
Electronic Preprint for Journal of Information Processing Vol.29

Regular Paper

Generating Adversarial Examples for Hardware-Trojan
Detection at Gate-Level Netlists

Kohei Nozawa1,a) Kento Hasegawa1 Seira Hidano2 Shinsaku Kiyomoto2

Kazuo Hashimoto3 Nozomu Togawa1

Received: June 29, 2020, Accepted: December 1, 2020

Abstract: Recently, the great demand for integrated circuits (ICs) drives third parties to be involved in IC design and
manufacturing steps. At the same time, the threat of injecting a malicious circuit, called a hardware Trojan, by third
parties has been increasing. Machine learning is one of the powerful solutions for detecting hardware Trojans. How-
ever, a weakness of such a machine-learning-based classification method against adversarial examples (AEs) has been
reported, which causes misclassification by adding perturbation in input samples. This paper firstly proposes a frame-
work generating adversarial examples for hardware-Trojan detection at gate-level netlists utilizing neural networks.
The proposed framework replaces hardware Trojan circuits with logically equivalent ones, and makes it difficult to de-
tect them. Secondly, we propose a Trojan-net concealment degree (TCD) and a modification evaluating value (MEV)
as measures of the amount of modifications. Finally, based on the MEV, we pick up adversarial modification patterns
to apply to the circuits against hardware-Trojan detection. The experimental results using benchmarks demonstrate
that the proposed framework successfully decreases the true positive rate (TPR) by a maximum of 30.15 points.

Keywords: hardware Trojan, netlist, logic gate, machine learning, adversarial example

1. Introduction

1.1 Hardware Trojans and Its Detection Methods
The demand for integrated circuits (ICs) has recently been in-

creasing due to the introduction of Internet of Things (IoT) in our
daily lives. In order to effectively design and produce hardware
devices at low cost, has resulted in them becoming more com-
plicated. The hardware design and production process can be di-
vided into two steps: the design step and the manufacturing step.
In the design step, hardware vendors design IC chips according
to product specifications, and describe the design in hardware de-
scription language (HDL). This step is often outsourced to third-
party vendors [1]. A frequently-used circuit such as a processor
or communication interface is packed as a module called an in-
tellectual property core (IP core), and a hardware vendor often
purchases it from a third-party vendor. In the manufacturing step,
a circuit is manufactured at a foundry based on the information
designed in the design step. As above, hardware design and man-
ufacturing steps involve several third-party vendors.

At the same time, it is reported that an adversary including
an untrusted third-party vendor may modify a hardware design
or product with malicious intent in the design or manufacturing
step [2], [3]. A malicious circuit inserted into a genuine prod-
uct is called a “hardware Trojan” [4]. A hardware Trojan often

1 Dept. Computer Science and Communications Engineering, Waseda
University, Shinjuku, Tokyo 169–8555, Japan

2 KDDI Research, Inc., Fujimino, Saitama 356–8502, Japan
3 Research Innovation Center, Waseda University, Shinjuku, Tokyo 169–

8050, Japan
a) kohei.nozawa@togawa.cs.waseda.ac.jp

leaks internal information, degrades performance, and/or deac-
tivates functionalities. Most IoT devices may be infected with
hardware Trojans. This is an emerging threat since IoT devices
are spreading to our home.

Now we focus on the hardware design step. Detecting hard-
ware Trojans in the design step, the first step, can be more ef-
fective. There are two reasons: Firstly, attackers are easily able
to insert hardware Trojans in the design step. To insert hardware
Trojans in the design step, all attackers need to do is just to manip-
ulate design information. Design information is usually written
in HDL, which is human-readable, and hence inserting hardware
Trojans in this step must be very easy. By adding a few lines
into HDL, attackers can insert hardware Trojans [5]. However, in
the manufacturing step, attackers need to consider wiring, tim-
ing, and clock distribution to insert hardware Trojans. From the
viewpoint of attackers, attackers can very easily insert hardware
Trojans in the design step. At the same time, after the design step,
defenders may lose sight of the hardware Trojans from the com-
plicated circuit structures. Secondly, detecting in the manufactur-
ing step is time-consuming and cost-consuming. If manufactured
IC products turn out to be infected by hardware Trojans, vendors
need to remake ICs from the very first step. Vendors also have
to throw infected products away and need new resources. There-
fore, detecting hardware Trojans in the design step can be more
important and logical.

In the hardware design step, a hardware design is often writ-
ten in gate level which describes how to connect circuit elements
with wires (also called nets). A gate-level netlist, which is a list
of nets and circuit elements, includes so many nets, and there-

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

fore it is difficult to inspect each net in detail. How to detect a
hardware Trojan from such a huge gate-level netlist is a serious
concern. In Ref. [6], a hardware-Trojan detection method at gate-
level netlists based on the structural features is firstly proposed
and it is extended in Refs. [7], [8], [9] utilizing machine learning.
In particular, a hardware-Trojan detection method utilizing neu-
ral networks is expected to detect subspecies of hardware Trojans
effectively [10].

1.2 Attacks on Detection Methods
In the field of machine learning, an attack which makes a

classifier erroneously classify a given sample has been pro-
posed [11], [12]. According to Ref. [11], a test sample with a cer-
tain noise, which is called perturbation, will be classified into a
different label from the original one. Such a test sample with per-
turbation is named an adversarial example (AE), and we call the
attack utilizing it an AE attack. A number of AE attack schemes
have been proposed [13], and mitigating the problem of AE at-
tacks becomes a serious concern. While initial studies related to
AEs started with image recognition, some recent ones focus on
different use cases. For instance, there is an attempt to generate
AEs for object recognition [14]. An AE attack method against a
malware detection system has also been proposed [15].

However, existing hardware-Trojan detection methods utiliz-
ing neural networks [7], [16] have been designed with no con-
sideration for advanced attacks such as AE attacks. Thus, they
will also be exposed to the risk of AE attacks. An AE at-
tack to hardware-Trojan detection will deceive a classifier and
a hardware-Trojan circuit will be misclassified as normal. If the
attack is realized, hardware-Trojan detection becomes more dif-
ficult. In order to put hardware-Trojan detection to practical use,
it is necessary to clarify its potential risks against AE attacks.
Before studying the defense against AE attacks, we discuss how
to realize the AE attacks to machine-learning-based hardware-
Trojan detection at gate-level netlists from the viewpoint of at-
tackers. AEs for image recognition can be generated by calculat-
ing perturbation. For circuits, however, there are additional con-
straints of keeping logical equivalency, i.e., the modified circuits
must be logically the same as the original ones. Circuits cannot
be modified arbitrarily corresponding to calculated perturbation.
Thus, a different approach from existing AE-attack methods is
needed to generate AEs for hardware-Trojan detection.

There exists an engineering change order (ECO) in the last step
of the design process. Some bugs or changes in circuit specifi-
cation sometimes occur during the design process. There have
been developed several tools [17], [18] to remove the bugs and
apply the new constraints to circuits. These approaches alter syn-
thesized circuits, and the impacts of changes in circuits can be
significant. However, circuits once designed should be modified
only when necessary. Therefore, the previous machine-learning-
based hardware-Trojan detection studies [7], [16] utilize the gate-
level netlists in Trust-HUB without any modifications for training
data. Modification patterns that we introduce in this paper are out
of the ordinary cases in circuit design. Thus, samples with the
modification can be adversarial examples.

