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Bugs4Q: A Benchmark of Real Bugs for Qiskit Programs
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Abstract: Realistic benchmarks of reproducible bugs and fixes are vital to good experimental evaluation of testing and
analysis approaches. Unfortunately, until now, there is no suitable benchmark suite that can be used to evaluate testing
and debugging tools for quantum programs systematically. This paper proposes Bugs4Q, a benchmark of thirty real,
manually validated Qiskit bugs from four popular Qiskit elements (Terra, Aer, Ignis, and Aqua), supplemented with
the test cases for reproducing buggy behaviors. Bugs4Q also provides interfaces for accessing the buggy and fixed ver-
sions of the Qiskit programs and executing the corresponding test cases, facilitating the reproducible empirical studies
and comparisons of Qiskit analysis and testing tools.
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1. Introduction
A software bug is considered as abnormal program behavior

that deviates from its specification [3], including poor perfor-
mance when a threshold level of performance is included in the
specification. Software bugs have a significant impact on the
economy, security, and quality of life. The diagnosis and repair of
software bugs consume a significant amount of time and money.
An appropriate method of bug finding can quickly help develop-
ers locate and fix bugs. Many software engineering tasks, such as
program analysis, debugging, and software testing, are dedicated
to developing techniques and tools to find and fix bugs. Software
bugs can also be handled more effectively or avoided by study-
ing past bugs and their fixes. In general, these techniques and
tools should be evaluated on real-world, up-to-date bug bench-
mark suites so that potential users can know how well they work.
Such a benchmark suite should contain fail-pass pairs, consisting
of a failed version, including a test set that exposes failures, and
a passed version, which includes changes that fix failures. Based
on this, researchers can evaluate the effectiveness of techniques
and tools for performing bug detection, localization, or repair. As
a result, research progress in this field is closely dependent on
high-quality bug benchmark suites.

Quantum programming is the process of designing and con-
structing executable quantum programs to achieve a specific com-
putational result. A number of quantum programming approaches
are available recently to write quantum programs, for instance,
Qiskit [19], Q# [20], ProjectQ [21], Scaffold [1], and Quipper[7].
The current research in quantum programming focuses mainly
on problem analysis, language design, and implementation. De-
spite their importance, program debugging and software test-
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ing have received little attention in the quantum programming
paradigm [24]. The specific features of superposition, entangle-
ment, and no-cloning introduced in quantum programming, make
it difficult to find the bugs in quantum programs. Recently, several
approaches have been proposed for testing and debugging quan-
tum software [14, 15, 10, 9, 17, 18, 2, 23], but the testing and
debugging remain challenging issues for quantum software [24].

Researches on bug benchmark suites for classical software
have been studied extensively [6, 5, 12, 16, 8, 11, 22, 13], but
few have been proposed for quantum software. Recently, Cam-
pos and Souto [4] proposed some initial ideas on building a bug
benchmark for quantum software testing and debugging experi-
ments, but the details of the benchmark are still unclear.

We may not know which debugging, and testing tools are suit-
able for quantum software without a suitable bug benchmark suite
for evaluating these tools, and this may pose some restrictions
on the research and development of quantum software testing
and debugging techniques. As the first step towards evaluating
quantum software testing and debugging tools, this paper presents
Bugs4Q, a benchmark of 30 real, manually validated Qiskit bugs
from four popular Qiskit programs, supplemented with the test
cases for reproducing buggy behaviors. Bugs4Q has made the
following contributions:

• Bugs4Q collects reproducible bugs in quantum programs
and supports downloading and running test cases to support
quantum software testing. Each actual bug and the corre-
sponding fixes are publicly available for research.

• Bugs4Q collects almost all the existing bugs of Qiskit on
GitHub and updates them in real-time, including the four
elements of Terra, Aer, Ignis, and Aqua. Furthermore,
these programs are sorted separately and filtered except for
the bugs with originally available test cases and support for
reproduction.

• Bugs4Q provides a database that includes an analysis of bug
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Table 1 Programs and number of real bugs available in the initial version of Bugs4Q

Program Source Description Bugs KLOC Test KLOC Tests

Terra IBM Qiskit Foundation of Qiskit 21 139 56 467
Aer IBM Qiskit Simulators with noise models 3 62 18 149
Ignis IBM Qiskit Reveal information about the device quality 2 11 3 59
Auqa IBM Qiskit A library of cross-domain algorithms 4 56 17 211

types to classify existing bugs for experimental evaluation of
isolated bugs.

