and �� the target of the arc.

研究会Temp
－205－

getCount

getShadow

Settingshadow

shadowCount

getCount

associate

getShadow

Setting
 (a)

SettingX
 (a)

SettingY
 (a)

(b)(a)

Setting
 (p)

SettingX
 (p)

SettingY
 (p)

Figure 2. The �
	� (a) and �

� (b) of the aspect PS Protocol in Figure 1.

An aspect consists of attributes and modules such as ad-
vice, introduction, pointcuts, and methods. There are three
types of dependencies between attributes and/or modules.
Thus, the cohesion of an aspect should be measured from
the three facets. In the following discussion, we assume that
an aspect � consists of � attributes and 	 modules, where
�, 	
 �.

4.1 Measuring Inter-Attribute Cohesion

Inter-attribute cohesion is about the tightness between at-
tributes in an aspect. To measure the inter-attribute cohe-
sion for an aspect �, for each attribute � of �, we introduce
a set �� to record the attributes on which � depends, i.e.,

����� � �� � ��
�
�� �� �� �� ��. Thus, we define the

inter-attribute cohesion of � as:

����� �

��
�

� k = 0
� k = 1
�
�

��

���
�
������
��� � � �

where � is the number of attributes in �, and �
������
��� rep-

resents the degree on which �� depends on other attributes
in �.

If � � �, there is no attribute in �. Inter-attribute co-
hesion is useless, thus we set ����� � �. If � � �, there
is only one attribute in �. Although it can not depend on
other attribute, it itself is tight, thus we set ����� � �. If
each attribute relates to all others, then ����� � �. If all
attributes can exist independently, then ����� � �. Thus,
����� � [0, 1].

Theorem 1 Let � be an aspect and �		� � ���� ����
be the inter-attribute dependence graph of �. ����� does
not decrease when adding an arc ���� ��� � ���, where
��� �� � ��, on �		�.

Theorem 2 Let �� and �� be two aspects and ��� be an
aspect derived from the combination of �� and ��. Let
������ and ������ be the inter-attribute cohesions of ��

and �� respectively and ������� be the inter-attribute co-
hesion of ���. ������� � max�������, �������.

Example. The �� sets for each module in PS_Protocol

are: ���shadowCount� � ���shadow� � �. Therefore,

���PS_Protocol� � �
�

��

���

��������
���

� �.

4.2 Measuring Module-Attribute Cohesion

Module-attribute cohesion is about the tightness between
modules and attributes in an aspect. To measure this kind of
cohesion, for each module � in an aspect �, we introduce
two sets: ��� and ��

��, where

� ������ is the set of all �’s attributes that are referred
in �.

� ��
����� is a set of all�’s attributes that are referred in

� and related to attributes referred in other modules,
i.e.,

��
����� � �� � ������ such that ����

����
�� �� �

��
����
�� ���� � ��� �� �� �����.

Obviously, ��
����� � ������. We can define the

module-attribute cohesion for � as follows:

������ �

��
�

� n = 0
� n = 1 and ��������� �� �
�
�

��

���
�
�

��
�����

�
�������
others

where 	 is the number of modules in �, and �
�

��
�����

�
�������
,

denoted by �����, is the ratio between the number of at-
tributes which are referred in �� and relevant to others, to
the number of all attributes referred in � �.

For a module �, if ������ � �, i.e., no attribute is
referred in �, we set ���� � �. If the attributes referred
in � are not related to other modules, these attributes can
work as local variables. It decreases the cohesion to take a
local variable for a module as an attribute for all modules.
If there is no attribute or module in the aspect, no module
will depend on others. There is no ��� or all the ��� are
empty, i.e., �������� � �. Thus, ��� = 0. If each attribute
referred in � is related to other modules, then ���� � �.

Theorem 3 Let � be an aspect and�

� � ���� ����
be the inter-module dependence graph of �. Let �� be a

研究会Temp
－206－

module of � and ����� �
�
�

��
�����

�
�������
. ����� does not

decrease when adding an arc �������, where ����� �
��, on �

�.

Example. The ��� and �	
�� sets for each module in

PS_Protocol are: ����getShadow�

� �shadow�, ����getCount� � ����setting� �

�shadowCount�, ����associate� � ����settingX� �

����settingY� � �, �	
���getCount� � �	

���getShadow� �

�, �	
���associate� � �	

���setting� � �, and

�	
���settingX� � �	

���settingY� � �. Therefore,

����PS_Protocol� � �
�

��

���

���
��

�����

���������
� ��

4.3 Measuring Inter-Module Cohesion

In the �

�, although the modules can be connected
by attributes, this is not necessary sure that these modules
are related. If there does exist some relations between mod-
ules, we should determine their tightness. This is the pro-
cess to measure the inter-module cohesion. To do this, we
introduce another set �� for each module � in an aspect
�, where ����� � ��� ���

�
�� ���.

