
IPSJ SIG Technical Report

Quantum Algorithm for Finding the Optimal Variable
Ordering for Binary Decision Diagrams∗

Seiichiro Tani1,a)

Abstract: An ordered binary decision diagram (OBDD) is a directed acyclic graph that represents a Boolean function.
OBDDs are also known as special cases of oblivious read-once branching programs in the field of complexity theory.
Since OBDDs have many nice properties as data structures, they have been extensively studied for decades in both the-
oretical and practical fields, such as VLSI design, formal verification, machine learning, and combinatorial problems.
Arguably, the most crucial problem in using OBDDs is that they may vary exponentially in size depending on their
variable ordering (i.e., the order in which the variables are to read) when they represent the same function. Indeed,
it is NP hard to find an optimal variable ordering that minimizes an OBDD for a given function. Hence, numerous
studies have sought heuristics to find an optimal variable ordering. From practical as well as theoretical points of view,
it is also important to seek algorithms that output optimal solutions with lower (exponential) time complexity than
trivial brute-force algorithms do. Friedman and Supowit provided a clever deterministic algorithm with time/space
complexity O∗(3n), where n is the number of variables of the function, which is much better than the trivial brute-force
bound O∗(n!2n). This paper shows that a further speedup is possible with quantum computers by demonstrating the
existence of a quantum algorithm that produces a minimum OBDD together with the corresponding variable ordering
in O∗(2.77286n) time and space with an exponentially small error. Moreover, this algorithm can be adapted to con-
structing other minimum decision diagrams such as zero-suppressed BDDs, which provide compact representations of
sparse sets and are often used in the field of discrete optimization and enumeration.
Full Version: arXiv:1909.12658

Keywords: quantum algorithm, ordered binary decision diagram.

1. Background
1.1 Ordered binary decision diagrams.

The ordered binary decision diagram (OBDD) is one of the
data structures that have been most often used for decades to rep-
resent Boolean functions in practical situations, such as VLSI
design, formal verification, optimization of combinatorial prob-
lems, and machine learning, and it has been extensively studied
from both theoretical and practical standpoints (see standard text-
books and surveys, e.g., Refs. [2], [3], [4], [5], [6], [7]). More-
over, many variants of OBDDs have been invented to more effi-
ciently represent data with properties observed frequently in spe-
cific applications (e.g., Refs. [8], [9], [10], [11], [12]). More
technically speaking, OBDDs are directed acyclic graphs that
represent Boolean functions and also known as special cases
of oblivious read-once branching programs in the field of com-
plexity theory. The reason for OBDDs’ popularity lies in their
nice properties — they can be uniquely determined up to iso-
morphism for each function once variable ordering (i.e., the or-
der in which to read the variables) is fixed and, thanks to this
property, the equivalence of functions can be checked by just
testing the isomorphism between the OBDDs representing the

1 NTT Communication Science Laboratories, NTT Corporation.
3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan.

a) seiichiro.tani.cs@hco.ntt.co.jp
*1 A conference version of this paper is Ref. [1].

functions (this can be done in linear time since each OBDD is
a directed acyclic graphs with a single source node and labeled
edges). In addition, binary operations such as AND and OR be-
tween two functions can be performed efficiently over the OB-
DDs representing those functions [13]. Since these properties
are essential in many applications, OBDDs have gathered much
attention from various research fields. To enjoy these nice prop-
erties, however, we actually need to address a crucial problem,
which is that OBDDs may vary exponentially in size depend-
ing on their variable ordering. For instance, a Boolean function
f (x1, . . . , x2n) = x1x2 + x3x4 + · · · + x2n−1x2n has a (2n + 2)-sized
OBDD for the ordering (x1, . . . , x2n) and a 2n+1-sized OBDD for
the ordering (x1, x3, . . . , x2n−1, x2, x4, . . . , x2n) [3], Sec. 8.1 (see
Fig. 1 for the case where n = 3). This is not a rare phenomenon;
it could happen in many concrete functions that one encounters.
Thus, since the early stages of OBDD research, one of the most
central problems has been how to find an optimal variable order-
ing, i.e., one that minimizes OBDDs. Since there are n! permu-
tations over n variables, the brute-force search requires at least
n! = 2Ω(n log n) time to find an optimal variable ordering. Indeed,
finding an optimal variable ordering for a given function is an NP
hard problem (see Sec. 6 for the studies on the hardness).

