
Towards Regression Test Selection for AspectJ Programs

Jianjun Zhao
Department of Computer Science and Engineering

Fukuoka Institute of Technology
3-30-1 Wajiro-Higashi, Higashi-ku, Fukuoka 811-0295, Japan

zhao@cs.fit.ac.jp

Abstract

The current research so far in aspect-oriented software
development is focused on problem analysis, software de-
sign, and implementation techniques. Even though the im-
portance of software testing is known, it has received lit-
tle attention in the aspect-oriented paradigm. This paper
presents the first safe regression test selection techniquefor
AspectJ programs. The technique is based on various types
of control flow graphs that can be used to select test cases,
from the original test suite, that execute code that has been
changed for the new version of the AspectJ software. The
technique is code-based in the sense that it operates on the
control flow graphs of AspectJ programs. The technique
can be applied to modified individual aspects or classes,
and also the whole programs that used modified aspects or
classes.

1 Introduction

Aspect-oriented software development (AOSD) is a new
technique to support separation of concerns in software de-
velopment [4, 7, 11, 16]. The techniques of AOSD make
it possible to modularize crosscutting aspects of a system.
Like objects in object-oriented software development, as-
pects in AOSD may arise at any stage of the software life
cycle, including requirements specification, design, imple-
mentation, etc. Some examples of crosscutting aspects are
exception handling, synchronization, and resource sharing.

The current research so far in AOSD is focused on prob-
lem analysis, software design, and implementation tech-
niques. Even though the importance of software testing
and verification is known, it has received little attention in
the aspect-oriented paradigm. Although it has been claimed
that applying an AOSD method will eventually lead to qual-
ity software, aspect-orientation does not provide correctness
by itself. An aspect-oriented design can lead to a better sys-
tem architecture and an aspect-oriented programming lan-
guage enforces a disciplined coding style, but they are by

no means shields against programmer’s mistakes or a lack
of understanding of the specification. As a result, software
testing remains an important task even in AOSD.

Regression testing is a necessary and important activity
at both testing and maintenance phases. Regression testing
aims at showing that code has not been adversely affected
by modification activities during maintenance. Regression
test selection techniques reuse tests from an existing test
suite to test a modified program. By reusing such test suites
to retest modified programs maintainers (testers) can reduce
the effort which is required to perform that testing.

Aspect-oriented programming introduces some new lan-
guage constructs such as join points, advice, introduction,
aspects, that differ from procedural and object-oriented pro-
grams. These specific constructs in aspect-oriented pro-
grams require special testing support and provide opportu-
nities for exploitation by a testing strategy. However, al-
though many regression test selection techniques have been
proposed for procedural programs [3, 5, 13] and object-
oriented programs [9, 10, 14, 6], there is no regression test
selection technique for aspect-oriented programs until now.
Also, the existing regression test selection techniques can
not be directly applied to aspect-oriented programs. There-
fore, new regression test selection techniques and tools that
are appropriate for aspect-oriented programs are needed.

This paper presents the first safe regression test selection
technique for AspectJ programs. The technique is based on
various types of control flow graphs that can be used to se-
lect test cases, from the original test suite, that execute code
that has been changed for the new version of the AspectJ
software. The technique is code-based in the sense that it
operates on the control flow graphs of AspectJ programs.
The technique can be applied to modified individual aspects
or classes, and also the whole programs that used modified
aspects or classes.

The rest of the paper is organized as follows. Section
2 briefly introduces the AspectJ. Section 3 presents a con-
trol flow model for regression test selection of AspectJ pro-
grams. 4 briefly describes a regression test selection algo-

研究会Temp
テキストボックス
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp
テキストボックス
2004－SE－145　(12)

研究会Temp
テキストボックス
2004／8／20

研究会Temp
テキストボックス
－81－

rithm for AspectJ programs. Concluding remarks are given
in Section 5.

2 Aspect-Oriented Programming in AspectJ

We present our data-flow-based unit testing approach
of aspect-oriented programs in the context of AspectJ, the
most widely used aspect-oriented programming language
[8]. Our basic techniques, however, deal with the basic con-
cepts of aspect-oriented programming and therefore apply
to the general class of aspect-oriented languages.

AspectJ [8] is a seamless aspect-oriented extension to
Java; AspectJ adds some new concepts and associated con-
structs to Java. These concepts and associated constructs are
called join point, pointcut, advice, introduction, and aspect.
We briefly introduce each of these constructs as follows.

