o000 ooooooooood 20040 SEO 1450 (12)
IPSJ SIG Technical Report 200407 87 20

Towards Regression Test Selection for AspectJ Programs

Jianjun Zhao
Department of Computer Science and Engineering
Fukuoka Institute of Technology
3-30-1 Wajiro-Higashi, Higashi-ku, Fukuoka 811-0295,alap
zhao@cs.fit.ac.jp

Abstract no means shields against programmer’s mistakes or a lack
of understanding of the specification. As a result, software
The current research so far in aspect-oriented software testing remains an important task even in AOSD.

development is focused on problem analysis, software de- Regression testing is a necessary and important activity
sign, and implementation techniques. Even though the im-at both testing and maintenance phases. Regression testing
portance of software testing is known, it has received lit- aims at showing that code has not been adversely affected
tle attention in the aspect-oriented paradigm. This paper by modification activities during maintenance. Regression
presents the first safe regression test selection techfiigue test selection techniques reuse tests from an existing test
AspectJ programs. The technique is based on various typesuite to test a modified program. By reusing such test suites
of control flow graphs that can be used to select test casesto retest modified programs maintainers (testers) can eeduc
from the original test suite, that execute code that has beenthe effort which is required to perform that testing.
changed for the new version of the AspectJ software. The aAspect-oriented programming introduces some new lan-
technique is code-based in the sense that it operates on theyage constructs such as join points, advice, introduction
control flow graphs of AspectJ programs. The technique aspects, that differ from procedural and object-orienteel p
can be applied to modified individual aspects or classes, grams. These specific constructs in aspect-oriented pro-
and also the whole programs that used modified aspects ofgrams require special testing support and provide opportu-
classes. nities for exploitation by a testing strategy. However, al-
though many regression test selection techniques have been
proposed for procedural programs [3, 5, 13] and object-
oriented programs [9, 10, 14, 6], there is no regression test

Aspect-oriented software development (AOSD) is a new selection technique for aspect-oriented programs unit no
technique to support separation of concerns in software de-/AlSO, the existing regression test selection techniques ca
velopment [4, 7, 11, 16]. The techniques of AOSD make NOt be directly apphed to aspec_t—orlented_ programs. Fhere
it possible to modularize crosscutting aspects of a systemfore, new regression test selection techniques and toats th
Like objects in object-oriented software development, as- are appropriate for aspect-oriented programs are needed.
pects in AOSD may arise at any stage of the software life ~ This paper presents the first safe regression test selection
cycle, including requirements specification, design, eapl technique for AspectJ programs. The technique is based on
mentation, etc. Some examples of crosscutting aspects ar&arious types of control flow graphs that can be used to se-
exception handling, synchronization, and resource sarin lect test cases, from the original test suite, that exeade ¢

The current research so far in AOSD is focused on prob-that has been changed for the new version of the AspectJ
lem analysis, software design, and implementation tech-software. The technique is code-based in the sense that it
niques. Even though the importance of software testing Operates on the control flow graphs of AspectJ programs.
and verification is known, it has received little attention i The technique can be applied to modified individual aspects
the aspect-oriented paradigm. Although it has been claimedor classes, and also the whole programs that used modified
that applying an AOSD method will eventually lead to qual- aspects or classes.
ity software, aspect-orientation does not provide comess The rest of the paper is organized as follows. Section
by itself. An aspect-oriented design can lead to a better sys 2 briefly introduces the AspectJ. Section 3 presents a con-
tem architecture and an aspect-oriented programming lan-rol flow model for regression test selection of AspectJ pro-
guage enforces a disciplined coding style, but they are bygrams. 4 briefly describes a regression test selection algo-

1 Introduction

0810

研究会Temp
テキストボックス
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp
テキストボックス
2004－SE－145　(12)

研究会Temp
テキストボックス
2004／8／20

研究会Temp
テキストボックス
－81－

rithm for AspectJ programs. Concluding remarks are givenset ti ngX, orsetti ngy.

in Section 5. An AspectJ program can be divided into two paliase
. o code which includes classes, interfaces, and other stan-
2 Aspect-Oriented Programmingin AspectJ dard Java constructs aadpect codevhich implements the

crosscutting concerns in the program. For example, Fig-

fWe prtesgnt tom:jr data—flow—'batzed un;t t;ast;rlf; ap%o"’:ﬁhure 1 shows an Aspectd program that associates shadow
ot aspect-oriented programs in the context ot Aspect/, epoints with everyPoi nt object. The program can be di-

most widely used a}spect-oriented progrqmming Ian,g'uage\/ided into the base code containing the clasBes nt