To tackle this high complexity, many heuristics have been pro-
posed to find an optimal variable ordering or a relatively good
one. These heuristics work well for Boolean functions appearing
in specific applications since they are based on very insightful ob-

© 2021 Information Processing Society of Japan 1

Vol.2021-QS-3 No.1
2021/7/1

IPSJ SIG Technical Report

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'

TF

𝑥"

𝑥$ 𝑥$

𝑥& 𝑥& 𝑥& 𝑥&

𝑥# 𝑥# 𝑥# 𝑥#

𝑥% 𝑥%

𝑥'

TF𝑉)

𝑉'

𝑉&

𝑉%

𝑉$

𝑉#

𝑉"

Fig. 1 The OBDDs represent the function f (x1, x2, x3, x4, x5, x6) = x1 x2 + x3 x4 + x5 x6 under two variable
orderings: (x1, x2, x3, x4, x5, x6) (left) and (x1, x3, x5, x2, x4, x6) (right), where the solid and dotted
arcs express 1-edges and 0-edges, respectively, and the terminal nodes for true and false are labeled
with T and F, respectively. In general, the function f (x1, . . . , x2n) = x1 x2+ x3 x4+ · · ·+ x2n−1 x2n has
the a (2n + 2)-sized OBDD for the ordering (x1, . . . , x2n) and a 2n+1-sized OBDD for the ordering
(x1, x3, . . . , x2n−1, x2, x4, . . . , x2n).

servations, but they do not guarantee a worst-case time complex-
ity lower than that achievable with the brute-force search. The
only algorithm with a much lower worst-case time complexity
bound, O∗(3n) time (O∗(·) hides a polynomial factor), than the
brute-force bound O∗(n!2n) for all Boolean functions with n vari-
ables was provided by Friedman and Supowit [14], and that was
over thirty years ago!

In practice, it is often too costly to construct a minimum OBDD
and the optimal variable ordering may change as the function
changes during a procedure, say, by imposing additional con-
straints. Nevertheless, theoretically sound methods for finding
an optimal variable ordering are worth studying for several rea-
sons, such as to judge the optimization quality of heuristics and
to be able to apply such methods at least to parts of the OBDDs
within a heuristics procedure [3], Sec. 9.22.

1.2 Quantum Speedups of Dynamic Programming
Grover’s quantum search algorithm [15] and its variants

achieve quadratic speedups over any classical algorithm for un-
structured search, a very fundamental problem (effectively, ex-
haustive search is the only classical strategy). Thus, one of the
merits of the quantum search is its wide applicability. However,
it does not immediately mean quantum speedups for all problems
to which the quantum search is applicable, since there may exist
better classical algorithms than simple exhaustive search. Indeed,
quantum search for an optimal variable ordering of the OBDD
from among n! candidates takes approximately

√
n! ≈ 2

1
2 n log n

time, while the best classical algorithm takes only O∗(3n) =
O∗(2(log2 3)n). These classical algorithms often employ powerful
algorithmic techniques such as dynamic programming, divide-
and-conquer, and branch-and-bound. One typical strategy to gain
quantum speedups would be to find parts of exhaustive search
(often implicitly) performed within such classical algorithms and
apply the quantum search to those parts. For instance, Dürr et

al. [16] provided quantum algorithms for some graph problems,
among which the quantum algorithm for the single-source short-
est path problem achieves a quantum speedup by applying a vari-
ant of Grover’s search algorithm to select the cheapest border
edge in Dijkstra’s algorithm. However, applying the quantum
search in this way does not work when the number of states in a
dynamic programming algorithm is much larger than the number
of predecessors of each state. For instance, the Traveling Sales-
man Problem (TSP) can be solved in O∗(2n) time by a classical
dynamic programming algorithm, but locally applying the quan-
tum search can attain at most a polynomial-factor improvement.
Recently, Ambainis et al. [17] has introduced break-through tech-
niques to speed up dynamic programming approaches. They
provide quantum algorithms that solve a variety of vertex order-
ing problems on graphs in O∗(1.817n) time, graph bandwidth in
O∗(2.946n) time, and TSP and minimum set cover in O∗(1, 728n)
time, where n is the number of vertices in the graphs.

