IPSJ SIG Technical Report

Vol.2021-QS-2 No.23
2021/3/29

Optimization of Quantum Computing Simulation with
Gate Fusion

Hirosur Horm!+®

Jun Dor'-?

Abstract: Memory to simulate quantum computing is exponentially increased based on qubits of a circuit and the
entire memory is updated for simulation of each gate in a circuit to be simulated. For example, 32 GB memory is
necessary to represent all the probability amplitudes with double-precision and all of them is updated for each gate.
Aggregating multiple gates into a single unitary-matrix gate reduces load and store of memory. However, if an ag-
gregated gate updates many qubits, memory access and calculation of intermediate state of matrix multiplication can
become the bottleneck. We propose a method to efficiently aggregate gates with pattern-matchings, greedy algorithms,
and a graph algorithm. Our gate fusion reduced gates of various quantum circuits of Qiskit and improved performance

of their simulation.

Keywords: Quantum Computing Simulation, Optimization, Transpilation

1. Introduction

Quantum computing simulation is an important tool for the
study and development of quantum algorithms. Real quantum
computers are now available as cloud service, but their noise
sometimes prevent users from validating that running quantum
circuits are written correctly. Therefore, popular toolkits for
quantum software, such as Qiskit[1], Q#[3], Qulacs[11], and
Cirq[2], [6], provide their simulators that calculate quantum states
of quantum computers. The most naive way to represent quan-
tum state in simulator is storing all the probability amplitudes as
a complex vector and iterating gates in a quantum circuit while
updating the vector. Probability amplitudes are increased based
on a number of qubits, thus, simulators need huge memory and
computation resources to simulate quantum computers of large
qubit. For example, a simulator updates 64GB memory for each
gate to simulate 30-qubit quantum computer with double preci-
sion. In this paper, we study a method to optimize such updates
of probability amplitudes in simulation of quantum computers.

Gate fusion [2], [7], [10] is an optimization technique to re-
duce gates in a circuit by replacing multiple gates with a single
gate while guaranteeing generation of the same quantum state. To
simulate a gate that updates m qubits, a simulator iterates load of
2™ probability amplitudes, update them with multiplying a 2" x2™
matrix, and store the updated amplitudes until all of the ampli-
tudes are updated. By reducing a number of gates in a circuit, gate
fusion can reduce such load, store and multiplication of complex
values.

Gate fusion does not always improve simulator performance.

I IBM Quantum, IBM Research Tokyo, 19-21, Nihonbashi Hakozaki-cho
Chuo-ku, Tokyo 103-8510 Japan

¥ horii @jp.ibm.com

»  doichanj@jp.ibm.com

(© 2021 Information Processing Society of Japan

Consider aggregation into a single m-qubit gate and its applica-
tion to a vector of 2" complex numbers. First, aggregations of
gates also requires computation and memory resources because
the aggregated gate is represented as a 2™ X 2" complex matrix.
If m is large, generation of 2" X2 matrix requires more resources
than simulation of original gates. Second, a 2" X 2" matrix ex-
ceeds capacity of registers in the current CPU architecture if m
is more than two, then, its multiplication with a complex vec-
tor leads additional overheads. Increased load and store instruc-
tions for spilled memory become more than reduced instructions
and then total simulation time can be worse. Moreover, based
on m, multiplication and summation of complex numbers are ex-
ponentially increased in multiplication of a 2" x 2™ matrix and
2" vector. Therefore, gate fusion is effective if aggregated gates
repeatedly updates the same qubits and a generated gate updates
small qubits.

In this paper, we propose a method to aggregate gates to reduce
total simulation time. Though existing simulators generate gates
that update fixed-number qubits in their gate fusion, our gate fu-
sion generates gates that update various numbers of qubits. In
addition, we specialize gate fusion for diagonal matrices. Apply-
ing a diagonal matrix needs only 2" multiplication of complex
numbers. We use pattern matching to find a sequence of gates
in a quantum circuit, and then generate a diagonal-matrix gate to
replace them. After aggregating neighbor gates if they updates
same qubits, we finally find the best pattern of gate fusion for a
quantum circuit while estimating total simulation time.

2. Quantum Computing Simulation

We focus on simulating universal quantum computers based on
quantum circuits consisting of one-qubit rotation gates and two-
qubit CNOT gates. These gates are universal; i.e., any quantum
circuit (for realizing some quantum algorithm) can be constructed



IPSJ SIG Technical Report

from the CNOT and one-qubit rotation gates. This section briefly
overviews quantum computing and its simulation, and then sum-
marizes optimization implemented in existing simulators.

2.1 Overview

A qubit has two basis states [0) = ((‘)) and |1) = (‘f) and the
quantum state of an n-qubit register is a linear superposition of
2" basis states, each of the form of the tensor product of n qubits.
For example, the basis state of digit 2 (or 10 in binary) can be rep-
resented as [2) = [1) ® |0) = [10) = (0,0, 1,0)7, where T denotes
the transpose of a vector. Thus, the quantum state of the n-qubit
register can be written as |y) = Zia ! a,li). Note that each state |i)
has its own probability amplitude @; in a complex number. Sim-
ulating quantum circuits requires that these 2" complex numbers
(statevector) be stored to enable tracking of the evolution of the
quantum state of an n-qubit register.