The inter-module cohesion ����� for � is defined as
follows:

����� �

��
�
� n = 0
� n = 1
�
�

��
���

�
������
��� 	 � �

where 	 is the number of modules in � and �
������
��� repre-

sents the tightness between �� and other modules in �. If
each module depends on all other modules, then ����� =
1. If all modules are independent, i.e., each module has no
relation with any other modules, then ����� = 0.

Theorem 4 Let � be an aspect, �

� � ���� ����
be the inter-module dependence graph of �. The inter-
module cohesion ����� does not decrease when adding an
arc ������� � ���, where ����� � ��, on �

�.

Theorem 5 Let �� and �� be aspects and ��� be an as-
pect derived from the combination of �� and ��. Let
������ and ������ be the inter-module cohesions of ��

and �� and ������� be the inter-module cohesion of ���.
������� � max�������, �������.

We can prove Theorems 4 and 5 with a similar way as
we did for Theorems 1 and 2. Due to the limitation of the
space, we do not repeat them here.

Example. The �� sets for each module in PS_Protocol are:

���getCount� � �setting�, ���getShadow� � �shadow�,

���setting� � �associate�, ���settingX�

� �getShadow�, and ���settingY� � �getShadow�� Therefore,

���PS_Protocol� � �
�

��

���

��������
�����

� �
�
�

4.4 Measuring Aspect Cohesion

After measuring the three facets of aspect cohesion in-
dependently, we have a discrete view of the cohesion of an
aspect. We have two ways to measure the aspect cohesion
for an aspect �:

(1) Each measurement works as a field. The aspect cohe-
sion for � is a 3-tuple as ���� � ���� ���� ���.

(2) Integrating the three facets as a whole. Let � � �� �

�� � �� � ��� � �� � ��, the aspect cohesion for � is
computed as follows.

���� �

��
�

� n = 0
� � �� k = 0 and 	 �� �
� others

where � is the number of attributes and 	 is the number of
modules in�, � � ��� ��, ��� ��� �� � �, and �������� �
�.

If � � � and 	 �� �, ���� describes only the tightness of
the call relations, thus we introduce a parameter � to con-
strain it. For other cases, we introduce three parameters ��,
��, and �� to constrain it. The selection of ��, ��, and �� is
determined by users.

Example. The aspect cohesion of PS_Protocol can be com-

puted based on its ��, ��� , and �� . If we set �� � �� � �� �
�
�

, we have ��PS_Protocol� � �
�
� ���PS_Protocol� � �

�
�

����PS_Protocol� � �
�
� ���PS_Protocol� � �

��
�

5 Related work

We discuss some related work that directly or indirectly
influences our work presented in this paper. To the best of
our knowledge, our work is the first attempt to study how to
assess the cohesion of aspects in aspect-oriented software.

The approaches taken to measure cohesiveness of proce-
dural programs have generally tried to evaluate cohesion on
a procedure (function) by procedure (function) basis. Bie-
man and Ott [3] propose an approach to measuring the co-
hesion on procedures based on a relation between output
tokens (output variables) and program slices. Kang and Bie-
man [10] investigate to measure cohesion at the design level
for the case that the code has yet to be implemented. Since
aspects are more complex and significantly different ab-
stractions in comparing with procedures (functions), These
measures definitely fails to be applied to aspects.

Most existing approaches for class cohesion measure-
ment consider the interactions between methods and/or at-
tributes in a class. Chidamber and Kemerer [8] propose
the Lack of Cohesion Measure (LCOM) to assess class co-
hesion based on the similarity of two methods in a class.
Hitz and Montazeri [9] propose an extension to the LCOM
of Chidamber and Kemerer by making it more sensitive

研究会Temp
－207－

to small changes in the structure of a class. Chae, Kwon,
and Bae [6] propose a class cohesion measure for object-
oriented system by introducing a new notion called glue
methods. In contrast to the above cohesion measurement
approaches that only consider the interaction between meth-
ods and/or attributes, Chen et al. [7] propose an approach to
measuring class cohesion based on the interactions between
attributes and/or methods. Although their work is similar to
ours, we see our work differing from theirs because our ap-
proach considers more interactions between attributes and
modules such as advice, introduction, and pointcuts in an
aspect that are unique constructs for aspect-oriented pro-
grams. Based on these new types of interactions we pro-
pose a new dependence model that are different from the
dependence model presented by Chen et al. [7].