2. Our Results
In this paper, we show that quantum speedup is possible for the

problem of finding an optimal variable ordering of the OBDD for
a given function. This is the first quantum speedup for the OBDD-
related problems. Our algorithms assume the quantum random
access memory (QRAM) model [18], which is commonly used
in the literature concerning quantum algorithms. In the model,
one can read contents from or write them into quantum memory
in a superposition. We provide our main result in the following
theorem.

Theorem 1 There exists a quantum algorithm that, for a
function f : {0, 1}n → {0, 1} given as its truth table, produces a
minimum OBDD representing f together with the corresponding
variable ordering in O∗(γn) time and space with an exponentially
small error probability with respect to n, where the constant γ is at
most 2.77286. Moreover, the OBDD produced by our algorithm

© 2021 Information Processing Society of Japan 2

Vol.2021-QS-3 No.1
2021/7/1

IPSJ SIG Technical Report

��

����

������

����

�� ��

���� ����

������ ��

���� ����

���	
��
�
��� ��	�����
�
����

Fig. 2 Examples of a redundant node (left) and a pair of equivalent nodes (right), and their respective
removal rules, where the solid and dotted arcs express 1-edges and 0-edges, respectively. In the
example of a redundant node, u0 and u1 denote u0 and u1, respectively.

is always a valid one for f , although it is not minimum with an
exponentially small probability.

This improves upon the classical best bound O∗(3n) [14] on
time/space complexity. The classical algorithm achieving this
bound is a deterministic one. However, there are no randomized
algorithms that compute an optimal variable ordering in asymp-
totically less time complexity as far as we know.

It may seem somewhat restricted to assume that the function f
is given as its truth table, since there are other common represen-
tations of Boolean functions such as DNFs, CNFs, Boolean cir-
cuits and OBDDs. However, this is not the case. Our algorithm
actually works without increasing the order of complexity*1 in
more general settings where the input function f is given as any
representation such that the value of f on any specified assign-
ment can be computed over the representation in polynomial time
in n, such as polynomial-size DNFs/CNFs/circuits and OBDDs of
any size*2 This is because, in such cases, the truth table of f can
be prepared in O∗(2n) time/space, which is negligible compared
with the total time/space complexity, and the minimum OBDD is
computable from that truth table with our algorithm. We restate
Theorem 1 in a more general form as follows.

Corollary 2 Let R(f) be any representation of a Boolean
function f with n variables such that the value of f (x) on any
given assignment x ∈ {0, 1}n can be computed on R(f) in polyno-
mial time with respect to n. Then, there exists a quantum algo-
rithm that, for a function f : {0, 1}n → {0, 1} given as R(f), pro-
duces a minimum OBDD representing f together with the cor-
responding variable ordering in O∗(γn) time and space with an
exponentially small error probability with respect to n, where the
constant γ is at most 2.77286. Possible representations as R(f)
are polynomial-size DNFs/CNFs/circuits and OBDDs of any size
for function f .

There are many variants of OBDDs, among which the zero-
suppressed BDDs (ZDDs or ZBDDs) introduced by Minato [8]
have been shown to be very powerful in dealing with combina-

*1 Here, we consider the complexity with respect to the number of vari-
ables. The complexity with respect to input size may vary drastically.

*2 Regardless of the size of input OBDD, the value of f on any specified
assignment can be computed in O(n) time by traversing the path corre-
sponding to the assignment from the root.

torial problems (see Knuth’s famous book [6] for how to apply
ZDDs to such problems). With slight modifications, our algo-
rithm can construct a minimum ZDD with the same time/space
complexity. We believe that similar speedups are possible for
many other variants of OBDDs (adapting our algorithm to multi-
terminal BDDs (MTBDDs) [10], [11] is almost trivial).

3. Ordered Binary Decision Diagrams
We provide a quick review of OBDDs. For more details, con-

sult standard textbooks (e.g., Refs. [3], [5]).
For any Boolean function f : {0, 1}n → {0, 1} over variables

x1, . . . , xn and any permutation π ∈ Sn (called a variable order-
ing), an OBDD B(f , π) is a single-rooted directed acyclic graph
G(V, E) that is unique up to isomorphism, defined as follows (ex-
amples are shown in Fig. 1).
(1) The node set V is the union of two disjoint sets N and T of

non-terminal nodes with out-degree two and terminal nodes
with out-degree zero, respectively, where T contains exactly
two nodes: T = {f, t}. The set N contains a unique source
node r, called the root.