The aspectis the modular unit of crosscutting imple-
mentation in AspectJ. Each aspect encapsulates function-
ality that crosscuts other classes in a program. Like a class,
an aspect can be instantiated, can contain state and meth-
ods, and also may be specialized with sub-aspects. An as-
pect is combined with the classes it crosscuts according to
specifications given within the aspect. Moreover, an as-
pect can use anintroductionconstruct to introduce meth-
ods, attributes, and interface implementation declarations
into classes. Introduced members may be made visible to all
classes and aspects (public introduction) or only within the
aspect (private introduction), allowing one to avoid name
conflicts with pre-existing elements. For example, the as-
pectPointShadowProtocol in Figure 1 privately in-
troduces a fieldshadow to the classPoint ats31.

A central concept in the composition of an aspect with
other classes is called ajoin point. A join point is a well-
defined point in the execution of a program, such as a call to
a method, an access to an attribute, an object initialization,
an exception handler, etc. Sets of join points may be rep-
resented bypointcuts, implying that such sets may crosscut
the system. Pointcuts can be composed and new pointcut
designators can be defined according to these combinations.
AspectJ provides various pointcutdesignatorsthat may be
combined through logical operators to build up complete
descriptions of pointcuts of interest. For example, the as-
pectPointShadowProtocol in Figure 1 declares three
pointcuts namedsetting, settingX, andsettingY
atp36, p37, andp38.

An aspect can specifyadvice, which is used to de-
fine code that executes when a pointcut is reached. Ad-
vice is a method-like mechanism which consists of in-
structions that executebefore, after, or around a point-
cut. around advice executesin place of the indicated
pointcut, allowing a method to be replaced. For example,
the aspectPointShadowProtocol in Figure 1 declares
three pieces of after advice atae39, ae43, andae48;
each is attached to the corresponding pointcutsetting,

settingX, orsettingY.
An AspectJ program can be divided into two parts:base

code which includes classes, interfaces, and other stan-
dard Java constructs andaspect codewhich implements the
crosscutting concerns in the program. For example, Fig-
ure 1 shows an AspectJ program that associates shadow
points with everyPoint object. The program can be di-
vided into the base code containing the classesPoint
and Shadow, and the aspect code which has the aspect
PointShadowProtocol that stores a shadow object in
everyPoint. Moreover, the AspectJ implementation en-
sures that the aspect and base code run together in a prop-
erly coordinated fashion. The key component is theaspect
weaver, when ensures that applicable advice runs at the ap-
propriate join points. For more information about AspectJ,
refer to [2].

3 The Control Flow Model for AspectJ

To facilitate regression test selection for AspectJ pro-
grams, we present a control flow model that captures the
control flow information of an aspect or class, and also a
complete AspectJ program. Based on this model, regres-
sion test selection can be performed. The model consists of
two different types of control flow graphs in order to capture
different levels of control flow information in an individual
aspect or class, and also the whole program. We present
each type of the graphs as follows.3.1 Modeling Individual Modules

In addition to methods, an aspect may contain other
modular units such as advice and inter-type members. Since
advice and inter-type members can be regarded as method-
like units, to keep our terminology consistent in the rest of
paper, we use the word “module” to stand for a piece of ad-
vice, an inter-type member, or a method in an aspect and
also a method in a class.

A control-flow graph(CFG) for a modulem, denoted
by GCFG, is a directed graph(e; V; A) wheree is anentry
vertexto represent the entry intom; V = Vn [V
 such thatVn is a set ofnormal verticesandV
 is a set ofcall vertices.A a set ofcontrol flow arcsto represent the flow of control
between two vertices.

In GCFG, a vertex is called anormal vertexif it rep-
resents a statement or predicate expression inm without
containing a call or object creation. Otherwise it is calleda
call vertex. GCFG can be used to represent the control flow
information for a module of an aspect-oriented programs.

An aspect may be woven into one or more classes at
some join points, declared withinpointcutswhich are used
in the definition ofadvice[2]. Since a piece of before, after,
or around advicea can be regarded as a method-like unit,
we can use a CFG to representa. In this case, the CFG fora has a unique entry vertex to represent the entry intoa.