Zhao [14] proposes a metrics suite for aspect-oriented
software, which are specifically designed to quantify the in-
formation flows in aspect-oriented programs. To this end,
Zhao presents a dependence model for aspect-oriented soft-
ware which is composed of several dependence graphs to
explicitly represent dependence relationships in a module,
a class, or the whole program. Based on the dependence
model, he defines some metrics that can be used to measure
the complexity of an aspect-oriented program from various
different viewpoints and levels. However, Zhao does not
address the issue of aspect cohesion measurement. In addi-
tion, Zhao also proposes an approach to assessing the cou-
pling in aspect-oriented systems based on the interactions
between classes and aspects [16].

6 Concluding Remarks

In this paper, we proposed an approach to measuring
the cohesion of aspects in aspect-oriented software based
on dependence analysis. We discussed the tightness of an
aspect from three facets: inter-attribute, module-attribute
and inter-module. These three facets can be used to mea-
sure the aspect cohesion independently and also can be inte-
grated as a whole. We also discussed the properties of these
dependencies and according to these properties we proved
that our cohesion measures satisfy some properties which a
good measure should have. Therefore, we believe our ap-
proach may provide a solid foundation for measuring aspect
cohesion. In our future work, we will study the influence of
aspect inheritance and other aspect-oriented features on as-
pect cohesion, and apply our cohesion measure approach to
real aspect-oriented system design.

Acknowledgments. This work was partially supported by
the Japan Society for Promotion of Science (JSPS) under
Grand-in-Aid for Scientific Research (C) (No.15500027).

References

[1] The AspectJ Team. The AspectJ Programming Guide. 2002.

[2] L. Bergmans and M. Aksits. Composing crosscutting Con-
cerns Using Composition Filters. Communications of the
ACM, Vol.44, No.10, pp.51-57, October 2001.

[3] J. Bieman and L. Ott. Measuring Functional Cohesion.
IEEE Transactions on Software Engineering, Vol.22, No.10,
pp.644-657, August 1994.

[4] L.C. Briand, J. Daly and J. Wuest. A Unified Framework for
Cohesion Measurement in Object-Oriented Systems. Empiri-
cal Software Engineering, Vol.3, No.1, pp.65-117, 1998.

[5] L.C. Briand, S. Morasca and V.R. Basili. Defining and Vali-
dating Measures for Object-Based High-Level Design. IEEE
Transactions on Software Engineering, Vol.25, No.5, pp.724-
743, 1999.

[6] H.S. Chae, Y. R. Kwon and D. H. Bae. A Cohesion Measure
for Object-Oriented Classes. Software Practice & Experience,
Vol.30, No.12, pp.1405-1431, 2000.

[7] Z. Chen, Y. Zhou, B. Xu, J. Zhao, and H. Yang. A Novel
Approach to Measuring Class Cohesion Based on Depen-
dence Analysis. Proceedings of the International Conference
on Software Maintenance, October 2002.

[8] S. R. Chidamber and C. F. Kemerer. A Metrics Suite for
Object-Oriented Design. IEEE Transactions on Software En-
gineering, Vol.20, No.6, pp.476-493, 1994.

[9] M. Hitz and B. Montazeri. Measuring Coupling and Co-
hesion in Object-Oriented Systems. Proceedings of Interna-
tional Symposium on Applied Corporate Computing, pp.25-
27, Monterrey, Mexico, October 1995.

[10] B. Kang and J. Bieman. Design-Level Cohesion Measures:
Derivation, Comparison, and Applications. Computer Sci-
ence Technical Report CS-96-103, Colarado State University,
1996.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. Proceedings of the 11th European Confer-
ence on Object-Oriented Programming, pp.220-242, LNCS,
Vol.1241, Springer-Verlag, June 1997.

[12] K. Lieberher, D. Orleans, and J. Ovlinger. Aspect-Oriented
Programming with Adaptive Methods. Communications of the
ACM, Vol.44, No.10, pp.39-41, October 2001.

[13] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N De-
grees of Separation: Multi-Dimensional Separation of Con-
cerns. Proceedings of the International Conference on Soft-
ware Engineering, pp.107-119, 1999.

[14] J. Zhao. Toward A Metrics Suite for Aspect-Oriented Soft-
ware. Technical Report SE-136-5, Information Processing So-
ciety of Japan (IPSJ), March 2002.

[15] J. Zhao and M. Rinard. System Dependence Graph Construc-
tion for Aspect-Oriented Programs. Technical Report MIT-
LCS-TR-891, Laboratory for Computer Science, MIT, March
2003.

[16] J. Zhao. Coupling Measurement in Aspect-Oriented Sys-
tems. Technical Report SE-142-6, Information Processing So-
ciety of Japan (IPSJ), June 2003.

研究会Temp
－208－