(2) B(f , π) is a leveled graph with n+1 levels. Namely, the node
set can be partitioned into n subsets: V := V0 �V1 � · · · �Vn,

where Vn = {r} and V0 = T = {t, f}, such that each directed
edge (u, v) ∈ E is in Vi×Vj for a pair (i, j) ∈ [n]×({0}�[n−1])
with i > j. For each i ∈ [n], subset Vi (called the level i) is
associated with the variable xπ[i], or alternatively, each node
in Vi is labeled with xπ[i].*3 For convenience, we define a
map var : N → [n] such that if v ∈ Vi then var = π[i].

(3) The two edges emanating from every non-terminal node v
are called the 0-edge and the 1-edge, which are labeled with
0 and 1, respectively. For every u ∈ N, let u0 and u1 be the
destinations of the 0-edge and 1-edge of u, respectively.

(4) Let F (f) be the set of all subfunctions of f . Define a bijec-
tive map F : V → F (f) as follows: (a) F(r) = f for r ∈ Vn;
(b) F(t) = true and F(f) = false for t, f ∈ V0; (c) For every
u ∈ N and b ∈ {0, 1}, F(ub) is the subfunction obtained from
F(u) by substituting xvar(u) with b, i.e., F(ub) = F(u)|xvar(u)=b.

*3 In the standard definition, Vi is associated with the variable xπ[n−i]. Our
definition follows the one given in [14] to avoid complicated subscripts
of variables.

© 2021 Information Processing Society of Japan 3

Vol.2021-QS-3 No.1
2021/7/1

IPSJ SIG Technical Report

(5) B(f , π) must be minimal in the sense that the following re-
duction rules cannot be applied. In other words, B(f , π) is
obtained by maximally applying the following rules (Fig. 2):
(a) if there exists a redundant node u ∈ N, then remove

u and its outgoing edges, and redirect all the incoming
edges of u to u0, where a node u is redundant if u0 is the
same node as u1.

(b) if there exist equivalent nodes {u, v} ⊂ N, then remove
v (i.e., any one of them) and its outgoing edges, and
redirect all incoming edges of v to u, where u and v are
equivalent if (1) var(u) is equal to var(v), and (2) u0 and
u1 are the same nodes as v0 and v1, respectively.

Example 1 For ease of understanding the above notations,
let us consider the OBDD on the right side in Fig. 1. The root
r is the uppermost node labeled with x6. The variable ordering
π is (1, 3, 5, 2, 4, 6). Every node in Vℓ (ℓ = 1, . . . , 6) is repre-
sented by a circle labeled with xπ[ℓ]. For instance, V3 consists
of all the four nodes labeled with x5. For each node v ∈ V3, it
holds that var(v) = 5. Let u be the left node labeled with x3.
Since the path from r to u consists of three edges labeled with 0,
1, and 0 in this order from the root side, F(u) is represented as
F(r)|x6=0,x4=1,x2=0 = f |x6=0,x4=1,x2=0 = x3.

4. Technical Outline
The first step to take is to somehow adapt the dynamic pro-

gramming approach of the classical algorithm [14] (called, FS)
to the framework provided by Ambainis et al. [17]. Consider
a Boolean function f over n variables: x1, . . . , xn. Intuitively,
FS determines the variable ordering of the minimum OBDD
for f by performing dynamic programming from the variable to
be read last toward that to be read first. More concretely, let
(xπ[1], . . . , xπ[n]) be the variable ordering from the one read last
(xπ[1]) to the one read first (xπ[n]), where π = (π[1], . . . , π[n])
is a permutation over [n] := {1, . . . , n}. For k = 1, . . . , n in
this order, and for every subset K ⊆ [n] of cardinality k, the
algorithm FS computes a lower bound on OBDD size when
{π[1], . . . , π[k]} = K from the lower bounds on OBDD size when
{π[1], . . . , π[k − 1]} = K \ {h} for all h ∈ K. Thus, by thinking
of each node z ∈ {0, 1}n of weight k in a Boolean hypercube as
the characteristic vector of K, the algorithm FS can be seen as
solving a kind of shortest path problem on a Boolean hypercube.
Hence, Ambainis et al.’s framework seems applicable. Their re-
sults depend on the property that a large problem can be divided
into the same kind of subproblems or, in other words, symmetric
subproblems in the sense that they can be solved with the same
algorithm. This property naturally holds in many graph problems.
In our case, firstly, it is unclear whether the problem can be di-
vided into subproblems. Secondly, subproblems would be to op-
timize the ordering of variable starting from the middle variable
or even from the opposite end, i.e., from the variable to be read
first, toward the one to be read last. Such subproblems cannot be
solved with the algorithm FS, and, in particular, optimizing in the
latter case essentially requires the equivalence check of subfunc-
tions of f , which is very costly.