[8]. Our basic tech_nlques, however, Qeal with the basic €ON-5nd Shadow, and the aspect code which has the aspect

cepts of aspect-oriented brogramming and therefore applyPoi nt ShadowPr ot ocol that stores a shadow object in

to the general glass of aspect-oriented anguages. . everyPoi nt . Moreover, the AspectJ implementation en-
Aspect] [8] is & seamless aspect-oriented extension Qe that the aspect and base code run together in a prop-

Java; Aspect]J adds some new concepts a.nd associated COBHy coordinated fashion. The key component isaspect

structs to Java. These concepts and associated consteicts Ayeaver when ensures that applicable advice runs at the ap-

called join point, pointcut, advice, introduction, and@sp ., hriate join points. For more information about AspectJ,
We briefly introduce each of these constructs as follows. refer to [2].

The aspectis the modular unit of crosscutting imple-
mentation in AspectJ. Each aspect encapsulates function3 The Control Flow M odd for AspectJ
ality that crosscuts other classes in a program. Like a class
an aspect can be instantiated, can contain state and meth- To facilitate regression test selection for AspectJ pro-
ods, and also may be specialized with sub-aspects. An asgrams, we present a control flow model that captures the
pect is combined with the classes it crosscuts according tocontrol flow information of an aspect or class, and also a
specifications given within the aspect. Moreover, an as- complete AspectJ program. Based on this model, regres-
pect can use amtroductionconstruct to introduce meth- sion test selection can be performed. The model consists of
ods, attributes, and interface implementation declamatio two different types of control flow graphs in order to capture
into classes. Introduced members may be made visible to aldifferent levels of control flow information in an individua
classes and aspects (public introduction) or only withi th aspect or class, and also the whole program. We present
aspect (private introduction), allowing one to avoid name €ach type of the graphs as follows.
conflict§ with pre-existing elemgnts_. For example, the as-g 1 Modeling Individual Modules
pectPoi nt ShadowPr ot ocol in Figure 1 privately in-

troduces a field hadowto the clas$?oi nt ats31. In addition to methods, an aspect may contain other
A central concept in the composition of an aspect with modular units such as advice and inter-type members. Since
other classes is calledjain point. A join point is a well- advice and inter-type members can be regarded as method-

defined point in the execution of a program, such as a call tolike units, to keep our terminology consistent in the rest of
a method, an access to an attribute, an object initialimatio paper, we use the word “module” to stand for a piece of ad-
an exception handler, etc. Sets of join points may be rep-vice, an inter-type member, or a method in an aspect and
resented byointcuts implying that such sets may crosscut also a method in a class.
the system. Pointcuts can be composed and new pointcut A control-flow graph(CFG) for a modulen, denoted
designators can be defined according to these combinationsdy G¢ r¢, is a directed graple, V, A) wheree is anentry
AspectJ provides various pointcdésignatorghat may be vertexto represent the entry inta; V = V,, U V, such that
combined through logical operators to build up complete V,, is a set ohormal verticeandV, is a set otcall vertices
descriptions of pointcuts of interest. For example, the as- A a set ofcontrol flow arcsto represent the flow of control
pectPoi nt ShadowPr ot ocol in Figure 1 declares three between two vertices.
pointcuts namedet ti ng, setti ngX, andsettingY In Gerg, a vertex is called amormal vertexif it rep-
atp36, p37, andp38. resents a statement or predicate expressiom iwithout

An aspect can specifiadvice which is used to de- containing a call or object creation. Otherwise it is caked
fine code that executes when a pointcut is reached. Ad-call vertex G¢rg can be used to represent the control flow
vice is a method-like mechanism which consists of in- information for a module of an aspect-oriented programs.
structions that executbefore after, or around a point- An aspect may be woven into one or more classes at
cut. around advice executeqn place of the indicated some join points, declared withpointcutswhich are used
pointcut, allowing a method to be replaced. For example, in the definition ofadvice[2]. Since a piece of before, after,
the aspecPoi nt ShadowPr ot ocol in Figure 1 declares or around advice: can be regarded as a method-like unit,
three pieces of after advice ae39, ae43, andae48; we can use a CFG to representn this case, the CFG for
each is attached to the corresponding poinszitt i ng, a has a unique entry vertex to represent the entrydnto

