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Abstract

The quantum approximate optimization algo-
rithm (QAOA) has numerous promising appli-
cations on solving the combinatorial optimiza-
tion problems on the near-term Noisy Interme-
diate Scalable Quantum (NISQ) devices. QAOA
has a quantum-classical hybrid structure, with
the quantum part consisting the parameterized
alternating operator ansatz, and the classical
part consist of an optimization algorithm op-
timizing the parameters to maximize the ex-
pectation value. This value depends highly on
the parameters. This implies that a set of
good parameters leads to an accurate solution
of the given problem. However, at large circuit
depth, it is difficult to achieve global optimiza-
tion due to the multiple occurrence of local max-
ima. Therefore, we study the so-called leapfrog-
ging strategy on solving the Max-cut problem
for 3-regular graphs, which reuses the optimized
parameters in larger graphs. Also, we propose
a strategy of parameters fixing to increase the
quality of the results as the circuit depth gets
larger.

1 Introduction

Since the introduction of QAOA by Farhi et
al. [1], it is widely known for its efficiency in
solving combinatorial optimization problem on
quantum computers. Among the problems,
the Max-cut problem is heavily studied for
its simple formulation and its deep relation to
the Ising model. Since the Max-cut problem
is an NP-complete problem, it is known that
we are unable to solve it efficiently using
classical computers, unless P=NP. Although
QAOA does not give the exact solution to the

Max-cut problem, the algorithm provides a
heuristic approach for the problem. However,
several hurdles continue to exist in obtaining a
“good” solution for QAOA Max-cut. Solving
large problems (graphs with large number of
nodes) requires the deep circuit, but QAOA has
difficulty at deep circuit due to the existence of
many local maxima on the hypersurface of the
expectation function.

In this paper, we use the leapfrogging strat-
egy introduced [2] on regular graphs to tackle
the problem, and verify our results using the
Qiskit Aer QASM simulator. We also introduce
a parameter fixing strategy to solve the problem
of getting bad results at large circuit depths.

2 Solving Max-cut with QAOA

QAOA is inspired by the Quantum Adiabatic
Algorithm [3], which focuses on evolving the ini-
tial Hamiltonian HB to the problem Hamilto-
nian HC , satisfying

H̃(s) = (1− s)HB + sHC (1)

where s(t)→ 1 as t→∞. The evolution in (1)
is then discretized, which results in the idea of
QAOA. In QAOA, the alternating unitary oper-
ators involving HB and HC are applied to the
initial state to simulate the evolution of the sys-
tem in (1):

|ψp(γ, β)〉 = e−iβpBe−iγpC . . . e−iβ1Be−iγ1C |+〉
⊗
n

(2)
where B = HB and C = HC . For the Max-cut
problem of a graph G = (V,E), they are given
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Figure 1: The quantum circuit and the
schematic of the Quantum Approximate Opti-
mization Algorithm (QAOA).

as

C =
1

2

∑
(j,k)∈E

(I − ZjZk) (3)

B =
∑
j∈V

Xj (4)

Xj and Zj are the Pauli operators acting on the
j-th qubit. After applying the operators as in
(2), we calculate the expectation of the operator
C with respect to the ansatz state |ψp(γ, β)〉:

Fp(γ, β) = 〈ψp(γ, β)|C|ψp(γ, β)〉 (5)

Since (5) is parameterized by the angles γ and
β, we can use a classical optimization algorithm
to search for the angles which maximize Fp.

(γ∗, β∗) = arg max
γ,β

Fp(γ, β) (6)

The approximation ratio α is defined as

α =
Fp(γ

∗, β∗)

Ctrue
(7)

where Ctrue is the true Max-cut value for
the graph to be solved. Figure 1 shows the
schematic of QAOA.

The positive integer p is known as the circuit
depth, and it is shown theoretically that as
p → ∞, the maximum of Fp will approach
Ctrue. However, for example, previous report [4]
states that at large p, it is difficult to maximize
Fp due to: 1. The point to be optimized is more
likely to be trapped inside a local maxima;
2. The optimizer takes longer as it has more
parameters to consider. These drawbacks
discourage us to increase the circuit depth.