研究会Temp
テキストボックス
－82－

 ce0 public class Point {
 s1 protected int x, y;
 me2 public Point(int _x, int _y) {
 s3 x = _x;
 s4 y = _y;
 }
 me5 public int getX() {
 s6 return x;
 }
 me7 public int getY() {
 s8 return y;
 }
 me9 public void setX(int _x) {
 s10 x = _x;
 }
me11 public void setY(int _y) {
 s12 y = _y;
 }
me13 public void printPosition() {
 s14 System.out.println("Point at("+x+","+y+")");
 }
me15 public static void main(String[] args) {
 s16 Point p = new Point(1,1);
 s17 p.setX(2);
 s18 p.setY(2);
 }
 }

ase27 aspect PointShadowProtocol {
 s28 private int shadowCount = 0;
 me29 public static int getShadowCount() {
 s30 return PointShadowProtocol.
 aspectOf().shadowCount;
 }
 s31 private Shadow Point.shadow;
 me32 public static void associate(Point p, Shadow s){
 s33 p.shadow = s;
 }
 me34 public static Shadow getShadow(Point p) {
 s35 return p.shadow;
 }

 pe36 pointcut setting(int x, int y, Point p):
 args(x,y) && call(Point.new(int,int));
 pe37 pointcut settingX(Point p):
 target(p) && call(void Point.setX(int));
 pe38 pointcut settingY(Point p):
 target(p) && call(void Point.setY(int));

 ae39 after(int x, int y, Point p) returning :
 setting(x, y, p) {
 s40 Shadow s = new Shadow(x,y);
 s41 associate(p,s);
 s42 shadowCount++;
 }
 ae43 after(Point p): settingX(p) {
 s44 Shadow s = new getShadow(p);
 s45 s.x = p.getX() + Shadow.offset;
 s46 p.printPosition();
 s47 s.printPosition();
 }
 ae48 after(Point p): settingY(p) {
 s49 Shadow s = new getShadow(p);
 s50 s.y = p.getY() + Shadow.offset;
 s51 p.printPosition();
 s52 s.printPosition();
 }
 }

ce19 class Shadow {
 s20 public static final int offset = 10;
 s21 public int x, y;

me22 Shadow(int x, int y) {
 s23 this.x = x;
 s24 this.y = y;
me25 public void printPosition() {
 s26 System.outprintln("Shadow at
 ("+x+","+y+")");
 }
 }

Figure 1: A sample AspectJ program.

Aspects can declare members (fields, methods, and con-
structors) that are owned by other types. These are called
inter-typemembers. Aspects can also declare that other
types implement new interfaces or extend a new class [2].
Since each of these inter-type members (only for a method
or constructor) is similar in nature to a standard method or
constructor, we can use a CFG to represent each of them.
In this case, the CFG for an inter-type member has a unique
entry vertex to represent the entry into the member.

For a pointcutp
, since it contains no body code, it does
not need a control flow graph to represent it. In this case,
we use a vertex calledjoin-point vertexto representp
. The
join-point vertex also represents the entry intop
. As we
will discuss in the following, a join-point vertex can be re-
garded as a “join point” to aid for weaving the CFGs for
advice into the partial SCFG for base code.3.2 Modeling Individual Aspe
ts

To facilitate the analysis of an individual aspect, we rep-
resent each aspect in an aspect-oriented program by an as-
pect control-flow graph. Theaspect control-flow graph
(ACFG) represents the static control-flow relationships that
exist within and among advice, inter-type members, and
methods of an aspect.

Let� be an aspect withk modulesfmi j i = 1; 2; :::; k:g
andGi = (ei; Vi; Ai) be the CFG for modulemi. An aspect
control-flow graph(ACFG) for �, denoted byGACFG, is
a directed graph(e�; E�;V�;A�), wheree� is theaspect
entry vertexandE� = [ki=1ei is the set ofentry verticesof
the modules in�. V� = [ki=1Vi [V �jp such that[ki=1Vi
is the set of vertices; each represents a statement or control
predicate in the modules in� andV �jp is the set ofjoin-
point vertices. A� = [ki=1Ai [A�ms [A�
 [App [A�s such
that[ki=1Ai is the set ofcontrol flow arcsin the CFGs of
modules in�, A�ms is the set ofmembership arcs, A�
 is a
set ofcall arcs,App is the set ofpointing arcs, andA�w is the
set ofweaving arcs.GACFG is a collection of CFGs; each represents a piece
of advice, an inter-type member, or a method in�. The
aspect entry vertexrepresents the entry into�. An aspect
membership arcrepresents the membership relationships
between� and its members (advice, inter-type members,
pointcuts, or methods) by connecting�’s entry vertex to the
entry vertex of each member. Ajoin-point vertexrepresents
a pointcut in�. A call arc represents the calling relation-
ship1 between two modulesm1 andm2 in � by connecting