The rest of the paper is organized as follows. Section 2 briefly
describes Bugs4Q, a bug benchmark suite for Qiskit. Section 3
introduces the process of manually reproducing bugs. Section 4
describes the specific types of bugs in Qiskit with examples. Re-
lated work is discussed in Section 5, and concluding remarks are
given in Section 6.

2. Bugs4Q Benchmark Suite
To make sure we can build a benchmark of real bugs, we have

collected the existing bugs in the version control history and the
real fixes provided by the developers.

Table 1 shows all programs and the numbers of correspond-
ing real bugs that are available in the bug database of Bugs4Q.
In order to achieve benchmark rigor, each real bug must have its
original bug version as well as a fixed version. This requires us
to extract the relevant description of the bug and refer to its fixed
commit. Moreover, the bugs we collect must comply with the
following requirements:

• Related to source code. The reason for the bug is on the
source files of the build system, but not the test files, or the
underlying files that build the Qiskit programs.

• Related to quantum program. The bug should have an
impact on the operation or the outcome of the quantum pro-
gram. Problems caused by configuration files required to run
quantum programs or classical parts of quantum algorithms
are not included in our database.

• Reproducible. More than one test case must be used to
demonstrate the bug, and the bug must be reproducible un-
der certain requirements. Depending on the nature of the
quantum program, for example, the presence of probabilistic
output causes the program not to be able to reproduce the
results completely. It can lead to bugs that are difficult to
reproduce in a controlled environment.

• Isolated. Fixes submitted by developers should also be
related to the source files. Irrelevant changes need to be
removed, and there is no code refactoring due to version
changes. Excessive source file changes that are too complex
will be incorporated into our database repository later after
careful verification of isolation.

Figure 1 depicts the main process of building our benchmark.
First, we look for programs on as criteria for our base database
classification. After that, we collect the issues with bug tags and
incorporate them into our first version of the database for man-
ual validation. We then manually reproduce the bugs for further

Fig. 1 Overview of the benchmark database build process

filtering and place those that meet the isolation criteria into our
version-2.0 database for dynamic validation. Finally, extraneous
patches will be cleaned up to complete the final version of the
benchmark database.

2.1 Selecting Subject Programs
For project program selection, we only target Qiskit programs

that are relatively well used on GitHub. We use the GitHub’s is-
sue tab to find bugs in the program and collect both the buggy
version and the fixed version. We have collected all the issues
with bug tags. Besides, Qiskit programs generally generate cir-
cuit diagrams, which serve only to represent the process of chang-
ing quantum states and do not impact on the program’s execu-
tion. However, wrong circuit diagrams can also mislead users,
and therefore we have collected them into one type.

We base the four elements of Terra, Aer, Ignis, Aqua in
Qiskit as our list of topics. A brief descriptions of the four ele-
ments are as follows, which comes from the official description
of Qiskit [19]:

• Terra is the foundation on which the rest of Qiskit is built.

• Aer provides high-performance quantum computing simu-
lators with realistic noise models.

• Ignis provides tools for quantum hardware verification,
noise characterization, and error correction.

• Aqua provides algorithms for quantum computing applica-
tions.
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Table 2 Example of a benchmark database for Bugs4Q

Bug ID Issue No Buggy Fixed Modify Status Version Type Test Issue Registered Issue Resolved

1 #5908 Buggy Fixed Mod Resolved 0.17.0 Bug Test Feb 26, 2021 Mar 1, 2021

2 #5914 Buggy Fixed Mod Resolved 0.16.4 Bug Test Feb 27, 2021 Feb 28, 2021

2.2 Collecting Bugs
The bug collection process consists of two steps as follows.

2.2.1 Collecting and Filtering Bugs
For each element in Qiskit, we focus on collecting issues from

closed tags on GitHub. We also collect obvious and important
bugs with open status and mark them so that they can be put into
our database as soon as they are submitted for fixing. For bugs
in closed status, we collect bugs and submitted fixes according to
their IDs (e.g., #1324). Of course, in our benchmark library, we
will use our own set ID as the index.