Quantum gates transform the quantum state of the n-qubit reg-
ister by rotating its complex vector. The OpenQASM specifica-
tion [4] provides the gate set: U an arbitrary single-qubit (rota-
tion) gate and CX a two-qubit gate. The U gates are rotations of
the 1-qubit state and are mathematically defined as

cos(9/2) —eﬁlsin(e/z)) W

ve.y,H= ,, .
©.9,) (—e“” sin(6/2)  e**' cos(6/2)
This matrix m transforms the state of a g-th qubit in a statevector
qv with Listing 1. Two elements at p and p + (1 < q) in qv are
updated together, and each element is updated once.

Listing 1: Pseudocode to apply single qubit with m

1 void apply_matrix(int q, complex m[2][2]) {
2 #pragma omp parallel for collapse(2)
3 for (dnt 1 = 0; i < (I<<n); i += (I<<(g+D)) {
4 for (int j = 0; j < (1<<q); j++) {
auto p = ilj;
auto q0 = qv[pl;
auto ql = qv[p|(1<<q)];
qv[p]l = m[0][0]*q0 + m[0O][1]*ql;
qvp|(1<<q)] = m[1]1[0]*q® + m[1][1]%*ql;
11}

S O 9N W

1

The CX gates are applied to two qubits: a control and a target
qubit. If the control qubit is in state |1), the CX gate flips the tar-
get qubit. If the control qubit is in state |0), the CX gate does not
change the target qubit. If we have two qubits and take the higher
bit as the control qubit and the other as the target qubit, the CX
gate is mathematically defined as

CX = @)

S O O =
S O = O
- o O O
oS = O O

This matrix m transforms the state of qubits g[2] in a statevec-
tor qv with Listing 2 assuming q[1] > q[0]. Four elements at p,
p+(1<q0]), p+ (1 <q[1)andp+ (1 <ql0])+(1 <q[1])
in qv are updated together, and each element is updated once.

(© 2021 Information Processing Society of Japan

Vol.2021-QS-2 No.23
2021/3/29

Listing 2: Pseudocode to apply two qubits with m

1 void apply_matrix(int q[2], complex m[4][4]) {
2 assert(q[0] < q[1]);

3 auto m®@ = 1<<q[0]; auto ml = q << q[1];

4 #pragma omp parallel for collapse(3)

5 for (int i=0; i<(l<<n); i+=(1<<(q[1]+D)) {
6 for (int j=0;j<(1<<q[1]);j+=(1<<(q[0]+1)){

7 for (int k=0; k<(1<<q[0]); k++) {

8 int p = iljlk;

9 auto g0 = qv[p]; auto gl = qv[p|m@®];

10 auto g2 = qv[p|ml]; auto g3 = qv[p|m®|mi];
11 qvlp] = q0*m[0][0] + q1*m[0][1]

12 + g2*m[0] [2] + q3*m[0][3];
13 qv[p|m0] = q0*m[1]1[0] + ql*m[1][1]

14 + g2*m[1][2] + a3*m[1][3];
15 qvlp|ml] = q0*m[2]1[0] + ql*m[2][1]

16 + q2*m[2][2] + g3*m[2][3];
17 qvlp|mO®|ml] = q0*m[3][0] + gq1*m[3][1]

18 + g2*m[3][2] + a3*m[3][3];
v rrr}

Note that Lines 8-9 in Listing 1 and Lines 11-18 in Listing 2
perform multiplication of a matrix and a vector of complex num-
bers.

Main overheads are three parts in these Listings: Loading com-
plex numbers from a state vector (Lines 6-7 and 9-10 in Listing
1 and 2), multiplying the complex numbers, and storing updated
complex numbers to the state vector (Lines 8-9 and 11-18 in List-
ing 1 and 2). Because a complex number consists a real and
imaginary numbers, instructions to load, multiply, add, and store
floating-point numbers are frequently called.

2.2 Parallelization

Parallelization is typical optimization in quantum computing
simulation. As shown in Listing 1 and 2, to simulate a g qubit
gate, 29 probability amplitudes are updated together and each
probability amplitude is updated once. By making updates of
24 probability amplitudes a unit of work, multiple levels of paral-
lelization are effective for simulation of quantum computing.

Modern CPUs, such as Intel and POWER, support SIMD in-
structions that enable instruction-level parallelization. Especially,
instructions of Intel’s AVX2 and POWER’s VSX load 256-bit
data into a vector register (precisely two 128bit vector registers
are combined to one 256bit) that can store two or four floating-
point numbers with single and double precisions respectively. In-
structions to multiply and add for such vector registers are pro-
cessed with the mostly same clocks with for general-purpose reg-
isters of 64-bit. Though variations of instructions for vector reg-
isters are less than for general-purpose registers, AVX2 and VSX
cover instructions to multipy complex numbers to improve per-
formance of HPC workloads. In addition, memory controllers
in Intel load (store) vector registers from (to) memory more effi-
ciently than general-purpose registers. Consequently, SIMD in-
structions can improve its memory bandwidth.