Our technical contribution is to find, by carefully observing the
unique properties of OBDDs, that it is actually possible to even

recursively divide the original problem into asymmetric subprob-
lems, to generalize the algorithm FS so that it can solve the sub-
problems, and to use the quantum minimum finding algorithm in
order to efficiently select the subproblems that essentially con-
tribute to the optimal variable ordering.

More concretely, we show that, for any k ∈ [n], it is possi-
ble to divide the problem into two collections of subproblems as
follows: for all K ⊆ [n] of cardinality k,
• problems of finding the ordering (π[1], . . . , π[k]) that mini-

mizes the size of the bottom k-layers of the corresponding
OBDD, assuming that the set {π[1], . . . , π[k]} equals K,

• problems of finding the ordering (π[k+1], . . . , π[n]) that min-
imizes the size of the upper (n− k)-layers of the correspond-
ing OBDD, assuming that the set {π[k + 1], . . . , π[n]} equals
[n] \ K.

Then, taking the minimum of the OBDD size over all K and k
with the quantum minimum finding provides a minimum OBDD
and the corresponding variable ordering. To obtain a better
bound, a straightforward strategy is to consider m division points
(0 < k1 < · · · < km < n) and optimize each of the (m + 1)
suborderings (π[1], . . . , π[k1]), (π[k1 + 1], . . . , π[k2]), . . . , (π[km +

1], . . . , π[n]). However, this makes subproblems even more asym-
metric. To deal with this asymmetry, we generalize the algorithm
FS so that it can cover all the subproblems. Then, by applying it
to each subproblem, we optimize the suborderings with the quan-
tum minimum finding so that the OBDD size is minimized. To
improve the complexity bound further, a simple idea would be to
replace the generalized FS with the quantum algorithm we have
just obtained. However, the latter algorithm works only for the
original problem. Thus, we generalize the quantum algorithm
so that it can be applied to the asymmetric subproblems. By re-
peating this composition and generalization, we obtain the final
algorithm.

5. Conclusion
We have provided a quantum algorithm that solves the opti-

mal variable ordering problem, one of the central problems con-
cerning OBDDs, in O∗(γn) time and space in the quantum ran-
dom access memory (QRAM) model, where constant γ is at most
2.77286 and n is the number of variables on which the input
Boolean function depends. This implies an exponential speedup
over the best known classical algorithm, which runs in O∗(3n)
time and space.

There are several questions that we have left open. First, we do
not believe that our complexity bound is (nearly) tight. Thus, the
first question is whether it is possible to improve the time and/or
space complexity. Our algorithm has an exponentially small error
probability, with which its output, i.e., a variable ordering π and
the OBDD according to π, is not optimal. However, the output
OBDD is still a valid OBDD for input function f , that is, neither
an OBDD not representing f nor a bit string not representing any
OBDD. It would be interesting to consider the case of allowing
the output that is not a valid OBDD with a small probability.

Second, a trivial classical lower bound is Ω(2n), since the in-
put is the truth table of a Boolean function over n variables. This
also holds even in the quantum setting, since the quantum query

© 2021 Information Processing Society of Japan 4

Vol.2021-QS-3 No.1
2021/7/1

IPSJ SIG Technical Report

complexity of identifying all N bits hidden in an input oracle is
Ω(N) in the worst case [19], [20]. Is it possible to provide a better
lower bound (under some conjectures)?