Bugs that are not submitted to fix the close status and bugs that
are not related to the quantum program and bug patterns will be
filtered out. We still discard the case of having multiple fixes for
bugs, i.e., having multiple fix links. Besides, bugs that disappear
due to version changes are also not considered. After this work,
we built the original bug database, which contains 206 quantum
program-related bugs. As more and more bugs are raised, our
database will be updated as we go forward.
2.2.2 Screening Test Cases

In order to reproduce the bugs more accurately, we choose the
original program proposed by the developer in the bug report as
our test case. The program proposed by the developer will be
collected and tagged with the test in our library, accompanied by
the second screening. There are 115 bugs with original test cases.
For the bugs, without test cases, we will write the corresponding
test cases according to the bugs in future work. Next is manual
verification for the third screening.

2.3 Manually Verifying and Reproducing Bugs
We manually check that our requirements are met for each bug

that has a test case. All bugs that can be reproduced and meet the
isolation criteria will be placed in our final benchmark suite. For
incomplete test cases, we modify the recovery procedure as much
as possible to achieve its proper operation. Nevertheless, in addi-
tion to errors in the original test cases, it is not uncommon to have
too many and too complex revision submissions that are not re-
producible. As in Ignis, many files have the suffix hpp and cpp
instead of py. We chose to forgo collecting them into the current
version of the benchmark suite. On the other hand, some of the
submitted fixes have no impact on the bug recovery, so we only
keep the fixes that impact the bug. The results of the manual ver-
ification showed that only 30 bugs were successfully reproduced
and isolated. The process of reproduction is still ongoing.

2.4 Sanity Checking through Dynamic Validation
In order to better reproduce the bug, we try to implement an

automated approach. We first implement version control, calling
the corresponding version of Qiksit for different bugs. After call-
ing the bug indexed by ID, the file of the bug version will replace
the corresponding file in Qiskit. Finally, the same process is im-

plemented for the fixed version. As the test suite continues to
improve, the version control environment will be ported to more
platforms.

3. Available Bugs Reproduced
This section describes the process of manually reproducing

bugs. Bugs are complex to reproduce, so first, they need to meet
some rules. As shown in Table 3 is the restrictions on reproduc-
ing bugs. We separate each bug, clean up irrelevant changes in
advance, ignore some description files, and keep only the original
files related to the bug and the fixed files. Any bugs or fixes with
the above characteristics will be filtered out. Next is the specific
process.

3.1 Restoring Version Environment
We configure the environment based on the version informa-

tion submitted by the bug raiser in Figure 2. This is error #5908
*1 as an example, its proposed version is terra 0.17.0. After
that, we will find the file location and the repaired file code in the
fix commit. Then we manually restore the fixed code to the code
at the time of the buggy. Then replace the files in the environment
with the restored source files. In this sample, the blue code sec-
tion in Figure 4 is the code added by the repair file. We restore it
to the buggy state as represented in Figure 3.

Fig. 2 Version information of bug submission

Fig. 3 The partial code of buggy file

*1 https://github.com/Qiskit/qiskit-terra/issues/5908
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Table 3 Restrictions on reproducing bugs

Restrictions Description

Isolation Each fix submission can only address one bug, and that bug cannot exist on top of any other bug

Complication A bug fix corresponds to multiple fixes submitted, or too many fixes are submitted to make it impossible to determine
the location of the bug

Reconfiguration Fixed commits are file rewrites caused by refactoring or version changes

Dependencies The fixed commit introduces a new library

Fig. 4 The partial code of fixed file

qc = QuantumCircuit(2)
qc.rzx(0.1,0,1)

pass_ = TemplateOptimization
(**rzx_templates([’zz2’]))

qc_cal = PassManager(pass_).run(qc)
pass_ = RZXCalibrationBuilder(backend)
qc_cal = PassManager(pass_).run(qc_cal)

qc2 = QuantumCircuit(2)
qc2 +=qc_cal

print (schedule(transpile(qc,backend),
backend).duration)

print (schedule(transpile(qc_cal,backend),
backend).duration)

print (schedule(transpile(qc2,backend),
backend).duration)

Fig. 5 The code in the problem description

3.2 Running Test Cases
We first select the program code provided by the bug raiser.

Figure 5 shows the program code in the error submission mes-
sage that does not meet the program run criteria. The code will
be downloaded, fixed, and placed in our database as original test
cases for verification. When we run the program in the config-
ured environment, the result is consistent with the description of
the bug submission message, which proves that the bug was suc-
cessfully reproduced. Next, the fixed file represented in Figure 4
is replaced by the file in the environment. If the bug disappears,
the program runs successfully, and is consistent with the descrip-
tion of the fix, the test passes.