From the viewpoint of IC designers, to strengthen the tolerance

of the classifier against AE attacks, it is important to analyze the
adversaries’ scenarios. We try to analyze the scenarios by in-
troducing a new attack method which can be realized. We can
specify the goal that the adversaries want to realize and the ca-
pabilities that adversaries have. By investigating the attacks, IC
designers will be able take countermeasures against them.

In this paper, we propose a framework generating adversar-
ial examples for hardware-Trojan detection at gate-level netlists
utilizing neural networks *1. In the proposed method, we firstly
propose a Trojan-net concealment degree (TCD), and secondly
propose a modification evaluating value (MEV) which can be ob-
tained from a loss function of the neural networks utilized for
hardware-Trojan detection. Utilizing TCD and MEV, we generate
adversarial examples which cause misclassification in hardware-
Trojan detection. The proposed method enables us to generate
adversarial examples against hardware-Trojan detection very ef-
fectively without exploring all of the modification patterns of a
target circuit. As far as we know, this is the first study on adver-
sarial examples against hardware-Trojan detection and its appli-
cation to the benchmark dataset.

The contributions of this paper are summarized as follows:
(1) We propose a framework that generates an AE against

hardware-Trojan detection.
(2) In the proposed framework, we propose TCD and MEV to

evaluate the amount of modifications and we can effectively
pick up effective modifications on generating an AE based
on TCD and MEV.

(3) By applying our method, the true positive rate (TPR) *2 is
decreased by a maximum of 30.15 points, validating modifi-
cation patterns and MEV.

The rest of this paper is organized as follows: In Section 2,
we discuss related works on hardware-Trojan detection utilizing
machine learning and AE. In Section 3, we propose a frame-
work generating adversarial examples for hardware-Trojan de-
tection for gate-level netlists utilizing neural networks. We also
propose TCD and MEV for evaluating modifications on the orig-
inal hardware Trojans. In Section 4, we perform experiments and
demonstrate their results. In Section 5, we conclude this paper.

2. Related Works

In this section, we sum up the backgrounds of hardware Tro-
jans and researches to detect them. Then, we show the fundamen-
tals on adversarial examples.

2.1 Hardware Trojan and Its Detection Utilizing Neural
Networks

A hardware Trojan is a malicious circuit embedded in ICs. A
hardware Trojan often consists of two parts of circuits, a trigger

*1 The preliminary version of this paper appeared in Ref. [19].
*2 In a gate-level netlist, a circuit is represented by logic gates and nets. In

particular, a circuit with hardware Trojans is composed of a Trojan-free
normal circuit and a Trojan circuit. Normal nets refer to the nets in a
normal circuit. Trojan nets refer to the nets in a Trojan circuit. Then,
TP (true positive) shows the number of Trojan nets identified as Trojan
nets by a classifier. FN (false negative) shows the number of Trojan nets
identified as normal nets by a classifier. Then the true positive rate is
obtained from TP/(TP + FN).

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 1 Netlist representation by a graph G = (V, E) in which the hardware
Trojan represented by a subgraph Gt = (Vt , Et) is surrounded by a
dotted line.

circuit and a payload circuit [20]. A trigger circuit enables a pay-
load circuit when a start-up condition is satisfied. For example,
when primary inputs and/or internal states satisfy certain condi-
tions, a trigger circuit wakes up. A payload circuit performs a ma-
licious function such as leakage of information and performance
degradation when the trigger condition is satisfied. If hardware
Trojans are embedded in home appliances, especially in IoT de-
vices, they can be a familiar threat to us. Since a hardware Trojan
is very small compared to a genuine circuit, how to find the fea-
tures of a hardware Trojan is an important issue.

In general, a gate-level netlist can be represented by a graph
structure such as a Boolean network [21]. Let a graph G = (V, E)
be a whole gate-level netlist including a Trojan circuit. V is a set
of vertexes, or gates. E is a set of edges, or nets. Similarly, let
a graph Gt = (Vt, Et) be a Trojan circuit. Vt is a set of Trojan
vertexes, or Trojan gates. Et is a set of Trojan edges, or Trojan
nets. Vt and Et satisfy Vt ⊆ V and Et ⊆ E, respectively, as shown
in Fig. 1.

Here we focus on hardware-Trojan detection utilizing machine
learning. In Ref. [7], a hardware-Trojan detection method utiliz-
ing a neural network has been proposed. The method extracts
5 feature values of each net in a gate-level netlist and identifies
whether the net is a Trojan net or a normal net. The subsequent re-
search [22] firstly proposes 51 feature values extracted from gate-
level netlists similarly to the method [7] and picks up 11 effective
feature values from them. At first, in the learning flow, these
methods extract the features from each net e ∈ E, and then ob-
tain the vector of the feature values x(e) = (x1, x2, . . .), where
xk(1 ≤ k) shows the feature value. Table 1 shows the 51 fea-
ture values for a net e in a gate-level netlist utilized in Ref. [22].
After that, a neural network learns the extracted feature values.
As for each net e, we give the feature vector x(e) = (x1, x2, . . .)
to the neural network as an input, and then we obtain an output
z = (z1, z2), where z1 shows the possibility that e is a normal net
and z2 shows the possibility that e is a Trojan net. By compar-
ing the output and its answer label, the parameters of the neural
network is optimized. Secondly, in the classification flow, the
method extracts the features from every net in an unknown netlist
and classifies them with the classifier leaned at the learning flow.
In the classification flow, the classifier identifies e as a Trojan net
when z2 is larger than z1, or identifies e as a normal net when z1

is larger than z2.
Considering the changes in the circuit behavior is an important

characteristic of the hardware Trojans and may be useful to detect
hardware Trojans [23]. However, these approaches usually re-

Table 1 51 feature values of each net e for hardware-Trojan detection uti-
lizing neural network (1 ≤ x ≤ 5) [16].

Trojan features Description
fan in x The number of logic-gate fanins x-level away from the target net e.
in flipflop x The number of flip-flops up to x-level away from the input side of the target net e.
out flipflop x The number of flip-flops up to x-level away from the output side of the target net e.
in multiplexer x The number of multiplexers up to x-level away from the input side of the target net e.
out multiplexer x The number of multiplexers up to x-level away from the output side of the target net e.
in loop x The number of up to x-level loops from the input side of the target net e.
out loop x The number of up to x-level loops from the output side of the target net e.
in const x The number of constants up to x-level away from the input side of the target net e.
out const x The number of constants up to x-level away from the output side of the target net e.
in nearest pin The minimum level to the primary input from the target net e.
out nearest pout The minimum level to the primary output from the target net e.
{in, out} nearest flipflop The minimum level to any flip-flop from the input/output side of the target net e.
{in, out} nearest multiplexer The minimum level to any multiplexer from the input/output side of the target net e.

quire very long-term logic tests and cannot even detect some type
of hardware Trojans, particularly the ones triggered very rarely.
Recently, the hardware Trojan detection methods based on the
static netlist structure were proposed [6] and these methods very
successfully detect many types of hardware Trojans including the
ones triggered very rarely. The classification method that we use
in this paper uses the latter approach. That is why we use the
netlist feature approach in adversarial example generation, not
taking into circuit behavior.