Multi-threading is effective optimization in quantum comput-
ing simulation. As shown in Line 2 and 4 in Listing 1 and 2,
OpenMP is frequently used in existing simulators to enable multi-
thread parallelization. These directives parallelize their loop bod-



IPSJ SIG Technical Report

9.0

10

8o
70

B0
5.0
40
30
20

relative-time (1-gate-gubit

10

00

1 2 3 4 5 3
gate qubit

Fig. 1: Relative elapsed time to update 20-qubit state vector with
a matrix based on simulation time

ies by using the same number of threads with hardware-threads
in the system or configured variable OMP_NUM_THREADS.

GPU is also effective to improve performance if memory of
GPU is enough to store all the complex numbers of a state vector.
Though techniques to transfer probability amplitudes are neces-
sary for performance [5], distributed memory in multi-GPUs and
multi-nodes are also effective to enlarge qubits to be simulated
with performance.

2.3 Gate Fusion

Gate fusion is a technique to aggregate multiple gates into a
single gate while guaranteeing that the final quantum state is
equivalent before and after gate fusion. For example, to aggregate
two gates that update different a-th and b-th qubits with matrices

i b b ‘

M = (m$2 n,ElI:) and M? = (mSZO mg'), a generated gate with gate fu-
10 11

sion uses a matrix M/#%¢¢ to update the qubits, which is calculated

with the following equation:

mg,  mg, 0 0 my 0 mg, 0
ppfused — mi, mf; 0 0 ) 0 mgo 0 mgl
0 0 msy mi||mhy O mb O
0 0 mf, mf 0 m’l’0 0 m'l’ |
3

Note that if a and b are the same, M/ is calculated by just
multiplying M“ and M”. We call gate aggregation that generates
g-qubit gate g-qubit fusion.

If all of the gates in a circuit is merged into a single gate, the
gate updates all the n qubits of the circuit with a 2" X 2" matrix.
In general, if ¢ becomes large in g-qubit fuxion, time to update a
statevector is increased. Figure 1 shows relative elapsed time to
update one to six qubits of a 20-qubit state vector with configu-
ration written in Section 4. Update of two qubits took only 40%
longer time than of one qubit. This mean that two 1-qubit gates
always should be aggregated to a gate. On the other hand, update
of 5 and 6-qubits took more than 11 and 31 times longer time than
update of 1-qubit respectively. This mean that 5-qubit and 6-qubit
gate fusion is effective only if a number of aggregated gates is at
least more than 11 and 31. A number of vector registers in any
CPUs are limited and not enough to store all complex numbers in
M7msed if g is more than two. Therefore, while multiplying with
M/¥#s¢dtheir elements move between registers and memory with
additional load and store instructions, and then overheads are in-
creased.

(© 2021 Information Processing Society of Japan

Vol.2021-QS-2 No.23
2021/3/29

3. New Gate Fusion

Given a quantum circuit, ways to apply gate fusion to its gates
are varied and finding the best to shorten simulation time is a
challenge . This section overviews gate fusion for Qiskit-Aer
[9], which provides quantum computing simulation for Qiskit [1].
Qiskit is an open-source framework for working with noisy quan-
tum computers at the level of pulses, circuits, and algorithms.
Qiskit-Aer runs quantum circuits written in Qiskit through the
same interface with real devices in IBM Quantum Experience [8].
Qiskit-Aer has various methods to simulate quantum computers,
such as state vector, density matrix, MPS and stabilizer. In this
paper, we focus performance of state vector method that main-
tains probability amplitudes with configuration that does not use
a noise model.

3.1 Transpilation

Before calculating state vector, Qiskit-Aer processes transpi-
lation, conversion of a quantum circuit to equivalent circuit, to
truncates unnecessary gates (such as Identity and Barrier) and
not-referred qubits, and applying gate fusion optimization. We
enhance the gate fusion of Qiskit-Aer by adding several phases in
this gate fusion:

(1) Generate diagonal-matrix gates,

(2) Generate special gates,

(3) Apply one and two-qubit optimization, and

(4) Apply cost-based gate fusion.

Note that the current Qiskit-Aer uses cost-based gate fusion,
which we implemented in 2018.

All of the phases are independent and sequentially applied:
each gat fusion takes a list of gates from the previous gate fu-
sion, replace gates in the list with new generated gates, and then
pass the list to the next gate fusion.

Transpilation of gate fusion incurs additional overheads. We
assume that transpilation is a part of simulation time and designed
the above transpilation without significant performance degrada-
tion. However, for small qubit simulation, transpilation occu-
pies relatively large portion in simulation time. That is, Qiskit-
Aer does not enable gate fusion for simulation of fifteen and less
qubits by default.

Gate fusion is parallelized if a list of gates is longer than a
threshfold (default is 1K). This parallelization is simply designed:
divide a list of gates into lists and perform gate fusion for them
in parallel. Side effects of this parallelization is that gate fusion
may not work efficiently for gates around beginning and ending
of each list. However, we believe that such side effects give rela-
tively small impacts on simulation time for quantum circuits that
exceeds the threshold.

3.2 Pattern Matching

A diagonal matrix is multiplied with a state vector more effi-
ciently than a normal matrix is. Listing 3 describes that a diagonal
matrix d is applied to two qubit qv[2] in a state vector qv.