3 The leapfrogging strategy for
regular graphs

Farhi et al. [1] observe that at p = 1, for regular
graphs, for each local term in (5), the operators
which are not involved in the edge (j, k) will be
canceled out and does not contribute to F1. This
further simplifies F1 to the linear combination of
the expectation value of the 3 types of subgraphs
in 3-regular graphs.

F1(γ1, β1) =wIFI(γ1, β1) + wIIFII(γ1, β1)

+ wIIIFIII(γ1, β1)
(8)

I, II and III represent the 3 types of subgraphs,
w is their respective total weights and F is
their local expectations. At p = 1, the local
expectation functions FI, FII and FIII will be
exactly the same for all 3-regular graphs, as
they only depend on the structure of the 3
types of subgraphs. Based on this fact, Brandao
et al. [2] then propose a leapfrogging strategy
to inherit optimized angles from typical graph
instances with smaller number of nodes to
that with larger number of nodes. Typical
instance means that the instance has large
number of nodes and high proportion of the
type III subgraphs (large wIII) compared to I
and II, hence the overall expectation function
F1 concentrates towards FIII. Since for typical
instances, their F1 is essentially the same
regardless of the number of nodes, they can
use the same angles to produce the same ex-
pectation. From p = 2 onwards, the subgraphs
considered become more complex, but the
leapfrogging strategy will still be applicable if
the proportion for the tree-like subgraph is high.

We solve the Max-cut on unweighted 3-
regular instances with 6, 8, 12 and 16 nodes
using QAOA with the Nelder-Mead optimizer.
We choose the graphs such that they have higher
proportion of the type III subgraph. We then
compare the approximation ratio α between
random initial angles and the leapfrogging
method. For the random initialization method,
we use 20 random angles as the starting point
to the QAOA. The results show that α span a
range of different values when different initial
angles are used in QAOA. Therefore, QAOA
does not guarantee high α when solved using
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Figure 2: Reults of the QAOA on 6, 8, 12 and 16 nodes instances with the leapfrogging strategy
applied. The shaded region is the range of data spanned by the random initialization method.

random initial angles. For the leapfrogging
method, we first use the random method on
solving the 6-node graph. Then, we pass the
angles that output the highest α in the 6-node
graph as the initial angles to the 8-node graph.
We optimize those sets of angles and pass them
to the 12-node graph, and then repeat the same
for 16.

Figure 2 shows the results for the QAOA
simulation. For most of the circuit depths,
the value of α for the leapfrogging method is
higher than the α averaged out of 20 times for
the random initialization method. At p = 1,
the results agree with [1] which states that
α ≥ 0.6924 for 3-regular graphs. For the
instances with inherited angles (8, 12 and 16
nodes), as the depth increases, the approxima-
tion ratio increases until around p = 4 with
α ≈ 0.95 before the increasing trend stops.
For the 12-node and 16-node graphs, α drops
dramatically to α ≈ 0.7 at p = 7 and p = 8
(p = 8 for 16-node) when the inherited angles

are bad. For the random initialization method,
the maximum α among the 20 different random
angles exhibits the increasing trend as the
circuit depth increases.

As discussed in [2], the leapfrogging method
is only suitable for “typical instances”. This
causes the leapfrogging method to sometimes
fail at larger circuit depth for graphs with small
number of nodes, as the subgraph considered
gets more and more different as the depth in-
creases. Despite that, the advantage of the
leapfrogging method holds at small depth as it
does not require trying multiple different angles
each time a graph instance is solved to obtain
the global maxima.

4 Parameters fixing

Knowing the fact that as the depth increases,
the subgraphs considered gets more different,
it is required to select better angles when
applying QAOA with larger circuit depth.
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Figure 3: Boxplots of the results of QAOA with the parameters fixing strategy applied.
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Several works [5][6][7] have shown the rela-
tionship between the optimal angles and the
circuit depth of QAOA which resembles the
linear annealing scheme. We then attempt to
extrapolate the angles of depth p + 1 with the
optimal angles obtained from depth p. We first
find the optimal angles at p = 1, then we fix
this set of angles and add another randomized
(γ, β) pair, and pass this set of angles as initial
angles to p = 2. Then repeat for larger p.