3.3 Representation in Benchmark Suite
The reproduced available bugs will be added to our database

in the form of Table 2. In order to be able to document each bug
in detail, we provide a detailed description of each bug and links
to local files of our organization for Buggy, Fixed, Test. Further-
more, Issue No, Mdify are linked to bugs and fixes committed in
GitHub, respectively. After reproducing each bug and populating
the benchmark database, we next summarized some bug types.

Output before fixed:

v1 = 32.0

v2 = 8.0

Output after fixed:

v1 = 8.0

v2 = 8.0

Fig. 6 An example of output wrong

Output before fixed:

From config : [’id’, ’rz’, ’sx’, ’x’, ’cx’]

From the noise model :

[’cx’, ’id’, ’sx’, ’u3’, ’x’]

Output after fixed:

From config : [’id’, ’rz’, ’sx’, ’x’, ’cx’]

From the noise model :

[’id’, ’rz’, ’sx’, ’x’, ’cx’]

Fig. 7 An example of noise simulation error

4. Analysis
We summarize the common types of errors in Qiskit. Some er-

rors only occur in specific elements. Others are not related to the
main part of the quantum program but can also lead to misunder-
standing the quantum programs.

4.1 Output Wrong
Output errors are the bugs we are most concerned about, which

are not easily discovered but play a critical role in quantum pro-
grams. Erroneous output results can mislead program users. Here
we reproduce a simple example in Aqua, with the issue number
of #1324 *2.

Considering the code snippet in Figure 6. The program that
calls the CircuitSamplermethod and finds that v1 and v2 should
have output the same result. But they are only the same when
coeff=1, otherwise they often have different results. The file to
fix this bug is vector state fn.py only, which is the source file
in qikist/aqua. Such bugs account for a large proportion of the
bugs we reproduce.

4.2 Noise Simulation Error
Due to the inherent nature of quantum computer hardware, the

presence of noise makes programs that actually run in quantum
computers not extraordinarily stable. Qiskit so provides Aer can
be implemented to simulate noise on a classical computer. This
provides great convenience for us to study real quantum pro-
grams. Therefore it is also particularly important to target the
bugs of quantum noise simulators.

As shown in Figure 7, which is a program that imports the base

*2 https://github.com/Qiskit/qiskit-aqua/issues/1324
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Output before fixed:

QiskitError: "Type error handeling

[(QuantumRegister(1, ’q1’), 0), 1]

(<class ’list’>)"

Output after fixed:

Qubit ordering:

[Qubit(QuantumRegister(1, ’q2’), 0),

Qubit(QuantumRegister(1, ’q1’), 0)]

Classical bit ordering:

[Clbit(ClassicalRegister(2, ’c’), 0),

Clbit(ClassicalRegister(2, ’c’), 1)]

Fig. 8 An example of throwing exceptions

gate from the quantum simulation backend from issue #1107*3.
By default, the noise model contains in its usual base gate the
id and U3. The purpose is that circuits could be executed even
if the developer did not define noise on all gates. However, a
bug in running the program due to a change in the default base
gate of the IBM Q backend prevents it from working correctly.
The bug here is that the u3 gate should not appear in the noise
model, but rather the X gate. The fix for this commit is that the
noise model will always have the same base gate as the backend
base gate, regardless of whether the instruction has an error in the
noise model. This type of error is only found in the Aer element
and is not common.