IPSJ SIG Technical Report

elapsed time (ms)

1 2 3 4 5 & 7 8 9 1w 1 1z
gate qubit

Fig. 2: Elapsed time to update 20-qubit state vector with diagonal
matrices

Listing 3: Transformation of two qubits with a diagonal matrix

1 void apply_diagonal_matrix(int q[2], complex d
[4104D {

2 assert(q[0] < q[1]);

3 auto m®@ = 1<<q[0]; auto ml = q << q[1];

4 #pragma omp parallel for collapse(3)

5 for (int i=0; i<(l<<n); i+=(1<<(q[1]+D)) {

6 for (int j=0;j<(1<<q[1]);j+=(1<<(q[0]+1)){

7 for (int k=0; k<(1<<q[0]); k++) {

8 int p = i|jlk;

9 qvlp] = qvlp]l * m[0][0];

10 qvlp|m®] = qv[p|m0] * m[1][1];

11 qvlp|ml] = gqv[plm1i] * m[2][2];

12 qvlp|m@|mi] = qv[p|m®[m1] * m[3][3];
3 }} 1}

Each element of qv is updated once only by referring itself and
an element in d. Comparing with Listing 2, computation resource
to multiplication of complex numbers in Listing 3 is relatively
small. In addition, matrix multiplication refers only diagonal
elements. Vector registers store fewer complex numbers than
Listing 3, and then spill is reduced in assembled binaries. Figure
2 shows elapsed time to transform 20-qubit state vector with
diagonal matrices varying gate qubits with configuration written
in Section 4. By 10-qubits, relative elapsed time based on 1-qubit
was lower than 2.0.

Though Qiskit-Aer supports a diagonal-matrix gate as a basis
gate, real devices do not support the gate. If a diagonal-matrix
gate is decomposed to universal gates, optimized multiplication
of a diagonal-matrix shown in Listing 3 is not called. There-
fore, we finds sequences of gates with pattern-matching to gen-
erate diagonal-matrix gates from a given quantum circuit. This
pattern-matching recursively work with following two rules:

(1) If a neighbor of a diagonal-matrix gate is a diagonal-matrix
gate, aggregate them as a diagonal-matrix gate (left in Figure
3), and

(2) If both of the neighbors of the diagonal-matrix gate are CX
gates with the same control and target qubits, fuse them as a
diagonal-matrix gate (right in Figure 3)

In addition to a diagonal-matrix gate, we specializes simula-
tion of a list of CX gates. CX gate swaps the half of probability
amplitudes in a state vector. Therefore, after simulating a list of
CX gates, a complex number of a probability amplitude (source)
moves to the another (destination).

(© 2021 Information Processing Society of Japan

Vol.2021-QS-2 No.23
2021/3/29

o " gagonsl o — -
0 _daunnil_ h————

S — —_—
92 daganal 92 diaganal

Fig. 3: Patterns to convert to a diagonal-matrix gate

Fig. 4: Patterns to convert to a full-entanglement gate

SN o W Ry
9° g a LUl
A an o NN an o W
9 —lay s a9
q> — Ry —o— €N o TEN
a2 a6l a1
— Ry — —
9 a7 awm

Fig. 5: RealAmplitudes with linear entanglement

Listing 4: Transformation of a list of CX gates (control and target

bits are ctrls and tgts respectively)

1 void apply_cx_list(int ctrls[n], int tgts[n]) {
2  complex next[l << n];

3 ctrl_masks = [1 << ctrl for ctrl in ctrls];

4 tgt_masks = [1 << tgt for ctrl in tgts];

5 #pragma omp parallel for collapse(3)

6 for (int i = 0; i < (I<k<n); i++) {

7 int idx = i;

8 for (int j = n -1; n >= 0; --n)
9 if (idx & ctrl_masks[j])

10 idx A= tgt_masks[j];

11 next[i] = qv[i];

12}

13 qv = copy; }

Listing 4 shows pseudocode to efficiently simulate a list of CX.
In the loop, a destination index of probability amplitude is calcu-
lated with the source index and masks of control and target bits,
and then the probability amplitude at source index in qv is copied
to at destination index in next. In Listing 4, qv is loaded once and
no multiplication of matrices exists.

Note that Listing 4 copies all the probability amplitudes to next
that occupies the same size of memory with a state vector. There-
fore, this optimization is not enabled if the system does not have
enough memory.

3.3 Two-Qubit optimization

As shown in Listing 2, simulators can apply an arbitrary
matrix to a state vector, though real devices support only
one specific two-qubit operation. If gates around a two-qubit
gate update only the two qubits without any entanglements
to other qubits, they can be aggregated to a two-qubit gate.
For example, CX and Ry gates of a quantum circuit writ-



IPSJ SIG Technical Report

ten in Figure 5, which is generated with Qiskit circuit library
(RealAmplitudes(4, reps = 2, entanglement = ‘linear’)) are ag-
gregated with gray rectangles. Consequently, a number of gates
is reduced from eighteen to six.

Listing 5 describes a pseudocode to identify whether two gates
at left and right in a gate sequence gates can be aggregated. Each
gate in gates updates its qubits and this qubits has contains and
remove methods to check inclusion and remove intersection re-
spectively.