Third, we have considered time-efficient algorithms. Their
space complexity is equal to their time-complexity, up to polyno-
mial factors. However, space complexity would be more critical
than time complexity in some cases. Hence, another interesting
direction appears to be the quest for space-efficient algorithms.
Actually, the O∗(2n) space complexity can be achieved by the
brute-force algorithm, which, for every permutation π ∈ Π([n]),
constructs B(f , π) in O∗(2n) time by restricting the FS-algorithm
to the fixed variable ordering π. However, this incurs the huge
time complexity of O∗(n!2n). In general, there is a trade-off be-
tween time and space. Thus, a reasonable direction would be to
make the product TS of time complexity T and space complex-
ity S as small as possible. For instance, the product TS of the
brute-force algorithm is O∗(n!4n), while the best known classical
algorithm FS has TS = O∗(3n · 3n) = O∗(9n). Our algorithm has
a much smaller TS value of O∗(2.772862n) = O∗(7.68875n). Is it
possible to provide an algorithm that achieves a lower TS value?

Finally, the divide-and-conquer lemma (given in the full paper)
does not depend on quantum computing. It would be interesting
to find classical applications of this lemma.

6. Related Work
The studies related to minimizing OBDDs are so numerous that

we cannot cover all of them. We thus pick up some of purely the-
oretical work.

Meinel and Slobodová [21] proved that it is NP hard to con-
struct an optimal OBDD for a Boolean function given by a log-
ical circuit, a DNF, a CNF, or an OBDD, even if the optimal
OBDD is of constant size. Tani, Hamaguchi and Yajima [22]
proved that it is NP hard to improve the variable ordering (and
thus, to find an optimal variable ordering) for a given multi-rooted
OBDD, where the NP hardness is proved by a reduction from an
NP complete problem, Optimal Linear Arrangement [23]. Bol-
lig and Wegener [24] finally proved the NP hardness for a given
single-rooted OBDD by providing a sophisticated reduction from
the same problem. This is still true if the input function is re-
stricted to monotone functions [25]. Minimizing the width of
an OBDD is also NP hard [26]. As for approximation hardness,
Sieling [27], [28] proved that if there exists a polynomial-time
approximation scheme for computing the size of the minimum
OBDD for a given OBDD, it then holds that P = NP.

It would be nice if, for every function, there exists at least
one variable ordering under which the OBDD for the function
is of a size bounded by a polynomial. As one may expect, this
is not the case. It can be proved by a counting argument that
there exists a function for which the OBDD size grows expo-
nentially in the number of variables under any variable order-
ing [29], [30], [31]. Moreover, concrete examples of such func-
tions are known: the multiplication function [32], a threshold
function [33], and the division function [34] (for other classes
of Boolean functions, see Ref. [35], [36], [37]). The OBDD size
is also studied from the viewpoint of computational learning and
knowledge-bases [38], [39].

In applying OBDDs to graph problems, it is possible to find
variable orderings for which OBDD size is nontrivially upper-
bounded in terms of certain measures characterizing graph struc-
tures [40], [41]. A similar concept was discoved for ZDDs [8] by
Knuth [6]. This concept is now called the frontier method, and
lots of work is based on it.

Acknowledgments This work is partially supported by JSPS
KAKENHI Grant No. JP20H05966 and JST [Moonshot R&D –
MILLENNIA Program] Grant No. JPMJMS2061.

References
[1] Tani, S.: Quantum Algorithm for Finding the Optimal Variable Or-

dering for Binary Decision Diagrams, Proceedings of the 17th Scan-
dinavian Symposium and Workshops on Algorithm Theory (SWAT
2020) (Albers, S., ed.), LIPIcs, Vol. 162, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, pp. 36:1–36:19 (2020).

[2] Bryant, R. E.: Symbolic Boolean Manipulation with Ordered Binary-
decision Diagrams, ACM Comput. Surv., Vol. 24, No. 3, pp. 293–318
(1992).

[3] Meinel, C. and Theobald, T.: Algorithms and Data Structures in VLSI
Design: OBDD - Foundations and Applications, Springer (1998).

[4] Drechsler, R. and Becker, B.: Binary Decision Diagrams: Theory and
Implementation, Springer (1998).

[5] Wegener, I.: Branching Programs and Binary Decision Diagrams,
SIAM Monographs on Discrete Mathematics and Applications, SIAM
(2000).

[6] Knuth, D. E.: The Art of Computer Programming, Volume 4, Fascicle
1: Bitwise Tricks & Techniques; Binary Decision Diagrams, Addison-
Wesley Professional, 1 edition (2009).

[7] Bryant, R. E.: Binary Decision Diagrams, Handbook of Model Check-
ing, pp. 191–217 (2018).