4.3 Lost Information
Lost information, i.e., the program does not implement a spe-

cific function. Terra is the most used element and the one with
the most bugs filed. There are many times the fix for bugs in
other elements of the commit is to modify the files in the terra.
The sample we cite is #5908, as shown in Figure 5. This is
a program that combines a conventional QuantumCircuit with
a calibration circuit. The buggy version of this program uses
the default gate circuit, and the calibration circuit information is
missing. The error output with name = "sched4" indicates that
QuantumCircuit’s += does not remain calibrated, thus causing
the problem. Such a bug is not closely related to traditional quan-
tum circuits and is not common.

4.4 Throwing Exceptions
Throwing an exception is as common and basic as an output

error. Program errors and output errors account for almost all of
the bugs in our Database. As shown in Figure 8, which is also
from Qiskit Terra, #2369 *4. This is a simple program of using
indexes and bits as parameters. Until it is fixed, this bug can be
considered as a bug pattern. However, this issue is fixed as a bug
here. So we collected it into our Database. In general, this kind
of bug can be understood as the parameters of the called method
do not support string types, or more precisely, only integer types.
The problem here is that the gate parameter could not support a
mix of indexes and bits. A commit fix made it possible for the
gate parameter to support them.

In addition to the error types described above, we constantly
summarize other bug types, such as quantum circuit diagram

*3 https://github.com/Qiskit/qiskit-aer/issues/1107
*4 https://github.com/Qiskit/qiskit-terra/issues/2369

drawing errors. In our future work, we will add the types of bugs
to our benchmark and propose a database with bug types as clas-
sification criteria for better use by researchers and developers.

5. Related Work
5.1 Bug Benchmark Suite for Classical Software

Many bug benchmark suites have been proposed to analyze and
evaluate bug detection techniques and tools for classical software.
The Siemens test suite [11] is one of the first bug benchmark
suites used in testing research. It consists of seven C programs,
which contain manually seeded faults. The first widely used
benchmark suite of real bugs and fixes is the SIR (Software Arti-
fact Infrastructure Repository) [6], which enables reproducibility
in software testing research. SIR contains multiple versions of
Java, C, C++, and C# programs which consist of test suites, bug
data, and scripts. The benchmark contains both real and seeded
faults. Defects4J [12] is a bug database and extensible frame-
work which contains 357 validated bugs from five real-world Java
projects. iBug [5] is another benchmark that contains real Java
bugs from bug-tracking systems originally proposed for bug lo-
calization research. iBug consists of 390 bugs and 197 KLOC,
which took from three open-source projects. Other benchmark
suites include BenchBug [16], ManyBug (and InterClass) [13],
and BUGSJS [8] for JavaScirpt projects.

However, all the benchmarks mentioned above focus on the
classical software systems, and therefore cannot be used for the
evaluation and comparison of quantum software debugging and
testing techniques and tools.

5.2 Bug Benchmark Suite for Quantum Programs
Perhaps, the most related work with ours is QBugs proposed

by Campos and Souto [4], which aims to build a collection of re-
producible bugs in quantum algorithms for supporting controlled
experiments for quantum software testing and debugging. In ad-
dition to proposing some initial ideas on building a benchmark
for providing an experimental infrastructure to support the eval-
uation and comparison of new research and the reproducibility
of published research results on quantum software engineering,
they also point out challenges and opportunities on the devel-
opment of QBugs. However, they provide no detailed informa-
tion on the QBugs; the usability and availability are still unclear.
Our Bugs4Q, on the other hand, aims to construct a bug bench-
mark suite of real bugs derived from four real-world IBM Qiskit
programs for quantum software testing and debugging, with real-
world test cases for reproducing the buggy behaviors of identified
bugs.

6. Concluding Remarks
In this paper, we have proposed Bugs4Q, a benchmark of thirty

real, manually validated Qiskit bugs from four popular Qiskit pro-
grams, supplemented with the test cases for reproducing buggy
behaviors. Bugs4Q also provides interfaces for accessing the
buggy and fixed versions of the Qiskit programs and executing
the corresponding test cases, facilitating the reproducible empiri-
cal studies and comparisons of Qiskit analysis and testing tools.

We would like to keep updating the bug reports submitted on
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GitHub for future work and continue to improve the tests to re-
produce more bugs in Qiskit. On the other hand, we would like
to summarize more bug types for the commonality of bugs to be
more easily uncovered when our benchmark is extended to more
quantum programming languages.
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[8] Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood
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