Since the methods judge whether every net in a circuit is a Tro-
jan net or not, we can know that not only is the circuit infected by
hardware Trojans but we can know the detailed positions where
the hardware Trojans are inserted. This is one of the main rea-
sons why the methods [7], [16], [22] are powerful at detecting
hardware Trojans. There is no need to synthesize the netlist into
physical mask patterns. As above, the methods [7], [16], [22] do
not consider gate size as a feature value, since we cannot evaluate
whether every net is Trojan or not even if the gate size is given.
At the same time, though the gate count, or the number of gates
included in a given circuit, may help the classifier detect whether
the circuit includes hardware Trojans, we cannot know the de-
tailed positions where the Trojans are inserted. Furthermore, we
cannot know the correct gate count beforehand for unknown cir-
cuits. Note that, the experimental results of Refs. [7], [16], [22]
indicate that we can detect Trojan nets accurately without consid-
ering the gate size and gate count.

On hardware-Trojan detection utilizing a neural network, it is
extremely important to correctly identify Trojan nets as Trojan
nets since we want to know all the Trojan nets. Now let et′ be a
net classified as a Trojan net, and Et′ be a set of the nets classified
as Trojan nets. The goal on hardware-Trojan detection is that et′

involves all the Trojan nets in Et. Therefore, maximizing the true
positive rate (TPR), detecting as many Trojan nets as possible is
the first priority in hardware-Trojan detection. In contrast, attack-
ers aim to minimize TPR, which means detecting as few Trojan
nets as possible.

Although the detection method [7] utilizes a neural network
with a single middle layer, the detection method [16] utilizes a
multi-layer neural network. In the experiment [16], the middle
layer in the neural network consists of three layers and the neural
network gives good results in hardware-Trojan detection in terms
of TPR.

2.2 Adversarial Example
Recently, an attack scheme where a certain test sample causes

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

misclassification to the target classifier utilizing machine learning
including a neural network has been proposed [11]. This is an at-
tack for machine learning models which causes misclassification
results by adding perturbation to test samples which are originally
classified into their correct classes. These samples which cause
misclassification are called adversarial examples (AEs) and the
attack using AE is called an AE attack. AEs for images are well
described in Ref. [12].

Given the fact of the development in machine learning utiliz-
ing neural networks, novel attack methods have been proposed.
In Ref. [11], for example, a method generating test samples that
cause misclassification in image recognition has been proposed.
Image recognition is frequently leveraged in the physical world
such as in self-driving cars and face recognition, and hence both
of the attack methods and defense methods are getting much at-
tention [14], [24], [25]. Although we cannot distinguish adver-
sarial examples from original ones, a classifier misclassifies them.
In addition to image recognition, audio recognition [26], sentence
recognitio [27], [28] and graph data recognition [29], [30] become
new AE targets recently.

In this paper, we propose a framework to generate AEs against
hardware-Trojan detection at gate-level netlists utilizing a neural
network by modifying hardware designs. In image recognition,
AEs are generated with minimizing visible impacts. Likewise, in
our case, we aim to generate AEs which hardly degrade circuit
performance such as circuit area and path delay. The AEs cause
misclassification so that Trojan nets are mistakenly classified as
normal nets.

Now we focus on AE attacks on hardware-Trojan detection
utilizing neural networks such as in Refs. [7], [16], [22]. In AE
attacks against hardware-Trojan detection, an adversary aims to
decrease |Et′ |, i.e., the number of nets classified as Trojan nets.
When |Et′ | is drastically decreased, most of the Trojan nets are
mistakenly classified as normal nets. If such an AE attack is
realized, it becomes hard to detect hardware Trojans in a gate-
level netlist. In order to learn hardware design information utiliz-
ing machine learning methods, we represent hardware circuits as
graph structures as described in Section 2.1. However, the con-
version from a graph structure into a feature space [31] is one-
way. Therefore, even if we add perturbations in the feature space,
we cannot easily specify the corresponding changes in the graph
structure. In AE attacks against hardware-Trojan detection, we
need to take a completely different approach from conventional
AE-attack methods.

3. AE Attacks on Hardware Design

3.1 Scenario of the AE Attacks
Let us consider AE attacks in hardware-Trojan detection utiliz-

ing neural networks for gate-level netlists. Now we assume the
attack scenario as follows: Hardware Trojans are injected mainly
in two different points of the designing process [32]. The first
one is the RTL (register-transfer level) description design step.
IP cores produced by malicious IP vendors may be embedded in
this step. The second one is after logic synthesis. Malicious de-
signing tools made overseas in many cases may inject hardware
Trojans into output designing information. As mentioned above,

if IP vendors or design tool developers are malicious, circuits can
be infected by hardware Trojans.

In the supply chain of the IC design step, we can assume that
there are at least two entities; vendor A and vendor B. In design-
ing ICs, vendors are involved to each other [33], [34]. One vendor
sometimes becomes an IP core supplier and sometimes becomes
an IP core buyer. For example, vendor A designs a product V em-
bedding IP core W designed by vendor B at some point. In this
case, vendor B is considered to be a third party for vendor A. At
another point, vendor B designs a product X embedding IP core
Y designed by vendor A. In this case, vendor A is considered to
be a third party for vendor B. In addition, we assume that there
exists a standard hardware-Trojan classifier as in Refs. [7], [16]
and most vendors utilize it to certify a third parties’ products.

A standard hardware-Trojan classifier may be prepared by an
IP core vendor as software or cloud services. A Japanese IC de-
sign vendor has just started the hardware Trojan detection ser-
vice [35]. This IC design vendor becomes an IP core supplier in
some cases but it becomes an IC core buyer in some cases.

Adversaries aim to design hardware Trojans which are difficult
to detect by a hardware-Trojan detection system in order to in-
sert malicious circuits into hardware products. In this section, we
discuss several assumptions for adversaries and the AE attacks
against hardware-Trojan detection.
3.1.1 Adversary’s Goal

For the purposes described below, adversaries may try to attack
hardware designs.
G1 Adversaries insert Trojan nets to hardware design informa-

tion at gate level.
G2 Adversaries make a classifier misclassify a Trojan net as a

normal net by applying AEs.
G3 Adversaries attack the classifier for hardware-Trojan detec-

tion with the constraint of minimizing the impact of modifi-
cation to the circuits.