Listing 5: Check whether gates at left and right in gates can be

aggregated

1 bool can_aggregate(int left, int right) {

2 auto qubits = gates[idx].qubits;

3 for (int i = left + 1; i < right; i++)

4 if (!qubits.contains(gates[i].qubits))

5 qubits.remove(gates[i].qubits);

6 return qubits.contains(gates[tgt].qubits);
7

}

Note that Listing 5 is available for aggregation to any-qubit
gate. However, because decomposed gates for real devices up-
date at most two qubit, we apply this optimization to generate
one and two-qubit gates.

3.4 Cost-based Fusion

As shown in Figure 1, if we apply a gate fusion that aggre-
gates a five-qubit gate, this gate fusion is effective to aggregate
at least eleven gates. In most case, use of combination of two
and three-qubit gates can achieve more efficient simulation than
of five-qubit gate. Because possible combination of gate fusion is
varied, we develop an algorithm to apply gate fusion for various
qubits while estimating total simulation time.

In our algorithm, we generate a fusion graph a DAG that rep-
resents possible patterns of gate fusion. A node means a gate in
a circuit and each node has a sequence number that represents
the position of corresponding gate in a circuit. An edge repre-
sents gate fusion that aggregates from the source to the desti-
nation gates. If an edge connects from gate 2 to 4, gate fusion
aggregates gates 2 and 3. Each edge has a weight that relatively
represent estimated time to simulate the generated gate. Figure
6 shows a way to generate a fusion graph with maximum fusion
qubit as five.

In Figure 6, we list nodes of all the gate in a circuit and then
create edges when 1-qubit gate fusion is applied (Figure 6-1).
Next, we create edges when 2-qubit gate fusion is applied (Fig-
ure 6-2) and continue this step until when 5-qubit gate fusion is
applied (Figure 6-3, 4, and 5). Note that each node has only one
edge for each qubit gate fusion and the destination gate of the
edge has the largest sequence number in possible destination. For
example, in Figure 6-2, we can create edges of 2-qubit gate fu-
sion from gate-2, to gate-4, or 5. Because 5 is the largest sequence
number, we create an edge from gate-2 to gate-5 for 2-qubit gate
fusion.

Once a fusion graph is generated, we find the shortest path from
the start node to the end node. Because weight of edges represents
estimated time to simulate generated gates, edges in the shortest

(© 2021 Information Processing Society of Japan

Vol.2021-QS-2 No.23
2021/3/29

path are the best combination of gate fusion to shorten simulation
time. In Figure 6, because the path of edges from 1 to 3, from 3 to
4, and from 4 to the end is the shortest, gate fusion generate three
gates that produce equivalent quantum state with the original.

4. Evaluation

In this section, we evaluate our gate fusion with various quan-
tum circuits generated with Qiskit Circuit Library. We use Qiskit
0.23.1 to generate quantum circuits and enable our gate fusion on
Qiskit-Aer 0.7.2 with MacBook Pro (15-inch, 2018) that consists
of Intel Core i7 (6-Core, 2.6GHz), 16GB 2400 MHz DDR4, and
macOS Catalina (Version 10.15.5).

4.1 Quantum Circuits

We use tweleve types of quantum circuits listed in Table 1. All
of them are generated with Qiskit Circuit Library.

Table 1: Quantum Circuits generated with Qiskit Circuit Library

name qubit class name
adder 23 WeightedAdder
ansatz.ry 25 RealAmplitudes with full entanglement
ansatz_ry_| 25 RealAmplitudes with linear entanglement
ansatz_ryrz 23 EfficientSU2 with full entanglement
ansatz_ryrz_| 23 EfficientSU2 with linear entanglement
graph_state 25 GraphState
int_cmp 24 IntegerComparator
iqp 25 IQP
pe 20 PhaseEstimation with QuantumVolume as unitary
qft 25 QFT
quad_form 25 QuadraticForm
qv 25 QuantumVolume

adder is a circuit to compute the weighted sum of qubit reg-
isters. This quantum circuit consists of 60 CCCX (4-qubit gate),
75 CCX (3-qubit gate), 15 CX (2-qubit gate), and 90 X (1-qubit
gate). These gates transform three carry and four sum qubits by
referring fifteen state and one control qubits. Each type of gates
is iteratively formed while keeping neighbours different types.

ansatz_ry_| is an ansatz circuit for VQE as written in Fig-
ure 5. Every qubit is transformed with a Ry gate following a
list of CX gates to establish linear entanglements. This pattern
of Ry and CX gates is repeated ten times in our configuration.
ansatz_ryrz_| uses a Ry and Rz gate instead of a Ry gate of
ansatz_ry_|. ansatz_ry and ansatz_ryrz use fewer CX gates to
establish full entanglements of Figure 4.

graph_state is a circuit to prepare a graph state. A qubit rep-
resents a node and a CZ gate represents an edge. We randamly
generate twenty-five edges that connect two of twenty-five nodes.
Therefore, a circuit consists of 25 qubits for nodes with 25 CZ
gates for edges and 25 H gates for initialization.

int.cmp is a circuit for integer comparator that validates
whether quantum state is a given integer number. Several X gates
and a CX gate or a CCX gate appear alternatively and the total
numbers of X, CX, and CCX gates are 105, 2, 21 in a 24-qubit
circuit.