Same instances from the previous section are
solved using QAOA with the parameters fixing
method applied. 20 different randomized (γ, β)
pairs were added to the optimal angles and the
one which outputs the highest α is chosen and
is passed to the next depth along with the pre-
vious optimal angles. Figure 3 shows the result
of the QAOA simulation with the parameters
fixing method. The result is compared with the
one obtained using the random initialization
method. For the random initialization method,
α does not necessarily increase in overall when
the circuit depth increases. The deviation of
α is also not consistent. We find out that by
fixing the optimal angles at smaller depth,
the value of α increases steadily as the circuit
depth increases. It is also worth noting that at
larger p, the deviation of α is relatively small,
compared to those at smaller p. This implies
that if the angles up until depth p are optimal,
then the significance of the angles at depth
p+ 1 will be smaller, as different angles at p+ 1
will still produce the similar value of α.

Figure 4 shows how the landscape of the ex-
pectation function Fp(γ, β) for the 6-node graph
changes when the parameters fixing method is
applied. The landscapes are plotted starting
from p = 1, with the angles (γ1, β1) varied. The
angles with highest expectation are then taken
as the optimal angles and are fixed in plotting
the landscape of the following depths, with
the angles (γ2, β2) varied. It is then repeated
until p = 4. The landscape at depth p has
(γp, βp) as the independent variables with all
the previous optimal angles as constants. We
observe that as the depth increases while the
optimal angles are fixed, the maximum points
in the landscape appear to merge together. Fi-

Table 1: Maximum values of the expectation
landscape at different circuit depths.

p Max. expectation

1 5.939
2 6.453
3 6.612
4 6.613

nally, at p = 4 the landscape becomes river-like
and the maximum points become a maximum
line in the landscape. The maximum value
in the landscape also increases as the depth
increases (Table 1). We also plotted the land-
scape for the 8-, 12- and 16-node graphs and
they exhibit the same pattern shown in Figure 4.

The landscapes in Figure 4 are exactly the
ones which are searched by the optimizers to
maximize Fp(γ, β) when the parameters fix-
ing method is applied. The parameters fixing
method consequently result in a search on a
changed landscape instead of the original land-
scape (the one with all the angles varied). With
the landscape evolving to a river-like surface, the
maximum points into a maximum line, it will be
easier for the optimizers to search for the max-
imum value and less chance to be trapped in-
side a local maximum. This explains the better-
quality results of the parameters fixing method
compared to the random initialization method.
However, the parameters fixing method has the
disadvantage of high computational cost due to
the need of optimizing 20 different sets of angles
and choose the best one for each level of depth.
The computational cost is about the same for
the random initialization method, as it also re-
quires optimizing multiple sets of different an-
gles.

5 Conclusion

We have applied the leapfrogging strategy to
3-regular graphs and the result shows it is
able to approximate better than the random
approach at smaller circuit depth for small
graphs. However, for small graphs at large
circuit depth, the leapfrogging strategy does
not work well as it is designed to work on large
typical instances. The subgraphs involved in
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Figure 4: Heatmap and landscape of the expectation function of a 6-node graph as the circuit depth
increases, with the parameters fixing strategy applied.

the expectation function gets different at larger
circuit depth for small graphs.

On the other hand, we show the results of
the proposed parameters fixing strategy. The
strategy improves the results at large circuit
depth by altering the landscape searched by
the optimizers. We observe that using this
strategy, the landscape of the expectation
function evolves into a river-like structure as
the circuit depth increases. This consequently
eliminates the local maxima at larger circuit
depths and improves the search of the optimizer.

In the future, we will study the effect of com-
bining the two strategies as the nodes and the
depths of the QAOA increase.
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