1Since advice in AspectJ is automatically woven into some method(s) by a com-
piler (called ajc) during aspect weaving process, there exists no call to the advice. As

研究会Temp
テキストボックス
－83－

algorithm BuildACFG
input An aspect�
output The Aspect Control-Flow Graph (ACFG)G� of �
begin BuildACFG[1℄ /* Build the aspect call graph for� and add toG� */[2℄ G� = Construct the aspect call graph for�[3℄ /* Build CFGs for advice, inter-type members,[4℄ and methods in� and add toG� */[5℄ /* Replace each call graph vertex with the corresponding CFG*/[6℄ for each advice, inter-type member, or methodm in � do[7℄ Replace�’s aspect call graph vertex inG� with m’s CFG[8℄ Update arcs appropriately[9℄ endfor[10℄ /* Replace call sites with call and return vertices*/[11℄ for each call vertexs in G�, representing a call[12℄ to advice, inter-type member, or methodm in � do[13℄ Replaces with a call and a return vertex[14℄ Update arcs appropriately[15℄ endfor[16℄ /* Connect the individual CFGs*/[17℄ for each advice, inter-type member, or methodm in � do[18℄ Add an arc from the aspect start vertex to the start[19℄ vertex ofm’s CFG inG�[20℄ endfor[21℄ /* Return the complete ACFG of� */[22℄ returnG�
end BuildACFG

Figure 2: Algorithm for ACFG construction.

the call vertex inm1 to the entry vertex ofm2’s CFG if
there is a call inm1’s body to callm2. Weaving arcsrep-
resent advice weaving by connecting the CFG for a method
in some classes to the CFG for its corresponding advice in�; we will discuss this issue in more detail in section 3.6.

For each pointcutp
 in �, we connect the aspect entry
vertex top
’s join-point vertex through an aspect member-
ship arc, and alsop
’s join-point vertex to the entry vertex
of its corresponding advice by apointing arc to represent
the relationship between them.3.3 ACFG Constru
tion Algorithms

Figure 2 gives an algorithmBuildACFG for building
the ACFG for an aspect� which consists of five steps. As
inputBuildACFG gets CFGs for advice, inter-type mem-
bers, and methods in�, and as outputBuildACFG returns
the�’s ACFG.

First, BuildACFG builds the aspect call graph for�.
An aspect call graph(ACG) for an aspect� represents
caller/callee relationships among advice, inter-type mem-
bers, and/or methods within�. Vertices in the ACG rep-
resent the advice, inter-type members, methods that are
members of�, and those methods which are members of
some classes and may be advised by advice of�. Arcs in
the ACG represent the calling relationships among advice,
inter-type members, and/or methods. ACG has a unique
vertex calledaspect start vertexto represent the entry into

a result, there exists no call from an inter-type member (or method) to advice.

the aspect. ACG usesaspect-membership arcsto connect
the aspect start vertex to each vertex that represents a piece
of advice, an inter-type member, or a method in�. If an
inter-type member or a methodm1 in � calls another inter-
type member or methodm2 in �, ACG uses acall arc to
connectm1 to m2 to represent the calling relationship be-
tween them. Second,BuildACFG builds CFGs for all ad-
vice, inter-type members, and methods using traditional al-
gorithms like [1]. Third,BuildACFG replaces each vertex
(except the start vertex) in the ACG with the corresponding
CFG. Forth,BuildACFG replaces each call (site) vertex
with a call and return vertices. Finally,BuildACFG con-
nects the individual CFGs belonging to� to form the whole
ACFG for �. If a modulem1 has a call to another mod-
ulem2 in �, BuildACFG connects the call vertex inm1 tom2’s start vertex using a call arc.