[8] Minato, S.: Zero-Suppressed BDDs for Set Manipulation in Combina-
torial Problems, Proceedins of the 30th ACM/IEEE Design Automation
Conference, pp. 272–277 (1993).

[9] Bryant, R. E. and Chen, Y.: Verification of Arithmetic Circuits with
Binary Moment Diagrams, Proceedings of the 32st Conference on De-
sign Automation, San Francisco, California, USA, Moscone Center,
June 12-16, 1995., pp. 535–541 (1995).

[10] Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii, E.,
Pardo, A. and Somenzi, F.: Algebric Decision Diagrams and Their
Applications, Formal Methods in System Design, Vol. 10, No. 2–3,
pp. 171–206 (1997).

[11] Clarke, E., Mcmillan, K. L., Zhao, X., Fujita, M. and Yang, J.: Spec-
tral Transforms for Large Boolean Functions with Applications to
Technology Mapping, Formal Methods in System Design, Vol. 10,
No. 2–3, pp. 137–148 (1997).

[12] Minato, S.: πDD: A New Decision Diagram for Efficient Problem
Solving in Permutation Space, Proceedings of the 14th International
Conference on Theory and Applications of Satisfiability Testing (SAT
2011), Lecture Notes in Computer Science, Vol. 6695, pp. 90–104
(2011).

[13] Bryant, R. E.: Graph-Based Algorithms for Boolean Function Manip-
ulation, IEEE Trans. Comput., Vol. 35, No. 8, pp. 677–691 (1986).

[14] Friedman, S. J. and Supowit, K. J.: Finding the optimal variable order-
ing for binary decision diagrams, IEEE Transactions on Computers,
Vol. 39, No. 5, pp. 710–713 (1990).

[15] Grover, L. K.: A fast quantum mechanical algorithm for database
search, Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, pp. 212–219 (1996).

[16] Dürr, C., Heiligman, M., Høyer, P. and Mhalla, M.: Quantum Query
Complexity of Some Graph Problems, SIAM Journal on Computing,
Vol. 35, No. 6, pp. 1310–1328 (2006).

[17] Ambainis, A., Balodis, K., Iraids, J., Kokainis, M., Prusis, K. and
Vihrovs, J.: Quantum Speedups for Exponential-Time Dynamic Pro-
gramming Algorithms, Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2019, pp. 1783–
1793 (2019).

[18] Giovannetti, V., Lloyd, S. and Maccone, L.: Quantum Random Access
Memory, Phys. Rev. Lett., Vol. 100, p. 160501 (2008).

[19] Ambainis, A., Iwama, K., Nakanishi, M., Nishimura, H., Raymond,
R., Tani, S. and Yamashita, S.: Average/Worst-Case Gap of Quantum
Query Complexities by On-Set Size, arXiv, Vol. 0908.2468 (2009).

[20] Kothari, R.: An optimal quantum algorithm for the oracle identifi-
cation problem, Proceedings of the 31st International Symposium on
Theoretical Aspects of Computer Science (STACS 2014), pp. 482–493
(2014).

© 2021 Information Processing Society of Japan 5

Vol.2021-QS-3 No.1
2021/7/1

IPSJ SIG Technical Report

[21] Meinel, C. and Slobodová, A.: On the complexity of constructing op-
timal ordered binary decision diagrams, Proceedings of 19th Mathe-
matical Foundations of Computer Science 1994, Berlin, Heidelberg,
Springer Berlin Heidelberg, pp. 515–524 (1994).

[22] Tani, S., Hamaguchi, K. and Yajima, S.: The Complexity of the Op-
timal Variable Ordering Problems of a Shared Binary Decision Dia-
gram, IEICE Transactions on Information and Systems, Vol. E79-D,
No. 4, pp. 271–281 (1996). (A conference version is in Proceedings
of the Fourth International Symposium on Algorithms and Computa-
tion (ISAAC’93), vol. 2906, pp.389–398, Lecture Notes in Computer
Science, Springer, 1993).

[23] Garey, M. R. and Johnson, D. S.: COMPUTERS AND INTRACTABIL-
ITY — A Guide to the Theory of NP-Completeness, W. H. Freeman and
Company, New York, 2 edition (1979).

[24] Bollig, B. and Wegener, I.: Improving the variable ordering of OBDDs
is NP-complete, IEEE Transactions on Computers, Vol. 45, No. 9, pp.
993–1002 (1996).