G1 is the main goal of adversaries. The adversaries try to embed
hardware Trojans into an original gate-level netlist. G2 and G3
are the supplementary goals. The adversaries try to conceal the
embedded hardware Trojans so as not to be detected easily.
3.1.2 Adversary’s Capability

Assuming the cases discussed above, vendors can access the
classifier and investigate its architecture. If some vendors are ma-
licious, they access their classifier and develop attacks based on
the classifier that they own. In this paper, we assume adversaries
like the malicious vendors above will attack under the conditions
as follows:
C1 Adversaries know that the hardware vendor utilizes neural

networks to detect hardware Trojans.
C2 Adversaries can access the raw output values of the neural

networks.
In real case, hardware-Trojan detection tools may be provided

as software or cloud services. We can assume that attackers can
also access the tools anytime. If the tools are provided as soft-
ware, attackers may be able to crack loss values of detection tools
by disassembling the tools, which is the worst case. Since cur-
rent artificial intelligence (AI) techniques require transparency
and explainability [36], loss values will be provided as a confi-

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

dence value in the future to improve service reliability. If the
tools are provided as cloud services, attackers can also obtain loss
values from provided confidence values.

Note that the assumption C2 is based on a pessimistic and rig-
orous scenario against AE attacks to improve the tolerance of
Trojan detection. In real security module evaluation, complete
disclosure of raw output values may be rare. In addition, the re-
quirement of explainable machine learning does not draw directly
the consequence of complete disclosure of hardware-Trojan de-
tection techniques against adversarial attacks.

Based on the assumptions above, adversaries slightly modify
Trojan circuits, which is similar to perturbation of AEs on image
recognition, and make a classifier misclassify Trojan nets as nor-
mal nets. If this attack succeeds, the Trojan nets that adversaries
newly design will be classified as normal nets by the hardware-
Trojan detection utilizing a neural network at hardware vendors.
Thus, adversaries are able to hide the hardware Trojan into hard-
ware design information and an AE attack is successfully real-
ized.

3.2 AE Attacks on Hardware Design Information
On AE attacks to hardware design information, a small change

to a circuit structure causes a significant change to the feature val-
ues of the nets in the circuit. In image recognition, perturbation
can be theoretically obtained [37]. In contrast, generating adver-
sarial examples for hardware-Trojan detection is quite different.
Since the conversion from a graph structure to a feature space is
one-way, we cannot take the same scheme as in image recogni-
tion. Even if we can add perturbation to feature values of nets
in an original circuit and obtain the modified feature values, we
cannot always generate a modified circuit which has the modified
feature values. In addition, the circuit with arbitrary perturbation
is not guaranteed to be logically equivalent to the original one.
The modified circuit whose functionality is not logically equiva-
lent to the original one can be easily detected by an existing test
tool due to the lack of the original functionality. For example, as-
sume that the function of trigger circuits in a hardware Trojan is
destroyed and trigger conditions are satisfied in most cases. Then
the hardware Trojan frequently wakes up. In this case, the ma-
licious behavior of a hardware Trojan can be easily detected in
a normal product test process [38]. Such circuits are inappropri-
ate for hardware Trojans. Therefore, adversaries must generate
logically-equivalent hardware Trojan circuits so that the gener-
ated circuit keeps the functionalities of the original circuit (Point
1 below).

We target on the circuit where a hardware Trojan has already
been inserted. Generally, a hardware-Trojan circuit is inserted
into a non-critical path of an original circuit and thus it may not
affect the entire path delay of the original circuit, even if the path
delay of the hardware-Trojan circuit is slightly increased. When
adversaries modify the original normal circuit, original design-
ers can easily detect the modification because the original normal
circuit itself is elaborately designed to satisfy the requirements
such as circuit size and circuit path delay. Therefore, adversaries
should modify only Trojan circuits to achieve AE attacks (Point
2 below).

Furthermore, on generating AEs for hardware-Trojan detec-
tion, adversaries should not significantly decrease the perfor-
mance of a circuit. For example, if we apply arbitrary modifica-
tions to hardware design, the logical equivalence may be broken
and the path delay may be affected. The logical equivalence and
path delay are important factors on hardware design, and thus
significant change in such factors can be easily detected in the
existing test process [38]. We must consider the amount of mod-
ification based on the factors such as circuit size and circuit path
delay to generate an effective AE (Point 3 below).

Based on the discussion above, generating AEs against
hardware-Trojan detection must satisfy the following three
points:
Point 1 Modified circuits are logically equivalent to the original

ones.
Point 2 Only Trojan circuits are modified.
Point 3 AEs degrade classification performance and conceal

Trojan nets with small modification.
In the rest of this section, we firstly propose a Trojan-net con-

cealment degree (TCD), and also propose a modification evaluat-
ing value (MEV), which indicates how likely the Trojan-nets are
classified as normal. Based on these values, we propose an AE
generation method that enables us to degrade the performance of
hardware-Trojan detection.

3.3 Trojan-net Concealment Degree and Modification Eval-
uating Value

An ideal adversarial example largely degrades detection per-
formance by modifying a circuit as slightly as possible. Thus, in
this subsection, we propose TCD, a degree which indicates the
possibility of hiding a hardware Trojan, and MEV, a value evalu-
ating the amount of modifications.
3.3.1 Trojan-net Concealment Degree

In order to degrade classification performance, we maximize
the loss function of the neural network used in the learning flow.
In this case, the loss function is a cross entropy H expressed as
follows [16]:

H = −
K∑

i=1

pi(x(e)) log qi(x(e)) (1)

where K is the number of units in the output layer (K = 2 in
the case of Ref. [16]), p1(x(e)) and p2(x(e)) are the functions to
return answer labels of x(e). When e is a Trojan net, p1(x(e))
equals to 0 and p2(x(e)) equals to 1. When e is a normal net,
p1(x(e)) equals to 1 and p2(x(e)) equals to 0. qi(x(e)) is the
function to return the prediction result by the classifier. We ob-
tain qi(x(e)) from the output value of the unit ui in the output
layer of the neural network. If we have two units u1 and u2 in
the output layer, we obtain q1(x(e)) from the output of u1 and
q2(x(e)) from the output of u2. The output values of u1 and u2

are calculated according to the structure of the neural network
in Ref. [39]. q1(x(e)) indicates the possibility that the net e is
a normal net. q2(x(e)) indicates the possibility that the net e is
a Trojan net. For example, if we have q1(x(e)) = −3.60 and
q2(x(e)) = 3.76 for the net e, the classifier determines that e is a
Trojan net because q2(x(e)) is larger than q1(x(e)).

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

To adapt Eq. (1) to the whole Trojan nets, we sum up the values
for each net and propose the average as the Trojan-net conceal-
ment degree (TCD):

TCD = − 1
|Et |
∑

et∈Et

⎛⎜⎜⎜⎜⎜⎝
K∑

i=1

pi(x(et)) log qi(x(et))

⎞⎟⎟⎟⎟⎟⎠ (2)

When TCD becomes large, the difference between the prediction
and answer is large. Therefore, if the value is large enough, ad-
versaries can easily achieve their purposes to conceal Trojan nets.