Example 1 Figure 3 shows the ACFG for aspect
PointShadowProtocol. For example, ase27 is
an aspect entry vertex;ae39, ae43, andae48 are advice
entry vertices;me29, me32, andme34 are method entry
vertices, p36, p37, and p38 are join-point vertices.
(ase27, me29), (ase27, me32), and (ase27, me34)
are aspect membership arcs. Each entry vertex is the root of
a sub-graph which is itself a partial SCFG. Each sub-graph
is a CFG that represents the control-flow information in a
module. (p36,ae39), (p37,ae43), and (p38,ae48) are
pointing arcs that represent interactions between pointcuts
and their corresponding advice.3.4 Modeling Aspe
t-Class Intera
tions

In AspectJ, an aspect can interact with a class in several
ways, i.e., byobject creation, method call, andadvice weav-
ing. The system control-flow graph for an aspect-oriented
program should be able to represent these interactions be-
tween aspects and classes.

Method Calls and Object Creations. In AspectJ, A call
may occur between two modulesm1 andm2 that can be
a piece of advice, an inter-type member, or a method of
aspects and classes. In such a case, a call arc is added to
connect the call vertex ofm1’s CFG to the entry vertex ofm2’s CFG. On the other hand, a piece of advice, an inter-
type member, or a methodm in an aspect or a class� may
create an object of a classC through a declaration or by
using an operator such asnew. At this time, there is an
implicit call from m to C ’s constructor. To represent this
implicit constructor call, a call arc is added to connect the
call vertex in� at the site of object creation to the entry
vertexe of the CFG ofC ’s constructor.

Example 2 In Figure 1, statements40 represents
an object creation of classShadow in aspect
PointShadowProtocol. To represent this object

研究会Temp
テキストボックス
－84－

aspect membership arc

intraprocedural control-flow arc

interprocedural control-flow
or call arc

class module
vertex

aspect module
vertex

me32 ae43ae39me34me29 ae48

me2 me9 me11

s45

me32

ase27

ae43s33

s44c

s46

ae39

s41c

me34

s35

me29

s30

s47

s50

ae48

s49c

s51

s52

s40

s42

me2 me9 me11

s3

s4

s10 s12

ase27

s41r

s44r s49r

pointing arc weaving arc

pe38pe38

pe38

Figure 3: The ACG and ACFG corresponding to aspectPointShadowProtocol.

creation, in the SCFG of Figure 4, a call vertex is created
for s40; it is connected to the entry vertexme22 of the
Point’s constructor by a call arc. On the other hand,
statements45 represents a call to methodgetX() of
classPoint in aspectPointShadowProtocol. To
represent this method call, in the SCFG of Figure 4, a call
vertex is created fors45; it is connected to the entry vertex
me5 of methodsetX() by a call arc.

Advice Weaving. In aspect-oriented language such as As-
pectJ, the join point model is a key element for providing
the frame of reference that makes it possible for execution
of a program’s aspect and non-aspect code to be coordinated
properly. We recognized that the join point model is also a
crucial point to perform interprocedural control-flow analy-
sis for aspect-oriented programs because control-flow anal-
ysis of aspect and non-aspect code of the program is not
independent. Rather, they must be coordinated through the
join points (declared bypointcut designators) in the pro-
gram. As a result, properly handling join points in the as-
pect code is a key for performing interprocedural control-
flow analysis of an aspect-oriented program.

To form the complete SCFG, we need to know some
“join points” in the CFGs for some methods at which the
CFGs for their corresponding advice can be woven. By per-

forming a static analysis for a pointcut declaration, we can
determine those methods in some classes that a piece of ad-
vice, attached to this pointcut, may advise. This information
can be used to connect the partial SCFG for base code to the
CFGs for the aspect code; just as an aspect weaves itself into
the base program at some join points, we weave the CFGs
for advice into the partial SCFG at join-point vertices.

The basic idea of our approach is that we treat a piece of
advice as a method-like unit when constructing the SCFG
for an aspect-oriented program and regard each pointcut as
a join point for weaving the CFGs of advice and the partial
SCFG for base code. For a piece of before or after advicea in an aspect that may advise a methodm in a class, we
connect the entry vertex ofm (advised method) to the join
point vertex attached bya using aweaving arc. This is sim-
ilar to the case thatm contains a method call, i.e., we treata
together with its pointcut(s) as a method that may be called
from m. The weaving arc here is similar to a call arc, but
with different meaning. For a piece of around advicea in an
aspect that may advise a methodm in a class, sincea may
replacem, we add a weaving arc which connects the start
vertex of the original call arc tom to the join-point vertex
attached bya.