igp is an instantaneous quantum polynomial (IQP) circuit. In-
teractions between qubits are defined with a matrix and CP and P
gates are generated based on the matrix. We randomly generate
interactions for 25 qubits and construct a IQP circuit that consists



IPSJ SIG Technical Report

Vo0l.2021-QS-2 No.23
2021/3/29

2.U(ql)

|

‘ 5.U(g3)
6.U

7.U(g3)

M({q0,91})

M({q2})

M({q1,q93,94})

1. Add edges for 2. Add edges for 2-qubit 3. Add edges for 3-qubit 4. Add edges for 4-qubits 5. Add edges for 5-qubits fusion
1-qubit fusion fusion fusion fusion

6. find the shotest path 7. generate a unitary

matrix for each fusion

Fig. 6: Cost-based fusion. U(q) means a gate of U to update a qubit g and FN means an edge of N qubit gate fusion.

10

08

06

04

0z

relative elapsed time (no_fusion=1.0)

00 -

ansatz_ry ansatz_ryrz

ansatz_ry_| ansatz_ryrz_|

graph_state

Fig. 7: Relative elapsed time of simulation

- fusion
= 4pattern-matching
== n-qubit

== cost-based

int_cmp iap

fusion in elapsed time (%)

adder ansatz_ry ansatz ry | ansatz_ryrz  ansatz ryrz | graph state

o fusion

BN 4pattern-matching
EE 4n qubit

. cost-based

int_cmp igp Fe aft quad_form v

Fig. 8: Percentages of gate fusion in simulation

of around 227 CP gates, 22 P gates, and 50 H gates.

gft is a quantum fourier transform circuit that consists of 300
CP gates, 25 H gates, 12 Swap gates.

quad_form implements a quadratic form on binary variables
encoded in qubit registers. We configured three qubits for coeffi-
cients and twenty-two qubits for result qubits. Majority gates in
this quantum are 297 CP gates.

qVv is a circuit to measure quantum volume. We generate 25-
qubit circuits that consists of 300 unitary-matrix gates.

4.2 Performance
We evaluated following four configurations:
e no_fusion disabled all the optimization of gate fusion,
e -+pattern_matching enables only gate fusion with pattern
matching written in Subsection 3.2,
e -+n_qubit adds gate fusion of one-qubit and two-qubit opti-
mization written in Subsection 3.3,
e -+cost — based enables all the gate fusion by adding cost-
based optimization written in Subsection 3.4,
Because the system has enough memory to simulate the quantum
circuits, pattern-matching for entanglements was enabled in any
simulation. Figure 7 shows performance improvement of gate
fusion by making no_fusion the baselines and Figure 8 shows
percentages of gate fusion in total simulation time.

(© 2021 Information Processing Society of Japan

In adder, pattern-matching did not find any candidates of
diagonal-matrix gates and entanglement gates, but two-qubit gate
fusion reduced 16 gates and improved simulation time by 7.6 %.
Cost-based gate fusion additionally reduced 148 gates and im-
proved simulation time by 38.1 %. Consequently, our gate fu-
sion reduced by 42.1 % from the baseline. Gates in adder fre-
quently transform or refer the same two qubits and then two-qubit
and cost-based gate-fusion worked performance. For further op-
timization, additional pattern-matching for X gates (with or with-
out control qubits) will be possible because they transform qubits
similarly as entanglements of Figure 4.

On the other hand, in ansatz_ry and ansatz_ryrz, pattern-
matching improved simulation time by 73.6 % and 73.9 %
while reducing 2991 and 2521 gates respectively. Our pattern-
matching found lists of CX gates to establish full entanglements
in these quantum circuits. Other gate fusion work also and conse-
quently our gate fusion reduced simulation time of ansatz_ry and
ansatz_ryrz by 76.3 % and 76.8 % while reducing 190 and 427
gates respectively.

Our pattern-matching does not replace lists of CX gates in
ansatz_ry_| and ansatz_ryrz_| because their length is less than the
threshold (a number of qubits). However, two-qubit gate fusion
significantly reduced their gates: 276 of 541 gates in ansatz_ry_|
and 507 of 750 gates in ansatz_ryrz_l. In gates for linear en-



IPSJ SIG Technical Report

tanglements, a qubit becomes a target and control qubit of two
CX gates. Two-qubit gate fusion aggregates all of the rotation
gates for the qubit with CX gates as shown in Figure 5, and then
simulation is optimized. In addition, cost-based gate fusion re-
duced their 121 gates and 132 gates and optimized simulation
time of ansatz_ry_| and ansatz_ryrz_| became 43.3 % and 20.5 %
respectively. Simulation time of graph_state and int_cmp were
improved similarly by 53.0 % and 69.4 %, respectively.

gft and quad_form consist of many CP gates and our gate fu-
sion replaces their lists of CP gates with diagonal-matrix gates.
Other gate fusion also worked their simulation performance and
consequently their 28.2 % and 33.3 % of simulation time were
reduced.

Two-qubit and cost-based gate fusion worked well for pe: im-
proving 79.8 % of simulation time while reducing gates from
60747 gates to 5911 gates. In pe, 13-qubit QuantumVolume is
simulated three times by adding controlled qubits. Qiskit circuit
library decomposes the target quantum circuits to U and CX, and
then adds a control qubit for them. Two-qubit and cost-based gate
fusion can re-composed such decomposed primitive gates in pe
and improved performance of simulation.