0820

研究会Temp
テキストボックス
－82－

ce0 public class Point { ase27 aspect Poi nt ShadowPr ot ocol {

sl protected int x, vy; s28 private int shadowCount = 0;
ne2 public Point(int _x, int _y) { me29 public static int getShadowCount() {
s3 X = _X; s30 ret urn Poi nt ShadowPr ot ocol .
s4 y = _Y; aspect O () . shadowCount ;
}
nme5 public int getX() { s31 private Shadow Poi nt.shadow,
s6 return x; me32 public static void associate(Point p, Shadow s){
} s33 p. shadow = s;
nme7 public int getY() { }
s8 return y; me34 public static Shadow get Shadow(Poi nt p) {
} s35 return p.shadow,
me9 public void setX(int _x) {
s10 X = _X;
} pe36 pointcut setting(int x, int y, Point p):
nmell public void setY(int _y) { args(x,y) && call(Point.new(int,int));
s12 y = _Y; pe37 poi ntcut settingX(Point p):
target(p) && call(void Point.setX(int));
nmel3 public void printPosition() { pe38 pointcut settingY(Point p):
sl4) Systemout. println("Point at("+x+","+y+")"); target(p) && call(void Point.setY(int));
mel5 public static void main(String[] args) { ae39 after(int x, int y, Point p) returning :
s16 Point p = new Point(1,1); setting(x, y, p) {
s17 p.set X(2); s40 Shadow s = new Shadow x, y);
s18 p.setY(2); s41 associ ate(p, s);
} s42 shadowCount ++;
} }
cel9 class Shadow { ae43 after(Point p): settingX(p) {
s20 public static final int offset = 10; s44 Shadow s = new get Shadow(p) ;
s21 public int x, vy; s45 s.x = p.getX() + Shadow. of fset;
s46 p. printPosition();
me22 Shadow(int x, int y) { s47 s.printPosition();
s23 this.x = x; } . .
s24 this.y = vy; ae48 after(Point p): settingY(p) {
me25 public void printPosition() { s49 Shadow s = new get Shadow(p);
s26 System out pri nt | n(" Shadow at s50 s.y = p.getY() + Shadow.offset;
("HXE Ty) s51 p. printPosition();
} s52) s.printPosition();
}

Figure 1: A sample AspectJ program.

Aspects can declare members (fields, methods, and con- Leta be an aspect with modules{m; |i =1,2,...,k.}
structors) that are owned by other types. These are callehndG,; = (e;, V;, A;) be the CFG for module:;. Anaspect
inter-type members. Aspects can also declare that othercontrol-flow graph(ACFG) for «, denoted byG acrqg, is
types implement new interfaces or extend a new class [2].a directed graplie®, £~, V%, A%), wheree® is theaspect
Since each of these inter-type members (only for a methodentry vertexand£ = U¥_, ¢, is the set okntry verticesof
or constructor) is similar in nature to a standard method orthe modules inv. V* = Uf_,V; U V3 such thatJ}_, V;
constructor, we can use a CFG to represent each of themis the set of vertices; each represents a statement or €ontro
In this case, the CFG for an inter-type member has a uniquepredicate in the modules ia and V}, is the set ofjoin-
entry vertex to represent the entry into the member. point vertices A® = UleAi UAY UAYU ,45 U A% such

For a pointcupe, since it contains no body code, it does thatu®_, 4, is the set ofcontrol flow arcsin the CFGs of
not need a control flow graph to represent it. In this case, modules ina, A2, is the set oimembership arGs4® is a
we use a vertex callgdin-point vertexto represenpc. The set ofcall arcs A2 is the set opointing arcs and.AZ, is the
join-point vertex also represents the entry ipto As we set ofweaving arcs

will discuss in.the folllowing, gjoin-point yertex can be re- G acrq is a collection of CFGs; each represents a piece
garcjed_as a “join pomt“ to aid for weaving the CFGs for of advice, an inter-type member, or a methodnin The
advice into the partial SCFG for base code. aspect entry verterepresents the entry inte. An aspect

membership araepresents the membership relationships
betweena and its members (advice, inter-type members,
To facilitate the analysis of an individual aspect, we rep- PCIntcuts, or methods) by connecting entry vertex to the
resent each aspect in an aspect-oriented program by an a&Ntry vertex of each member. jin-point vertexrepresents
pect control-flow graph. Thaspect control-flow graph a pomtcut ina. A call arc represents.the calling rela_t|on-
(ACFG) represents the static control-flow relationshit th SNiP* between two modules, andms in a by connecting
exist within and among adVICE, mter-type members’ and 1Since advice in AspectJ is automatically woven into somehods) by a com-
methods of an aspect. piler (called ajc) during aspect weaving process, thergtexio call to the advice. As