Based on these considerations, we can weave the CFGs

研究会Temp
テキストボックス
－85－

for advice and the partial SCFG to form the complete SCFG
in a nature way.

Example 3 The after advice (linesae43-s47) in as-
pectPointShadowProtocol may weave into method
setX() of classPoint. To represent this weaving issue,
in the SCFG of Figure 4, a weaving arc (me9,pe37) is cre-
ated to connect the entry vertexme9 for methodsetX()
to the join-point vertexpe37 for pointcutsettingX.3.5 Modeling Complete Programs

We use thesystem control-flow graph(SCFG) to repre-
sent the control-flow information and calling relationships
in a complete aspect-oriented program.

Let P be an aspect-oriented program withn modulesfmi j i = 1; 2; :::; n:g andGi = (ei; Vi; Ai) be the CFG
for modulemi. A system control-flow graph(SCFG) forP , denoted byGSCFG, is a directed graph(Ep;Vp;Ap),
whereEp = [ni=1ei is the set ofentry verticesof the mod-
ules inP . Vp = [ni=1Vi [V pjp such that[ki=1Vi is the set
of vertices; each represents a statement or control predicate
in the modules inP andV pjp is the set ofjoin-point vertices.Ap = [ki=1Ai [Ap
 [App [Apw such that[ki=1Ai is the set
of control flow arcsin the CFGs of modules inP p, Ap
 is a
set ofcall arcs,App is the set ofpointing arcs, andApw is the
set ofweaving arcs.GSCFG is a collection of CFGs; each represents a
main() method, a method of a class, a piece of advice,
an inter-type member, or a method of an aspect.GSDG also
contains some additional arcs to represent calling relation-
ships between a call and the called module and aspect weav-
ing.GSCFG uses ajoin-point vertexto represent a pointcut
in P . In GSCFG, call arcs represent the calling and callee
relationships between modules.Weaving arcsconnect the
CFG for a method to the CFG for its corresponding advice;
these arcs represent the weaving relationships between ad-
vice and those methods that the advice may affect.

Example 4 Figure 4 shows the SCFG for the program in
Figure 1 with aspectPointShadowProtocol which
can be constructed by the algorithm described in Figure 5.3.6 SCFG Constru
tion Algorithm

We next present a concrete algorithm for constructing the
system control-flow graph for an aspect-oriented programP .

Figure 5 shows our SCFG construction algorithm
BuildSCFG. As inputBuildSCFG gets each module in
all aspects and classes ofP , and as outputBuildSCFG re-
turns theP ’s SCFG. Our algorithm consists of four steps.
First, BuildSCFG pre-processes each aspect and class inP to get those kinds of information that are necessary for
constructing the SCFG (lines 1-7). Second,BuildSCFG

me15

s17c

s16c

s18c

me9

s10

me11

s12

me2

s3

s4

ae39

s41c

s40

s42

me32

s33

ae43

s45c

s44

s46c

s47

ae48

s50r

s49

s51c

s52

me13

s14

me7

s8

me5

s6

s16r

s17r

s18r

 s

s41r

s45c

s46r

s50c

s51r

t

pe37 pe38

pe36

aspect membership arc

intraprocedural control-flow
arc

interprocedural control-flow
or call arc

pointing arc weaving arc

Figure 4: The complete SCFG for the program in Figure 1.

builds a CFG for each piece of advice, inter-type mem-
ber, or method in an aspect or class. It builds these graphs
in a bottom-up fashion according to the aspect and class
hierarchies (lines 8-21). After that,BuildSCFG calls
Connect() to connect these graphs at call sites to form a
partial SCFG forP (line 22). Finally,BuildSCFG builds
the complete SCFG forP by callingWeaving() to weave
the CFG for each piece of advice into the CFGs for its cor-
responding methods in the partial SCFG (line 23). In the
following, we describe our algorithm step by step.