In all quantum circuits, gate fusion took less than 1 % time in
simulation excepting pe. In pe, pattern-matching, two-qubit, and
cost-based gate fusion took 0.40 second, 0.76 second, and 0.38
second, respectively. pe consists of 63664 gates which exceeds a
threshold to enable parallelization of gate fusion and 63178 gates
are reduced. Therefore, parallelization of gate fusion and gen-
eration of new matrices in pe took relatively more time than in
others.

5. Conclusion

Simulation of quantum computing needs huge computing re-
sources if large qubits are simulated and gate fusion is an effective
approach to shorten simulation time. We proposed a new method
of gate fusion cost-based gate fusion that aggregates gates in a
circuit with estimation of total simulation time. Our evaluation
shows that our gate fusion improve any simulation types of quan-
tum circuits.

References

[1] Abraham, H., AduOffei, Agarwal, R., Akhalwaya, I. Y., Aleksandrow-
icz, G., Alexander, T., Amy, M., Arbel, E., Arijit02, Asfaw, A.,
Avkhadiev, A., Azaustre, C., AzizNgoueya, Banerjee, A., Bansal, A.,
Barkoutsos, P., Barnawal, A., Barron, G., Barron, G. S., Bello, L.,
Ben-Haim, Y., Bevenius, D., Bhobe, A., Bishop, L. S., Blank, C.,
Bolos, S., Bosch, S., Brandon, Bravyi, S., Bryce-Fuller, Bucher, D.,
Burov, A., Cabrera, F., Calpin, P., Capelluto, L., Carballo, J., Car-
rascal, G., Chen, A., Chen, C.-E., Chen, E., Chen, J. C., Chen, R.,
Chow, J. M., Churchill, S., Claus, C., Clauss, C., Cocking, R., Correa,
F., Cross, A. J., Cross, A. W., Cross, S., Cruz-Benito, J., Culver, C.,
Cérceoles-Gonzales, A. D., Dague, S., Dandachi, T. E., Daniels, M.,
Dartiailh, M., DavideFrr, Davila, A. R., Dekusar, A., Ding, D., Doi,
J., Drechsler, E., Drew, Dumitrescu, E., Dumon, K., Duran, 1., EL-
Safty, K., Eastman, E., Eberle, G., Eendebak, P., Egger, D., Everitt,
M., Fernindez, P. M., Ferrera, A. H., Fouilland, R., FranckCheval-
lier, Frisch, A., Fuhrer, A., Fuller, B., GEORGE, M., Gacon, J., Gago,
B. G., Gambella, C., Gambetta, J. M., Gammanpila, A., Garcia, L.,
Garg, T., Garion, S., Gilliam, A., Giridharan, A., Gomez-Mosquera,
J., Gonzalo, de la Puente Gonzilez, S., Gorzinski, J., Gould, I., Green-
berg, D., Grinko, D., Guan, W., Gunnels, J. A., Haglund, M., Haide,
1., Hamamura, 1., Hamido, O. C., Harkins, F., Havlicek, V., Hellmers,
J., Herok, L., Hillmich, S., Horii, H., Howington, C., Hu, S., Hu, W,
Huang, J., Huisman, R., Imai, H., Imamichi, T., Ishizaki, K., Iten,

(© 2021 Information Processing Society of Japan

[10]

[11]