As discussed in Section 3.1.2, we assume that adversaries
know that the hardware vendor utilizes neural networks to de-
tect hardware Trojans and also know its output values. Then the
adversaries obtain the values of q1(x(et)) and q2(x(et)) and can
calculate the TCD value above, regardless of the structure of the
classifier.
3.3.2 Modification Evaluating Value

A modification to the target circuit affects the whole circuit.
More modifications lead to larger impacts on the whole circuit.
To achieve the purpose G3 in Section 3.1.1, we need to modify
the hardware Trojan circuit making it as small as possible. There-
fore, we focus on the amount of modifications in addition to TCD.

From the viewpoint of circuit design, there are several evalu-
ating indicators such as (i) increment of gates and (ii) increment
of logic levels. Although (i) is generally proportional to the in-
crement of gates, (ii) is not necessarily proportional to the incre-
ment of gates. Therefore, it is not always true that minimizing the
number of altered gates works well to generate AEs. It is signifi-
cantly important to consider that on modifying circuits. General-
izing these features, we propose a modification evaluating value
(MEV) as follows:

MEV = −TCD +
N∑

j=1

λ jm j

=
1
|Et |
∑

et∈Et

⎛⎜⎜⎜⎜⎜⎝
K∑

i=1

pi(x(et)) log qi(x(et))

⎞⎟⎟⎟⎟⎟⎠ +
N∑

j=1

λ jm j

(3)

where mj(1 ≤ j ≤ N) is one of the N kinds of evaluation indi-
cators, and λ j(1 ≤ j ≤ N) is the corresponding coefficient. To
consider hardware-Trojan detection utilizing neural networks, we
take (i) increment of gates and (ii) increment of logic levels into
account as the amount of modification, i.e., N = 2. When the
MEV value is small, this indicates that TCD becomes large with
the small modifications. Note that, we can approximate path de-
lay by simply counting logic levels. As in the discussion in Sec-
tion 3.3.1, adversaries can also calculate the MEV value when
Trojan circuit modifications are given.

3.4 An AE Generation Method
Now the AE generation problem for hardware Trojans is de-

fined as follows: The inputs are an entire circuit given by a graph
G = (V, E) including a hardware Trojan circuit, an original hard-
ware Trojan circuit given by Gt = (Vt, Et), and a learned neural
network classifier f given in Ref. [16]; The output is the modified
hardware Trojan circuit; The objective function is to minimize
MEV given by Eq. (3).

As we discussed in Section 3.1, since the conversion from a

Algorithm 1 Generate AEs based on MEV
Inputs: Learned classifier f , the circuit infected with a hardware Trojan

G = (V, E), the hardware Trojan Gt = (Vt , Et), AE patterns P, the num-

ber of iterations L

Output: An AE circuit

i⇐ 0, best MEV ⇐ 0

now circuit ⇐ G

next candidate is null

while i < L do

for all vt ∈ Vt in now circuit that has not yet been modified do

for all p ∈ P that can be applied to vt do

Apply p to vt and generate the modified circuit G′

Calculate MEV of G′ w.r.t. f

if MEV < best MEV then

next candidate⇐ G′

best MEV ⇐ MEV

end if

end for

end for

now circuit ⇐ next candidate

i⇐ i + 1

end while

return now circuit

graph structure to a feature space is one-way, we cannot take the
same AE generation scheme as in image recognition. Thus, we
apply an approach for AE generation in hardware Trojans as fol-
lows: We firstly enumerate AE patterns applied to each net and
generate an effective AE evaluating MEV.

However, it is impractical that we modify all the nets in a hard-
ware Trojan because the number of modification patterns is ex-
ponentially increased. In order to effectively generate an AE, we
have to approximate the evaluation of AEs. Therefore, based on
MEV, we further propose an AE generation method that enables
us to degrade the performance of hardware-Trojan detection in a
practical time. Our proposed method chooses the modification
whose MEV is the best at every iteration.

The proposed AE generation method is shown in Algorithm 1
above. Note that P is a set of possible AE patterns by which a
Trojan gate is modified to a logically equivalent circuit. Exam-
ples of such patterns are provided in Section 4.2. By using the
proposed method utilizing MEV, we expect that we can obtain
AE which decreases TPR without much modifying the original
hardware Trojan circuit. Note that our proposed method can be
applied to any hardware-Trojan detection methods utilizing neu-
ral networks because our method just deals with the feature values
extracted from design information at gate-level netlists.

4. Experiments

In this section, we apply the proposed AE generation method in
Section 3.4 to three benchmark circuits, RS232-T1000, RS232-
T1200 and RS232-T1300, from Trust-HUB [5], [40], [41]. In
the proposed AE generation method, we utilize the AE patterns
shown in Section 4.2 under the condition described in Section 4.1.

4.1 Experimental Setup
The dataset that we utilize in the experiments are 15 bench-

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Table 2 Benchmarks used in our experiments.

Benchmark [5] # of normal nets # of Trojan nets
RS232-T1000 283 36
RS232-T1100 284 36
RS232-T1200 289 34
RS232-T1300 287 29
RS232-T1400 273 45
RS232-T1500 283 39
RS232-T1600 292 29
s15850-T100 2419 27
s35932-T100 6407 15
s35932-T200 6405 12
s35932-T300 6405 37
s38417-T100 5798 12
s38417-T200 5798 15
s38417-T300 5841 44
s38584-T100 7343 19

marks *3 from Trust-HUB [5]. Table 2 shows the benchmarks
from Trust-HUB that we used in the experiments. Each of these
15 benchmark circuits includes normal circuits and Trojan cir-
cuits. As an initial trial, we just randomly pick up three RS232
benchmarks: RS232-T1000, RS232-T1200, and RS232-T1300,
out of 15 benchmarks and perform the AE applying experiments
against them. We apply leave-one-out cross-validation. For ex-
ample, if we test RS232-T1000 with AE, the classifier learns 14
benchmarks excluding RS232-T1000 and classifies the nets in
RS232-T1000 with AE into a set of normal nets and a set of Tro-
jan nets. We adopt over-sampling for imbalanced training sample
distribution between positive and negative samples.

We construct the neural network utilizing Chainer library in
Python. The parameters of the neural network utilized in the ex-
periments are as follows: 51 units in the input layer; three lay-
ers (200 units, 100 units and 50 units) in the middle layers; and
two units in the output layer based on Ref. [16]. We use the sig-
moid function for an activation function. This classifier is uti-
lized in both AE generation and evaluation. In fact, the method
in Ref. [16] is based on the method in Ref. [22], which originally
proposes 51 feature values. Thus, we utilize these 51 feature val-
ues for inputs so that we can evaluate the whole impact of adver-
sarial examples to the classification from the viewpoint of feature
values. We use an Intel Xeon Bronze 3104 computer environment
with a 93 GB memory.

In our experiments, we apply the six AE patterns described in
Section 4.2 to the Trojan circuits of RS232-T1000, RS232-T1200
and RS232-T1300 (shown in Fig. 2, Fig. 3 and Fig. 4, respec-
tively) according to the proposed AE generation method in Sec-
tion 3.4 and generate AEs for hardware-Trojan detection. Note
that, we set the number L of iterations to three and both λ1 and λ2

in Eq. (3) to 1 in the experiments.