3.2 Modeling Individual Aspects

0830

研究会Temp
テキストボックス
－83－

algorithm BuildACFG

_ the aspect. ACG usesspect-membership ar¢s connect
input An aspecty

output The Aspect Control-Flow Graph (ACF@&J., of a the aspect Start vertex to each vertex that repre;entsa piec

begin BUildACFG of advice, an inter-type member, or a methodhin If an
[1] /> Build the aspect call graph for and add toGia */ inter-type member or a methed, in a calls another inter-
[2] GG, = Construct the aspect call graph fer ;
[3] /* Build CFGs for advice, inter-type members, type member or methoths in o, ACG yses EC&ll” arc_to
[4] and methods i and add toGa */ connectm; to m. to represent the calling relationship be-
[5] /* Replace each call graph vertex with the corresponding GFG tween them. Secon@ui | dACFGbuilds CFGs for all ad-
[6] for each advice, inter-type member, or methadn o do vice, inter-type members, and methods using traditioral al
{ g nggcee:;::‘gﬁfészggsph vertex i with m's CFG gorithms like [1]. Third,Bui | d ACFGreplaces each vertex
[9] endfor (except the start vertex) in the ACG with the corresponding
[10] /* Replace call sites with call and return vertictfs CFG. Forth,Bui | dACFG replaces each call (site) vertex
(1] for each call \ée(teXS_i“ Ga, fepresegting aca"hm_ . with a call and return vertices. Finallui | dACFG con-
Hg Replact; il g}e{;:é’gergﬁrmn i methodin o do nects the individual CFGs belongingdao form the whole
[14] Update arcs appropriately ACFG for . If @ modulem, has a call to another mod-
[15] endfor ulems in a, Bui | dACFGconnects the call vertex im; to
[16] /* Connect the individual CFGY ms’s start vertex using a call arc.
[17] for each advice, inter-type member, or methedin « do
[18] Add an arc from the aspect start vertex to the start .
[19] vertex ofm's CFG inG., Exgmple 1 Figure 3 shows the ACFG for aspect
[20] endfor Poi nt ShadowPr ot ocol . For example, ase27 is
[21] /* Return the complete ACFG of*/ an aspect entry vertexge39, ae43, andae48 are advice
[QQend Bu”dAé?:tgmG” entry vertices;me29, me32, andne34 are method entry

vertices, p36, p37, and p38 are join-point vertices.
(ase27, ne29), (ase27, ne32), and @se27, ne34)
are aspect membership arcs. Each entry vertex is the root of
a sub-graph which is itself a partial SCFG. Each sub-graph
the call vertex inm; to the entry vertex ofn,’s CFG if is a CFG that represents the control-flow information in a
there is a call inn;’s body to callm,. Weaving arcgep- ~ Module. (36,ae39), (p37,ae43), and (38,ae48) are
resent advice weaving by connecting the CFG for a methodPointing arcs that represent interactions between poitstcu
in some classes to the CFG for its corresponding advice in@nd their corresponding advice.
a; we will discuss this issue in more detail in section 3.6. . .

For each pointcupe in a, we connect the aspect entry 5+4 Modeling Aspect-Class Interactions
vertex topc’s join-point vertex through an aspect member-
ship arc, and alspc’s join-point vertex to the entry vertex
of its corresponding advice by @ointing arcto represent
the relationship between them.

Figure 2: Algorithm for ACFG construction.

In AspectJ, an aspect can interact with a class in several
ways, i.e., byobject creationmethod callandadvice weav-
ing. The system control-flow graph for an aspect-oriented
program should be able to represent these interactions be-

3.3 ACFG Construction Algorithms tween aspects and classes.

Figure 2 gives an algorithrBui | dACFG for building Method CaILs f‘nd Ot?[j;Nect Crgatlions I%ASptethf' A Cg”
the ACFG for an aspeet which consists of five steps. As &Y occufr g ween two tmot ues, anbm2 a Canth ed ¢
inputBui | dACFG gets CFGs for advice, inter-type mem- a piece ot advice, an inter-lype member, or a method o

bers, and methods in, and as outpuBui | dACFGreturns aspects and classes. In such a case, a call arc is added to
thea"s ACFG ' connect the call vertex ofi;'s CFG to the entry vertex of