Pre-processing Aspects and Classes. BuildSCFG first
identifies pieces of advice, inter-type members, and meth-
ods that require new CFGs.BuildSCFG uses the follow-
ing process to identify pieces of advice, inter-type members,
and methods in each aspect that requires a new CFG; we can

研究会Temp
テキストボックス
－86－

algorithm BuildSCFG

input An aspect-oriented programP
output System control-flow graph (SCFG) ofP
declare

begin BuildSCFG
/* Step 1: Pre-processing the programP */[1℄ foreach aspect� or classC[2℄ Identify pieces of advice, inter-type members, and methods[3℄ that need new CFGs[4℄ endfor[5℄ foreach pointcutp
[6℄ Compute affected-methods set forp
[7℄ endfor
/* Step 2: Build CFGs for pieces of advice, inter-type members

and methods in each aspect or class*/[8℄ foreach aspect� or classC[9℄ foreach piece of advice, inter-type member, or methodm
declared in� orC[10℄ Compute the CFG form[11℄ endfor[12℄ foreach piece of advice, inter-type member, or methodm[13℄ in the base aspects or classes[14℄ if m is “marked” then[15℄ Copy old CFG[16℄ Adjust callsites[17℄ else[18℄ Reusem’s old CFG[19℄ endif[20℄ endfor[21℄ endfor

/* Step 3: Connecting CFGs at call sites*/[22℄ Connect()
/* Step 4: Weaving CFGs at pointcut sites*/[23℄ Weaving()
end BuildSCFG

Figure 5: Algorithm for SCFG construction.

use a similar process to identify methods in each class that
require a new CFG.

For an aspect�, BuildSCFG calls a marking proce-
dure to operate on�’s call graph to identify the pieces of
advice, inter-type members, and methods that require new
CFGs; the call graph for� can be constructed by a modi-
fied algorithm proposed in [15]. First, it marks the pieces
of advice, inter-type members, and methods declared in�.
Second, if� extends some base aspects2, it marks the pieces
of advice, inter-type members, and methods in the base as-
pects that can reach these marked advice, inter-type mem-
bers, and methods by performing a backward traversal on�’s call graph from these marked advice, inter-type mem-
bers, and methods. Finally, all marked advice, inter-type
members, and methods require new CFGs.
BuildSCFG then callsPointcutAnalysis() to

perform static analysis on each pointcut to determine
the methods that the pointcut may affect. As input
PointcutAnalysis() gets a pointcutp
, and as out-

2We can use a similar technique to handle the case that� is extended from a class
or interface.

putPointcutAnalysis() returns a set calledaffected-
methods-setwhich records methods that may be affected byp
.
Building CFGs for Advice, Inter-type Members, and
Methods. BuildSCFG uses an existing algorithm [1] to
construct the CFG for a piece of advice, an inter-type mem-
ber, or a methodm declared in a new aspect or class and
the CFG for a piece of advice, an inter-type member, or a
method declared in a base aspect.

Connecting CFGs at Call Sites. BuildSCFG calls
Connect() to connect the CFGs created in step 2 at call
sites to form a partial SCFG for an aspect-oriented pro-
gram. At each call site,BuildSCFG connects the CFG
for the called inter-type member or method to the CFG for
the calling advice, inter-type member, or method by using a
call arc. At each pointcut site,BuildSCFG connects the
join-point vertex for a pointcut to the entry vertex of its
corresponding advice by using a pointing arc. If there are
multiple pieces of advice that applies to the same pointcut,
BuildSCFG connects the join-point vertex of the pointcut
to the entry vertex of each piece of advice by pointing arcs
respectively.

Weaving CFGs at Pointcut Sites. BuildSCFG calls
Weaving() to finish the task of weaving the complete
SCFG by weaving the CFGs for advice in aspects into
the CFGs for their corresponding methods in classes.
Weaving() connects the entry vertex of each method’s
CFG in the partial SCFG to the join-point vertex of a point-
cut that refers to the method by aweaving arc. If the ad-
vice attached to the pointcut is a piece ofaround advice
that contains aproceed call, Weaving() connects the
proceed call vertex to the entry vertex of the original
method’s CFG by a call arc to represent that the around
advice may execute theproceed call, which leads to exe-
cute the original method under the join point declared by the
pointcut.Weaving() does this iteratively until all pieces
of advice in all aspects have been processed.

4 Regression Test Selection for AspectJ Pro-
grams

In order to perform the regression test selection for As-
pectJ programs, we adapt the graph-traversal algorithm pro-
posed by Harrold et al. [6] and Rothermelet al. [14], which
uses a control-flow-based representation of the original and
modified versions of the software to select the test cases to
be rerun. Our regression test selection for AspectJ programs
takes the following steps:� Run the test suites with the original program and obtain

coverage information.� Construct the system control-flow graph for the origi-

研究会Temp
テキストボックス
－87－

nal and modified programs.� Compare the system control-flow graphs and detect
dangerous arcs in the graphs.� Compare the coverage information and dangerous
arcs, and select test cases.