[25] Iwama, K., Nouzoe, M. and Yajima, S.: Optimizing OBDDs Is Still
Intractable for Monotone Functions, Proceedings of the 23rd Interna-
tional Symposium on Mathematical Foundations of Computer Science
(MFCS’98), Lecture Notes in Computer Science, Vol. 1450, Springer,
pp. 625–635 (1998).

[26] Bollig, B.: On the Minimization of (Complete) Ordered Binary De-
cision Diagrams, Theory of Computing Systems, Vol. 59, No. 3, pp.
532–559 (2016).

[27] Sieling, D.: The complexity of minimizing and learning OBDDs and
FBDDs, Discrete Applied Mathematics, Vol. 122, No. 1, pp. 263 – 282
(2002).

[28] Sieling, D.: The Nonapproximability of OBDD Minimization, Infor-
mation and Computation, Vol. 172, No. 2, pp. 103 – 138 (2002).

[29] Lee, C. Y.: Representation of switching circuits by binary-decision
programs, The Bell System Technical Journal, Vol. 38, No. 4, pp. 985–
999 (1959).

[30] Heh-Tyan Liaw and Chen-Shang Lin: On the OBDD-representation of
general Boolean functions, IEEE Transactions on Computers, Vol. 41,
No. 6, pp. 661–664 (1992).

[31] Heap, M. A. and Mercer, M. R.: Least upper bounds on OBDD sizes,
IEEE Transactions on Computers, Vol. 43, No. 6, pp. 764–767 (1994).

[32] Bryant, R. E.: On the complexity of VLSI implementations and graph
representations of Boolean functions with application to integer mul-
tiplication, IEEE Transactions on Computers, Vol. 40, No. 2, pp. 205–
213 (1991).

[33] Hosaka, K., Takenaga, Y., Kaneda, T. and Yajima, S.: Size of ordered
binary decision diagrams representing threshold functions, Theoreti-
cal Computer Science, Vol. 180, No. 1, pp. 47 – 60 (1997).

[34] Horiyama, T. and Yajima, S.: Exponential Lower Bounds on the Size
of OBDDs Representing Integer Divistion, Proceedings of the 8th In-
ternational Symposium on Algorithms and Computation, (ISAAC ’97),
Singapore, December 17-19, 1997, Proceedings, Lecture Notes in
Computer Science, Springer, pp. 163–172 (1997).

[35] Sawada, H., Takenaga, Y. and Yajima, S.: On the Computational
Power of Binary Decision Diagrams, IEICE Trans. Info. & Syst., D,
Vol. 77, No. 6, pp. 611–618 (1994).

[36] Heap, M.: On the exact ordered binary decision diagram size of totally
symmetric functions, Journal of Electronic Testing, Vol. 4, No. 2, pp.
191–195 (1993).

[37] Heinrich-Litan, L. and Molitor, P.: Least upper bounds for the size of
OBDDs using symmetry properties, IEEE Transactions on Comput-
ers, Vol. 49, No. 4, pp. 360–368 (2000).

[38] Takenaga, Y. and Yajima, S.: Hardness of identifying the mini-
mum ordered binary decision diagram, Discrete Applied Mathematics,
Vol. 107, No. 1-3, pp. 191–201 (2000).

[39] Horiyama, T. and Ibaraki, T.: Ordered binary decision diagrams as
knowledge-bases, Artif. Intell., Vol. 136, No. 2, pp. 189–213 (2002).

[40] Tani, S. and Imai, H.: A Reordering Operation for an Ordered Binary
Decision Diagram and an Extended Framework for Combinatorics of
Graphs, Proceedings of the Fifth International Symposium on Algo-
rithms and Computation (ISAAC’94), Lecture Notes in Computer Sci-
ence, Vol. 834, Springer-Verlag, pp. 575–583 (1994).

[41] Sekine, K., Imai, H. and Tani, S.: Computing the Tutte Polynomial of
a Graph of Moderate Size, Proceedings of the Sixth International Sym-
posium on Algorithms and Computation (ISAAC ’95), Lecture Notes
in Computer Science, Vol. 1004, Springer, pp. 224–233 (1995).

© 2021 Information Processing Society of Japan 6

Vol.2021-QS-3 No.1
2021/7/1