First, Bui | dACFG builds the aspect call graph for, ~ "%2'S CFG. On the other hand, a piece of advice, an inter-
An aspect call graph(ACG) for an aspectv represents typetmembebr., orta fmetr:ogglr:han asrf)ec;orla clf}ssmayb
caller/callee relationships among advice, inter-type mem create an o Ject ora %a rc,)Autgth'at' ec a;ﬂ lon or by
bers, and/or methods within. Vertices in the ACG rep- using an operator suc 'm:w. IS ime, there 1 an
resent the advice, inter-type members, methods that arémpllcn call from m to C’s constructor. To represent this
members ofx and’ those methods which are members of implicit constructor call, a call arc is added to connect the
some classeé and may be advised by advice. oArcs in call vertex ina at the site of object creation to the entry
the ACG represent the calling relationships among advice,vertexe of the CFG ofC"s constructor.
inter-type members, and/or methods. ACG has a unique

) Example2 In Figure 1, statements40 represents
vertex calledaspect start verteko represent the entry into P 9 P

an object creation of classShadow in aspect
aresult, there exists no call from an inter-type member (ethad) to advice. Poi nt ShadowPr ot ocol . To represent this object

0 840

研究会Temp
テキストボックス
－84－

- e ~
//// /’// /// \ >
/. {me2 / meo R

A\

_
@ @ s\\
—
o
[v]
w
0
- &_______-—
=]
(]
w
00

OO
S

—_— ..

intraprocedural control-flow arc,” ™

[> R

interprocedural control-flow (|ass nodul e aspect modul e

or call arc vertex vertex
—————p —_ —-
aspect nenbership arc pointing arc weavi ng arc

®
OROROE

@0

Figure 3: The ACG and ACFG corresponding to aspdtnt ShadowPr ot ocol .

creation, in the SCFG of Figure 4, a call vertex is created forming a static analysis for a pointcut declaration, we can
for s40; it is connected to the entry vertare22 of the determine those methods in some classes that a piece of ad-
Poi nt 's constructor by a call arc. On the other hand, vice, attached to this pointcut, may advise. This inforomati
statements45 represents a call to methodet X() of can be used to connect the partial SCFG for base code to the
class Poi nt in aspectPoi nt ShadowPr ot ocol . To CFGs for the aspect code; just as an aspect weaves itself into
represent this method call, in the SCFG of Figure 4, a call the base program at some join points, we weave the CFGs
vertex is created fos45; it is connected to the entry vertex for advice into the partial SCFG at join-point vertices.

me5 of methodset X() by a call arc. The basic idea of our approach is that we treat a piece of

advice as a method-like unit when constructing the SCFG
for an aspect-oriented program and regard each pointcut as
a join point for weaving the CFGs of advice and the partial
§CFG for base code. For a piece of before or after advice
a in an aspect that may advise a methadn a class, we
connect the entry vertex af (advised method) to the join

Advice Weaving. In aspect-oriented language such as As-
pectd, the join point model is a key element for providing
the frame of reference that makes it possible for execution
of a program’s aspect and non-aspect code to be coordinate
properly. We recognized that the join point model is also a

crucial point to perform interprocedural control-flow apal . . . S
sis for aspect-oriented programs because control-flow anal .FIJO'T \{ﬁrtex att?ﬁ;:d bzytuslng awe{ahvu;g alrlc Th|s IS St'm' ¢
ysis of aspect and non-aspect code of the program is not & '0 the case ' contains a method call, 1.€., we trea
independent. Rather, they must be coordinated through thﬁgOgemer with its pointcut(s) as a method that may be called

join points (declared byointcutdesignators) in the pro- rg)t?dr(;f. Th? weaving algc herg IS S|rfn|lar toda ga[l arc, but
gram. As a result, properly handling join points in the as- with diierent meaning. For a piece ot around adviaa an

pect code is a key for performing interprocedural control- aspect that may advise a T”em“’d” a class, since may
flow analysis of an aspect-oriented program. replacem, we add a weaving arc which connects the start

To form the complete SCFG, we need to know some vertex of the original call arc te to the join-point vertex
“join points” in the CFGs for some methods at which the attached by.
CFGs for their corresponding advice can be woven. By per- Based on these considerations, we can weave the CFGs

0 850

研究会Temp
テキストボックス
－85－

for advice and the partial SCFG to form the complete SCFG '
in a nature way. f

Example3 The after advice (linesae43-s47) in as-
pectPoi nt ShadowPr ot ocol may weave into method
set X() of classPoi nt . To represent this weaving issue,
in the SCFG of Figure 4, a weaving ancg9, pe37) is cre-
ated to connect the entry vertex9 for methodset X()

to the join-point vertexe37 for pointcutset t i ngX.