5 Concluding Remarks

This paper presented the first safe regression test se-
lection technique for AspectJ programs. Our technique is
based on various types of control flow graphs that can be
used to select test cases, from the original test suite, that
execute code that has been changed for the new version of
the AspectJ software. Our technique is code-based in the
sense that it operates on the control flow graphs of AspectJ
programs. Our technique can be applied to modified indi-
vidual aspects or classes, and also the whole programs that
used modified aspects or classes. In our future work, we
plan to develop a regression test selection tool based on the
technique proposed in this paper to support regression test
selection for AspectJ programs.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compiler, Principles,
Techniques, and Tools. Addison-Wesley, Boston, MA, 1986.

[2] The AspectJ Team. The AspectJ Programming Guide. August
2003.

[3] T. Ball. On the Limit of Control Flow Analysis for Regres-
sion Test Selection.Proc. ACM International Symposium on
Software Testing and Analysis, pp.134-142, March 1998.

[4] L. Bergmans and M. Aksits. Composing crosscutting Con-
cerns Using Composition Filters.Communications of the
ACM, Vol.44, No.10, pp.51-57, October 2001.

[5] Y. F. Chen, D. S. Rosenblum, and K. V. Vo. TestTube: A Sys-
tem for Selective Regression Testing.Proc. 16th International
Conference on Software Engineering, pp.211-222, May 1994.

[6] M. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pen-
nings, S. Sinha, S. A. Spoon, and A. Gujarathi. Regression
Test Selection for Java Software.Proc. ACM COnference on
Object-Oriented Programming, Systems, Languages, and Ap-
plications, pp.312-326, October 2001.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. M. Loingtier, and J. Irwin. Aspect-Oriented Programming.
proc. 11th European Conference on Object-Oriented Pro-
gramming, pp220-242, LNCS, Vol.1241, Springer-Verlag,
June 1997.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. M. Loingtier, and J. Irwin, “An Overview of AspectJ,”
proc. 13th European Conference on Object-Oriented Pro-
gramming, pp.220-242, LNCS, Vol.1241, Springer-Verlag,
June 2000.

[9] T. Koju, S. Takada, N. Doi. Regression Test Selection based
on Intermediate Code for Virtual Machines.Proc. Interna-
tional Conference on Software Maintenance, 2003.

[10] D. Kung, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen. Fire-
wall Regression Testing and Software Maintenance.Journal
of Object-Oriented Programming, 1994.

[11] K. Lieberher, D. Orleans, and J. Ovlinger. Aspect-Oriented
Programming with Adaptive Methods.Communications of
the ACM, Vol.44, No.10, pp.39-41, October 2001.

[12] S. S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, 1997.

[13] G. Rothermel and M. J. Harrold. A Safe, Efficient Regression
Test Selection Technique.ACM Transactions on Software En-
gineering and Methodology, Vol. 6, No. 2, pp.173-210, April
1997.

[14] G. Rothermel, M. J. Harrold, and J. Dedhia. Regression Test
Selection for C++ Software.Journal of Software Testing, Veri-
fication, and Reliability, Vol. 10, No. 6, pp.77-109, June 2000.

[15] D. Sereni and O. de Moor. Static Analysis of Aspects.Proc.
2nd International Conference on Aspect-Oriented Software
Development, pp.30-39, March 2003.

[16] P. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton. N De-
grees of Separation of Concerns: Multi-Dimensional Sepa-
ration of Concerns.Proc. 21th International Conference on
Software Engineering, pp.107-119, May 1999.

[17] L. J. White and K. Abdullah. A Firewall Approach for Re-
gression Testing of Object-Oriented Software.Proc. 10th An-
nual Software Quality Week, May 1997.

[18] J. Zhao. Tool Support for Unit Testing of Aspect-Oriented
Software. OOPSLA’2002 Workshop on Tools for Aspect-
Oriented Software Development, Seattle, WA, USA, Novem-
ber 2002.

[19] J. Zhao. Data-Flow-Based Unit Testing of Aspect-Oriented
Programs.Proc. 27th Annual IEEE International Computer
Software and Applications Conference, pp.188-197. Dallas,
Texas, USA, November 2003.

研究会Temp
テキストボックス
－88－