4.2 Six AE Patterns
The hardware-Trojan detection method in Refs. [7], [16], [22]

utilizes the distance from the net to a near multiplexer, mul-

*3 The benchmarks s38584-T200 and s38584-T300 are not included in our
experiment comparing to Ref. [7]. This is because of the following rea-
sons: Firstly, in our experiment, we utilize all the 51 feature values pro-
posed in Ref. [22]. Secondly, in Ref. [22], the 15 benchmarks in Ta-
ble 2 are utilized as learning datasets when evaluating all the 51 feature
values (As mentioned in Section 2.1, after that, the 11 effective feature
values are picked up from them [22] and evaluated using the 17 bench-
marks [7]). Hence, we adapt the same benchmark condition.

Fig. 2 Hardware Trojan part embedded in RS232-T1000 [5].

Fig. 3 Hardware Trojan part embedded in RS232-T1200 [5].

Fig. 4 Hardware Trojan part embedded in RS232-T1300 [5].

tiplexer and primary input/output and thus modifications with
changing the distance must be efficient. For instance, the number
of logic levels between multiplexer gates increases by replacing
a four-input-gate with multiple two-input-gates. In this way, we
generate a logically-equivalent circuit and alter feature values at
the same time.

We generate six AE patterns shown in Fig. 5. The first two,

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 5 Six AE modification patterns that we utilize.

t1 and t2, replace a single four-input-OR with three two-input-
ORs. t3 adds the constant 0 and t5 adds the constant 1. t4 injects
two inverters. t6 replaces an a single four-input-NAND gate with
logically equivalent gates. We may also consider other AE modi-
fication patterns, but we now consider these six AE modification
patterns for evaluating AE generation for hardware Trojans at the
first step. Note that these AE patterns clearly give the logically
equivalent modifications.

4.3 Evaluation
Table 3 shows the results when we apply the six AE patterns

to RS232-T1000 up to three times. In the first iteration, the gate
U298 is modified using the AE pattern t6 in Fig. 5, which gives
the minimum MEV at that time. In the second iteration, the gate
U299 is modified also using t6, which gives the minimum MEV at
that time. In the third iteration, we enumerate all the modification
patterns in Table 3. In Table 3, # indicates “after modification.”
For instance, #t6[U299] at the third row means that t6 in Fig. 5
is applied to the gate U299 in Fig. 2 at the second iteration after
modification of t6[U298]. In the same way, ##t1[U296] at the
forth row means that t1 is applied to the gate U296 in Fig. 2 at
the third iteration after modification of t6[U298] and t6[U299].
Note that, t4[U302] means that t4 (injecting two inverters be-
tween gates) is applied to the output side wire of the gate U302.
From the viewpoint of MEV, the most efficient modifications to
induce misclassification are t6[U298], t6[U299] and t1[U301].
Figure 6 shows the Trojan circuit of RS232-T1000 with these AE
patterns. Modified gates are colored in red. The MEV becomes
4.29. TPR is decreased to 64.29% by 30.15 points. According
to Table 3, applying t4[U302] at the third iteration increases six
gates and three logic levels compared to the original circuit. On
the other hand, applying t1[U301] at the third iteration increases
six gates and just one logic level compared to the original cir-
cuit. t1[U301] has less amount of modification than t4[U302].
Reflecting this difference in MEV, we can pick up modifications
to decrease TPR with minimizing amount of modifications to the
circuits. Therefore, we can achieve the purpose G3 discussed in
Section 3.1.

Table 4 shows the results when we apply the six AE patterns
to RS232-T1200 up to three times. From the viewpoint of MEV,
the most efficient modifications to induce misclassification are

Table 3 Experimental results of RS232-T1000 with AE modification three
times.

Pattern
[Gate]

TPR
Incr. of
gates

Incr. of
logic levels

TCD MEV

Original 94.44% 0 0 0.24 −0.24
t6[U298] 86.84% 2 1 0.94 2.06

#t6[U299] 80.00% 4 1 1.52 3.48
##t1[U296] 80.95% 6 1 1.49 5.51
##t1[U301] 64.29% 6 1 2.71 4.29
##t2[U296] 78.57% 6 2 1.52 6.48
##t2[U301] 69.05% 6 2 2.56 5.44
##t3[U302] 66.67% 6 2 2.12 5.88
##t4[U302] 54.76% 6 3 3.24 5.76
##t5[U303] 64.29% 6 2 2.10 5.90
##t5[U304] 78.57% 6 2 1.53 6.47
##t5[U305] 78.57% 6 2 1.54 6.46
##t6[U293] 80.95% 6 1 1.45 5.55
##t6[U294] 73.81% 6 1 1.95 5.05
##t6[U295] 73.81% 6 1 1.60 5.40
##t6[U297] 78.57% 6 1 1.81 5.19
##t6[U300] 73.81% 6 1 1.88 5.12

Fig. 6 Hardware Trojan embedded in RS232-T1000 after three modifica-
tions (modified gates are colored in red).

t6[U292], t6[U293] and t6[U297] in Fig. 3. The MEV becomes
5.34. TPR is decreased to 75.00% by 22.06 points. The tendency
on Table 4 is similar to RS232-T1000 in terms of MEV, which
gets higher when more amount of modification is applied to the
circuit. The most powerful AE choice is ##t4[U296] which has
the second highest MEV values, decreasing TPR the most. Show-
ing high MEV means giving a strong impact on performance of

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Table 4 Experimental results of RS232-T1200 with AE modification three
times.

Pattern
[Gate]

TPR
Incr. of
gates

Incr. of
logic levels

TCD MEV

Original 97.06% 0 0 0.28 −0.28
t6[U292] 86.11% 2 1 0.99 2.01

#t6[U293] 78.95% 4 1 1.55 3.45
##t1[U296] 70.00% 6 2 2.11 5.89
##t2[U296] 67.50% 6 3 2.19 6.81
##t3[U301] 80.00% 6 1 1.49 5.51
##t3[U302] 72.50% 6 2 2.09 5.91
##t4[U296] 62.50% 6 3 2.62 6.38
##t4[U301] 77.50% 6 2 1.62 6.38
##t5[U303] 72.50% 6 2 2.09 5.91
##t6[U294] 75.00% 6 1 1.56 5.44
##t6[U295] 80.00% 6 1 1.47 5.53
##t6[U297] 75.00% 6 1 1.66 5.34
##t6[U300] 80.00% 6 1 1.47 5.53

Table 5 Experimental results of RS232-T1300 with AE modification three
times.

Pattern
[Gate]

TPR
Incr. of
gates

Incr. of
logic levels

TCD MEV

Original 100.00% 0 0 0.00 0.00
t4[U302] 70.97% 2 2 2.42 1.58

#t6[U297] 72.73% 4 2 2.28 3.72
##t1[U296] 74.29% 6 3 2.80 6.20
##t2[U296] 71.43% 6 4 3.05 6.95
##t3[U302] 74.29% 6 3 2.78 6.22
##t5[U303] 74.29% 6 3 2.15 6.85
##t5[U304] 74.29% 6 3 2.15 6.85
##t6[U292] 68.57% 6 3 2.78 6.22
##t6[U293] 71.43% 6 3 2.26 6.74
##t6[U294] 71.43% 6 3 2.68 6.32
##t6[U295] 65.71% 6 3 2.49 6.51

the circuit. Selecting a modification pattern with the smallest
MEV leads to selecting a modification pattern with a small im-
pact on circuit modification.