&

O—E—C

3.5 Modeling Complete Programs

We use thesystem control-flow graptSCFG) to repre-
sent the control-flow information and calling relationship
in a complete aspect-oriented program.

Let P be an aspect-oriented program withmodules
{mi ‘ 1= 1,2, ...,TI,.} andG; = ((’Z,V;Al) be the CFG
for modulem;. A system control-flow graptSCFG) for
P, denoted byGscre, is a directed grapfiE?, VP, AP),
wherefP = U?_, e; is the set oentry verticeof the mod-
ulesinP. V» = U, V; UV} such thatj_, Vi is the set |
of vertices; each represents a statement or control prtedica : :
in the modules inP ande’; is the set ofoin-point vertices i
AP = UF_| A; U AP U AP U AP such thatU}_, A; is the set
of control flow arcsin the CFGs of modules i®?, A? is a
set ofcall arcs A} is the set opointing arcs andA?%, is the
set ofweaving arcs j

Gscre is a collection of CFGs; each represents a
mai n() method, a method of a class, a piece of advice, |
an inter-type member, or a method of an asp€gtp also '
contains some additional arcs to represent calling relatio
ships between a call and the called module and aspect Weav{-

0

- -

; o .) intraprocedural control-flow interprocedural control-flow
Ing. GSOFG uses qom-pomt vertexo represent a pomtcut arc or call arc ;
inP. In Gscorg, call arcsrepresent the calling and callee ;,;;:en;;sm p arc pointing — eavi ng arc

relationships between moduleg/eaving arcconnect the
CFG for a method to the CFG for its corresponding advice;

these arcs represent the WeaVing relationships betWeen aq‘:igure 4: The Comp|ete SCFG for the program in Figure 1.
vice and those methods that the advice may affect.

Example4 Figure 4 shows the SCFG for the program in pii4s a CFG for each piece of advice, inter-type mem-

Figure 1 with aspectPoi nt ShadowPr ot ocol which ber, or method in an aspect or class. It builds these graphs

can be constructed by the algorithm described in Figure 5. ;, 5 bottom-up fashion according to the aspect and class
hierarchies (lines 8-21). After thaBui | dSCFG calls

3.6 SCFG Construction Algorithm Connect () to connect these graphs at call sites to form a

partial SCFG forP (line 22). Finally,Bui | dSCFGbuilds

the complete SCFG fd@P by calling\Weavi ng() toweave

the CFG for each piece of advice into the CFGs for its cor-

responding methods in the partial SCFG (line 23). In the

following, we describe our algorithm step by step.

We next present a concrete algorithm for constructing the
system control-flow graph for an aspect-oriented program
P.

Figure 5 shows our SCFG construction algorithm
Bui | dSCFG. As inputBui | dSCFG gets each module in
all aspects and classes®f and as outpuBui | dSCFGre- Pre-processing Aspects and Classes. Bui | dSCFG first
turns theP’s SCFG. Our algorithm consists of four steps. identifies pieces of advice, inter-type members, and meth-
First, Bui | dSCFG pre-processes each aspect and class inods that require new CFG8ui | dSCFG uses the follow-

P to get those kinds of information that are necessary for ing process to identify pieces of advice, inter-type meraper
constructing the SCFG (lines 1-7). Secobd, | dSCFG and methods in each aspect that requires a new CFG; we can

0 860

研究会Temp
テキストボックス
－86－

algorithm Bui | dSCFG

input An aspect-oriented progra
output System control-flow graph (SCFG) &f
declare

begin Bui | dSCFG
* Step 1: Pre-processing the prografn*/
[1] foreach aspectx or classC
[2] Identify pieces of advice, inter-type members, and methods
[3] that need new CFGs
[4] endfor
[5] foreach pointcutpc
[6] Compute affected-methods set for
[7] endfor
/* Step 2: Build CFGs for pieces of advice, inter-type members
and methods in each aspect or cldss
[8] foreach aspectx or classC
[9] foreach piece of advice, inter-type member, or methed
declared im or C
] Compute the CFG fom
] endfor
] foreach piece of advice, inter-type member, or method
] in the base aspects or classes
] if m is “marked” then
[15] Copy old CFG
]
]
]
]
I