Vol.2021-QS-2 No.23
2021/3/29

R., Itoko, T., JamesSeaward, Javadi, A., Javadi-Abhari, A., Javed, W.,
Jessica, Jivrajani, M., Johns, K., Johnstun, S., Jonathan-Shoemaker,
K, V., Kachmann, T., Kale, A., Kanazawa, N., Kang-Bae, Karazeev,
A., Kassebaum, P., Kelso, J., King, S., Knabberjoe, Kobayashi, Y.,
Kovyrshin, A., Krishnakumar, R., Krishnan, V., Krsulich, K., Kumkar,
P, Kus, G., LaRose, R., Lacal, E., Lambert, R., Lapeyre, J., Latone, J.,
Lawrence, S., Lee, C., Li, G., Liu, D., Liu, P,, Maeng, Y., Majmudar,
K., Malyshev, A., Manela, J., Marecek, J., Marques, M., Maslov, D.,
Mathews, D., Matsuo, A., McClure, D. T., McGarry, C., McKay, D.,
McPherson, D., Meesala, S., Metcalfe, T., Mevissen, M., Meyer, A.,
Mezzacapo, A., Midha, R., Minev, Z., Mitchell, A., Moll, N., Mon-
tanez, J., Monteiro, G., Mooring, M. D., Morales, R., Moran, N.,
Motta, M., MrF, Murali, P., Miiggenburg, J., Nadlinger, D., Nakan-
ishi, K., Nannicini, G., Nation, P., Navarro, E., Naveh, Y., Neagle,
S. W., Neuweiler, P., Nicander, J., Niroula, P., Norlen, H., NuoWen-
Lei, O’Riordan, L. J., Ogunbayo, O., Ollitrault, P., Otaolea, R., Oud,
S., Padilha, D., Paik, H., Pal, S., Pang, Y., Pascuzzi, V. R., Perriello,
S., Phan, A., Piro, F., Pistoia, M., Piveteau, C., Pocreau, P., Pozas-
Kerstjens, A., Prokop, M., Prutyanov, V., Puzzuoli, D., Pérez, J., Quin-
tiii, Rahman, R. I., Raja, A., Ramagiri, N., Rao, A., Raymond, R., Re-
dondo, R. M.-C., Reuter, M., Rice, J., Riedemann, M., Rocca, M. L.,
Rodriguez, D. M., RohithKarur, Rossmannek, M., Ryu, M., SAPV,
T., SamFerracin, Sandberg, M., Sandesara, H., Sapra, R., Sargsyan,
H., Sarkar, A., Sathaye, N., Schmitt, B., Schnabel, C., Schoenfeld,
Z., Scholten, T. L., Schoute, E., Schwarm, J., Sertage, I. F., Setia,
K., Shammah, N., Shi, Y., Silva, A., Simonetto, A., Singstock, N.,
Siraichi, Y., Sitdikov, 1., Sivarajah, S., Sletfjerding, M. B., Smolin,
J. A., Soeken, M., Sokolov, 1. O., Sokolov, 1., SooluThomas, Starfish,
Steenken, D., Stypulkoski, M., Sun, S., Sung, K. J., Takahashi, H.,
Takawale, T., Tavernelli, I., Taylor, C., Taylour, P., Thomas, S., Tillet,
M., Tod, M., Tomasik, M., de la Torre, E., Trabing, K., Treinish, M.,
TrishaPe, Tulsi, D., Turner, W., Vaknin, Y., Valcarce, C. R., Varchon,
E.,, Vazquez, A. C., Villar, V., Vogt-Lee, D., Vuillot, C., Weaver, J.,
Weidenfeller, J., Wieczorek, R., Wildstrom, J. A., Winston, E., Woehr,
J.J., Woerner, S., Woo, R., Wood, C.J., Wood, R., Wood, S., Wood, S.,
Wootton, J., Yeralin, D., Yonge-Mallo, D., Young, R., Yu, J., Zachow,
C., Zdanski, L., Zhang, H., Zoufal, C., Zoufalc, a kapila, a matsuo,
bcamorrison, brandhsn, nick bronn, brosand, chlorophyll zz, csseifms,
dekel.meirom, dekelmeirom, dekool, dimelQ, drholmie, dtrenev,
ehchen, elfrocampeador, faisaldebouni, fanizzamarco, gabrieleagl, ga-
dial, galeinston, georgios ts, gruu, hhorii, hykavitha, jagunther, jliu45,
jscott2, kanejess, klinvill, krutik2966, kurarrr, lerongil, maSx, merav
aharoni, michelle4654, ordmoj, sagar pahwa, rmoyard, saswati giskit,
scottkelso, sethmerkel, shaashwat, sternparky, strickroman, sumitpuri,
tigerjack, toural, tsura crisaldo, vvilpas, welien, willhbang, yang.luh,
yotamvakninibm and Cepulkovskis, M.: Qiskit: An Open-source
Framework for Quantum Computing (2019).

Broughton, M., Verdon, G., McCourt, T., Martinez, A. J., Yoo, J. H,,
Isakov, S. V., Massey, P., Niu, M. Y., Halavati, R., Peters, E., Leib, M.,
Skolik, A., Streif, M., Dollen, D. V., McClean, J. R., Boixo, S., Bacon,
D., Ho, A. K., Neven, H. and Mohseni, M.: TensorFlow Quantum: A
Software Framework for Quantum Machine Learning (2020).
Corporation, M.: The Q# Programming Language (2018).

Cross, A. W., Bishop, L. S., Smolin, J. A. and Gambetta, J. M.:
Open quantum assembly language, arXiv preprint arXiv:1707.03429
(2017).

Doi, J. and Horii, H.: Cache Blocking Technique to Large Scale Quan-
tum Computing Simulation on Supercomputers, 2020 IEEE Interna-
tional Conference on Quantum Computing and Engineering (QCE),
(online), DOI: 10.1109/qce49297.2020.00035 (2020).

Google: Cirq: A python framework for creating, editing, and invoking
noisy intermediate scale quantum circuits (2018).

Hiner, T. and Steiger, D. S.: 0.5 petabyte simulation of a 45-qubit
quantum circuit, Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, (online),
DOI: 10.1145/3126908.3126947 (2017).

IBM: IBM Quantum Experience.

Qiskit: Qiskit Aer: A High Performance Simulator Framework for
Quantum Circuits (2019).

Smelyanskiy, M., Sawaya, N. P. D. and Aspuru-Guzik, A.: qHiP-
STER: The Quantum High Performance Software Testing Environ-
ment (2016).

Suzuki, Y., Kawase, Y., Masumura, Y., Hiraga, Y., Nakadai, M., Chen,
J., Nakanishi, K. M., Mitarai, K., Imai, R., Tamiya, S., Yamamoto,
T., Yan, T., Kawakubo, T., Nakagawa, Y. O., Ibe, Y., Zhang, Y., Ya-
mashita, H., Yoshimura, H., Hayashi, A. and Fujii, K.: Qulacs: a fast
and versatile quantum circuit simulator for research purpose (2020).