Table 5 shows the results when we apply the six AE patterns
to RS232-T1300 up to three times. From the viewpoint of MEV,
the most efficient modifications to induce misclassification are
t4[U302], t6[U297] and t1[U296] in Fig. 4. The MEV becomes
6.20. TPR is decreased to 74.29% by 25.71 points. Results in
Table 5 point out that applying modifications many times is not
always effective. The lowest TPR among all the candidates in Ta-
ble 5 is t4[U302], which is obtained when modifying just once,
when we select modification candidates based on MEV.

In this experiment, we set the number of modifications to three,
and we repeat applying modifications. However, there are some
cases where modifying just once or twice is the best. We need
to explore the optimal number of times of modifications for each
circuit in the future. In addition, if we set both λ1 and λ2 in MEV
to 0, where the MEV is equal to the negated TCD, more powerful
AE modification patterns are selected as shown in Table 3, Ta-
ble 4 and Table 5 (underlined parts in the TCD columns). How-
ever, these patterns have more impacts on the circuits from the
viewpoint of the increment of gates and logic levels than patterns
based on MEV (λ = 1). Therefore, setting λ values properly is
also important.

From the discussion above, our proposed method effectively
decreases TPR by repeatedly modifying the hardware Trojan
based on MEV. As an initial trial, we have just randomly picked
up three RS232 benchmarks out of 15 benchmarks. The ex-
perimental results demonstrate that our proposed AE generation
method effectively picks up the effective gates to apply to AE pat-

terns and successfully decreases TPR in all these three cases. The
proposed TCD well indicates the strong gate modification candi-
dates decreasing TPR primarily. The proposed MEV indicates the
ideal gate modification candidates which decrease TPR and also
do not give a large impact on circuit performance as in Table 3,
Table 4 and Table 5.

As the classifier that we use in this paper cannot detect the
inserted hardware Trojans with AE modifications, it clearly re-
veals that existing Trojan detection methods are vulnerable to
AE attacks. For example, by applying our proposed AE pat-
terns, the number of levels from the nets to certain types of gates
has changed. Changing the feature values by perturbation of AE
modification leads Trojan nets to get closer to normal nets and it
is difficult to classify these nets as Trojan nets.

Note that, since AE modifications that we apply introduce ac-
tually redundant gates for circuit design, there is a possibility of
removal of these gates by optimization in logic synthesis. How-
ever, modification is available in any time in design step. For ex-
ample, clock trees are designed after circuit synthesis [42]. Thus,
modifications in this step are not removed by a logic synthesizer.
We have to consider any threats in every step in designing circuits
and try to remove them.

5. Conclusion

In this paper, we have proposed a framework generating ad-
versarial examples for hardware-Trojan detection for gate-level
netlists utilizing neural networks. The experimental results
demonstrate that the proposed AE attack succeeds in inducing the
classifier to misclassify Trojan nets. As a result, TPR decreases
by 30.15 points at most. We can conclude that the proposed
method gives the world-first step to AE generation framework for
hardware Trojans. Our proposed method can be applied to any
hardware-Trojan detection methods utilizing neural networks be-
cause our method just deals with the feature values extracted from
design information at gate-level netlists.

From the viewpoint of IC designers, it is important to analyze
the adversaries’ techniques to enforce the tolerance of the clas-
sifier against AE attacks. We analyze the IC design scenario by
introducing a new attack method which can be realized. We can
utilize the information obtained by analyzing the AE attack for
strengthening the defense techniques against hardware Trojans
and AE attacks. By investigating the AE attacks, IC designers
will be able to take countermeasures against them. In the fu-
ture, in order to defeat our AE attack, we will develop a robust
hardware-Trojan detection method utilizing adversarial training
techniques, for example, retraining the models with circuits con-
taining AEs.

References

[1] Rostami, M., Koushanfar, F., Rajendran, J. and Karri, R.: Hardware
security: threat models and metrics, Proc. International Conference
on Computer-Aided Design (ICCAD), pp.819–823 (2013).

[2] Francq, J. and Frick, F.: Introduction to hardware Trojan detection
methods, Proc. 2015 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), EDAA, pp.770–775 (2015).

[3] Xiao, K., Forte, D., Jin, Y., Karri, R., Bhunia, S. and Tehranipoor, M.:
Hardware trojans: lessons learned after one decade of research, ACM
Trans. Design Automation of Electronic Systems (TODAES), Vol.22,

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

No.1, pp.1–23 (2016).
[4] Liu, B. and Qu, G.: VLSI supply chain security risks and mitigation

techniques: A survey, Integration, VLSI Journal, Vol.55, pp.438–448
(2016).

[5] TrustHub.org: Trust-HUB, available from 〈http://trust-hub.org/
benchmarks/trojan〉.

[6] Oya, M., Shi, Y., Yanagisawa, M. and Togawa, N.: A score-based
classification method for identifying hardware-Trojans at gate-level
netlists, Proc. 2015 Design, Automation & Test in Europe Conference
& Exhibition, pp.465–470 (2015).

[7] Hasegawa, K., Yanagisawa, M. and Togawa, N.: A hardware-Trojan
classification method using machine learning at gate-level netlists
based on Trojan features, IEICE Trans. Fundamentals of Electron-
ics, Communications and Computer Sciences, Vol.E100.A, No.7,
pp.1427–1438 (online), DOI: 10.1587/transfun.E100.A.1427 (2017).

[8] Inoue, T., Hasegawa, K., Yanagisawa, M. and Togawa, N.: Designing
hardware Trojans and their detection based on a SVM-based approach,
Proc. International Conference on ASIC, pp.811–814 (2018).

[9] Dong, C., He, G., Liu, X., Yang, Y. and Guo, W.: A multi-layer hard-
ware trojan protection framework for IoT chips, IEEE Access, Vol.7,
pp.23628–23639 (2019).

[10] Inoue, T., Hasegawa, K., Yanagisawa, M. and Togawa, N.: Design-
ing subspecies of hardware Trojans and their detection using neural
network approach, Proc. 2018 IEEE 8th International Conference on
Consumer Electronics in Berlin (ICCE-Berlin) (2018).

[11] Goodfellow, I.J., Shlens, J. and Szegedy, C.: Explaining and har-
nessing adversarial examples, Proc. 2015 International Conference on
Learning Representations (ICLR) (2015).

[12] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D.,
Goodfellow, I. and Fergus, R.: Intriguing properties of neural
networks, arXiv preprint arXiv:1312.6199, pp.1–10 (online), DOI:
10.1021/ct2009208 (2013).

[13] Akhtar, N. and Mian, A.: Threat of adversarial attacks on deep learn-
ing in computer vision: A survey, IEEE Access, pp.14410–14430
(2018).