[16 Adjust callsites

(17 else

[18 Reusen’s old CFG
(19 endif

[20] endfor

[21] endfor

[* Step 3: Connecting CFGs at call sité/s
[22] Connect ()

[* Step 4: Weaving CFGs at pointcut sités
[23] Weavi ng()

end Bui | dSCFG

Figure 5: Algorithm for SCFG construction.

putPoi nt cut Anal ysi s() returns a set calledffected-
methods-sathich records methods that may be affected by

pc.

Building CFGs for Advice, Inter-type Members, and
Methods. Bui | dSCFG uses an existing algorithm [1] to
construct the CFG for a piece of advice, an inter-type mem-
ber, or a methoadn declared in a new aspect or class and
the CFG for a piece of advice, an inter-type member, or a
method declared in a base aspect.

Connecting CFGs at Call Sites. Bui | dSCFG calls
Connect () to connect the CFGs created in step 2 at call
sites to form a partial SCFG for an aspect-oriented pro-
gram. At each call siteBui | dSCFG connects the CFG
for the called inter-type member or method to the CFG for
the calling advice, inter-type member, or method by using a
call arc. At each pointcut sitdBui | dSCFG connects the
join-point vertex for a pointcut to the entry vertex of its
corresponding advice by using a pointing arc. If there are
multiple pieces of advice that applies to the same pointcut,
Bui | dSCFGconnects the join-point vertex of the pointcut
to the entry vertex of each piece of advice by pointing arcs
respectively.

Weaving CFGs at Pointcut Sites. Bui | dSCFG calls
Weavi ng() to finish the task of weaving the complete
SCFG by weaving the CFGs for advice in aspects into
the CFGs for their corresponding methods in classes.
Weavi ng() connects the entry vertex of each method’s
CFG in the partial SCFG to the join-point vertex of a point-
cut that refers to the method bywaeaving arc If the ad-
vice attached to the pointcut is a pieceasbund advice
that contains gr oceed call, Weavi ng() connects the

use a similar process to identify methods in each class thafr oceed call vertex to the entry vertex of the original

require a new CFG. method’s CFG by a call arc to represent that the around
For an aspecty, Bui | dSCFG calls a marking proce- advice may execute thgr oceed call, which leads to exe-

dure to operate on’s call graph to identify the pieces of cute the original method under the join point declared by the

advice, inter-type members, and methods that require newpointcut. Weavi ng() does this iteratively until all pieces

CFGs; the call graph for can be constructed by a modi- 0f advice in all aspects have been processed.

fied algorithm proposed in [15]. First, it marks the pieces

of advice, inter-type members, and methods declared in

Second, ifx extends some base aspécismarks the pieces

of advice, inter-type members, and methods in the base as-

pects that can reach these marked advice, inter-type mem- In order to perform the regression test selection- for As-
bers, and methods by performing a backward traversal onpeCt‘] programs, we adapt the graph-traversal algorithm pro

a’s call graph from these marked advice, inter-type mem- posed by Harrold et al. [6] and Rotherneelal. [14], which

bers, and methods. Finally, all marked advice, inter-type zqse;if? (;o\?t:oil-f:]ow-]tjased rg\[l)vrerseptatl?n S{)ft:lhetor[[glr(al ant
members, and methods require new CFGs. oditied versions ot the software 1o select the test cases 1o

Bui | dSCFG then callsPoi nt cut Anal ysi s() to t)ekrer?r?. fOLIJIr re'grestsmn.testselecnon for AspectJ pragram
perform static analysis on each pointcut to determine akes the following steps.

the methods that the pointcut may affect. As input
Poi nt cut Anal ysi s() gets a pointcupe, and as out-

Regression Test Selection for Aspectd Pro-
grams

¢ Runthe test suites with the original program and obtain
coverage information.

2We can use a similar technique to handle the casertlimextended from a class

or interface. ¢ Construct the system control-flow graph for the origi-

0 87d

研究会Temp
テキストボックス
－87－

nal and modified programs. [9] T. Koju, S. Takada, N. Doi. Regression Test Selectioredas

on Intermediate Code for Virtual MachineBroc. Interna-
e Compare the system control-flow graphs and detect tional Conference on Software Maintenan2603.

dangerous arcs in the graphs.
]] [10] D. Kung, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen. Fire-
e Compare the coverage information and dangerous wall Regression Testing and Software Maintenadoernal
arcs, and select test cases. of Object-Oriented Programming 994.

5 Concluding Remarks [11] K. Lieberher, D. Orleans, and J. Ovlinger. Aspect-@tisl
Programming with Adaptive Method<Communications of
This paper presented the first safe regression test se- the ACM Vol.44, No.10, pp.39-41, October 2001.

lection technique for AspectJ programs. Our technique is _ _ _

based on various types of control flow graphs that can be[12] S._ S. Muchnick. Advanced Compiler Design and Implemen-

used to select test cases, from the original test suite, that ~ 2tion- Morgan Kaufmann, 1997.

execute code that has been changed for the new version ofi3] G. Rothermel and M. J. Harrold. A Safe, Efficient Regi@ss

the AspectJ software. Our technique is code-based in the Test Selection TechniquaCM Transactions on Software En-

sense that it operates on the control flow graphs of Aspect] gineering and Methodologyol. 6, No. 2, pp.173-210, April

programs. Our technique can be applied to modified indi- 1997.

\ljf(: daln?gg;ic;j ergfcize;} 2[;1:(':’50 tlhnec\)ltjr;c:‘tatfr?g\]/\:zms \t,t‘:[tm] G. Ro_thermel, M. J. Harrold, and J. Dedhia. Regr_essifmtj'
.) . ! Selection for C++ Softwardournal of Software Testing, Veri-

plan to develop a regression test selection tool based on the fication, and ReliabilityVol. 10, No. 6, pp.77-109, June 2000.

technique proposed in this paper to support regression test

selection for AspectJ programs. [15] D. Sereni and O. de Moor. Static Analysis of Aspe&tsc.
2nd International Conference on Aspect-Oriented Software
References Developmentpp.30-39, March 2003.

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compiler, Principle [16] P. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton. N De-
Techniques, and Tools. Addison-Wesley, Boston, MA, 1986. grees of Separation of Concerns: Multi-Dimensional Sepa-

]) ration of ConcernsProc. 21th International Conference on
[2] ;gg:specw Team. The Aspect] Programming Guide. August goftware Engineeringp.107-119, May 1999.

[17] L. J. White and K. Abdullah. A Firewall Approach for Re-
gression Testing of Object-Oriented SoftwdPeoc. 10th An-
nual Software Quality Weekay 1997.

[3] T. Ball. On the Limit of Control Flow Analysis for Regres-
sion Test SelectiorProc. ACM International Symposium on
Software Testing and Analysj#.134-142, March 1998.

[18] J. Zhao. Tool Support for Unit Testing of Aspect-Oriedht
Software. OOPSLA'2002 Workshop on Tools for Aspect-
Oriented Software Developmei@eattle, WA, USA, Novem-
ber 2002.

[4] L. Bergmans and M. Aksits. Composing crosscutting Con-
cerns Using Composition FiltersCommunications of the
ACM, Vol.44, No.10, pp.51-57, October 2001.

[5] Y. F. Chen, D. S. Rosenblum, and K. V. Vo. TestTube: A Sys-
tem for Selective Regression Testilgoc. 16th International
Conference on Software Engineerimpgp.211-222, May 1994.

[19] J. Zhao. Data-Flow-Based Unit Testing of Aspect-Otéeh
ProgramsProc. 27th Annual IEEE International Computer
Software and Applications Conferenqgep.188-197. Dallas,

[6] M. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pen- Texas, USA, November 2003.
nings, S. Sinha, S. A. Spoon, and A. Gujarathi. Regression
Test Selection for Java Softwarmroc. ACM COnference on
Object-Oriented Programming, Systems, Languages, and Ap-
plications pp.312-326, October 2001.

[7] G.Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes
J. M. Loingtier, and J. Irwin. Aspect-Oriented Programming
proc. 11th European Conference on Object-Oriented Pro-
gramming pp220-242, LNCS, \Vol.1241, Springer-Verlag,
June 1997.

[8] G.Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes
J. M. Loingtier, and J. Irwin, “An Overview of AspectJ,”
proc. 13th European Conference on Object-Oriented Pro-
gramming pp.220-242, LNCS, \Vol.1241, Springer-Verlag,
June 2000.

0 880

研究会Temp
テキストボックス
－88－