[14] Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C.,
Prakash, A., Kohno, T. and Song, D.: Robust Physical-World Attacks
on Deep Learning Models, Computing Research Repository (CoRR),
Vol.abs/1707.0 (online), DOI: 10.1109/CVPR.2018.00175 (2017).

[15] Grosse, K., Papernot, N., Manoharan, P., Backes, M. and McDaniel,
P.: Adversarial Examples for Malware Detection, pp.62–79 (2017).

[16] Hasegawa, K., Yanagisawa, M. and Togawa, N.: Hardware Trojans
Classification for Gate-level Netlists Using Multi-layer Neural Net-
works, Proc. 2017 IEEE 23rd International Symposium on On-Line
Testing and Robust System Design (IOLTS), pp.227–232 (online),
DOI: 10.1109/IOLTS.2017.8046227 (2017).

[17] Xiang, H., Chao, K.-Y.K. and Wong, M.D.F.: An ECO Routing Algo-
rithm for Eliminating Coupling-Capacitance Violations, IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, Vol.25,
No.9, pp.1754–1762 (2006).

[18] Huang, S.-L., Lin, W.-H., Huang, P.-K. and Huang, C.-Y.R.: Match
and Replace: A Functional ECO Engine for Multierror Circuit Rec-
tification, IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, Vol.32, No.3, pp.467–478 (2013).

[19] Nozawa, K., Hasegawa, K., Hidano, S., Kiyomoto, S., Hashimoto, K.
and Togawa, N.: Adversarial Examples for Hardware-Trojan Detec-
tion at Gate-Level Netlists, Computer Security, pp.341–359, Springer
International Publishing (2020).

[20] Chakraborty, R.S., Narasimhan, S. and Bhunia, S.: Hardware Trojan:
Threats and emerging solutions, Proc. International High-Level De-
sign Validation and Test Workshop (HLDVT), pp.166–171 (2009).

[21] Kauffman, S.A.: Metabolic stability and epigenesis in randomly con-
structed genetic nets, Journal of Theoretical Biology, Vol.22, No.3,
pp.437–467 (online), DOI: 10.1016/0022-5193(69)90015-0 (1969).

[22] Hasegawa, K., Yanagisawa, M. and Togawa, N.: Trojan-feature ex-
traction at gate-level netlists and its application to hardware-Trojan de-
tection using random forest classifier, Proc. 2017 IEEE International
Symposium on Circuits and Systems (online), DOI: 10.1109/ISCAS.
2017.8050827 (2017).

[23] Chakraborty, R.S., Wolff, F., Paul, S., Papachristou, C. and Bhunia,
S.: MERO: A Statistical Approach for Hardware Trojan Detection,
Proc. Cryptographic Hardware and Embedded Systems (CHES 2009),
Clavier, C. and Gaj, K. (Eds.), pp.396–410, Springer Berlin Heidel-
berg (2009).

[24] Kurakin, A., Goodfellow, I.J. and Bengio, S.: Adversarial examples in
the physical world, Proc. 2017 International Conference on Learning
Representations (ICLR) (2017).

[25] Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Tram, F.,
Prakash, A., Kohno, T. and Song, D.: Physical Adversarial Examples
for Object Detectors, CoRR (2018).

[26] Carlini, N. and Wagner, D.: Audio adversarial examples: Targeted at-

tacks on speech-to-text, 2018 IEEE Security and Privacy Workshops
(SPW) (2018).

[27] Jia, R. and Liang, P.: Adversarial examples for evaluating reading
comprehension systems, Proc. 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pp.2021–2031, Association for
Computational Linguistics (2017).

[28] Iyyer, M., Wieting, J., Gimpel, K. and Zettlemoyer, L.: Adversarial
example generation with syntactically controlled paraphrase networks,
Proc. 2018 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies,
Vol.1 (Long Papers), pp.1875–1885, Association for Computational
Linguistics (2018).

[29] Zügner, D., Akbarnejad, A. and Günnemann, S.: Adversarial attacks
on neural networks for graph data, Proc. 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining - KDD
’18, pp.2847–2856, ACM Press (2018).

[30] Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J. and Song, L.:
Adversarial attack on graph structured data, Proc. International Con-
ference on Machine Learning (ICML) (2018).

[31] Duch, W. and Diercksen, G.H.: Feature space mapping as a universal
adaptive system, Computer Physics Communications, Vol.87, No.3,
pp.341–371 (online), DOI: 10.1016/0010-4655(95)00023-9 (1995).

[32] Baumgarten, A., Steffen, M., Clausman, M. and Zambreno, J.: A case
study in hardware Trojan design and implementation, International
Journal of Information Security, Vol.10, No.1, pp.1–14 (online), DOI:
10.1007/s10207-010-0115-0 (2011).

[33] Guin, U., Huang, K., Dimase, D., Carulli, J.M., Tehranipoor, M. and
Makris, Y.: Counterfeit Integrated Circuits: A Rising Threat in the
Global Semiconductor Supply Chain, Proc. IEEE, Vol.102, pp.1207–
1228 (online), DOI: 10.1109/JPROC.2014.2332291 (2014).

[34] EDN: Using 3rd party IP in ASIC/SoC design (2013), available from
〈https://www.edn.com/using-3rd-party-ip-in-asic-soc-design/〉.

[35] Toshiba Information Systems Corp.: HTfinder, available from
〈https://www.tjsys.co.jp/lsi/htfinder/index j.htm〉 (in Japanese).

[36] Adadi, A. and Berrada, M.: Peeking Inside the Black-Box: A Sur-
vey on Explainable Artificial Intelligence (XAI), IEEE Access, Vol.6,
pp.52138–52160 (online), DOI: 10.1109/ACCESS.2018.2870052
(2018).

[37] Moosavi-Dezfooli, S.-M., Fawzi, A. and Frossard, P.: DeepFool: A
simple and accurate method to fool deep neural networks, IEEE Con-
ference on Computer Vision and Pattern Recognition, pp.2574–2582
(2016).

[38] Bhunia, S., Hsiao, M.S., Banga, M. and Narasimhan, S.: Hardware
Trojan attacks: Threat analysis and countermeasures, Proc. IEEE,
Vol.102, No.8, pp.1229–1247 (2014).

[39] Hasegawa, K., Yanagisawa, M. and Togawa, N.: Empirical Evaluation
and Optimization of Hardware-Trojan Classification for Gate-Level
Netlists Based on Multi-Layer Neural Networks, IEICE Trans. Fun-
damentals of Electronics, Communications and Computer Sciences,
Vol.E101.A, No.12, pp.2320–2326 (online), DOI: 10.1587/transfun.
E101.A.2320 (2018).

[40] Shakya, B., He, T., Salmani, H., Forte, D., Bhunia, S. and Tehranipoor,
M.: Benchmarking of hardware trojans and maliciously affected cir-
cuits, Journal of Hardware and Systems Security, Vol.1, No.1, pp.85–
102 (2017).

[41] Salmani, H., Tehranipoor, M. and Karri, R.: On design vulnerability
analysis and trust benchmarks development, 2013 IEEE 31st Interna-
tional Conference on Computer Design (ICCD), pp.471–474 (2013).

[42] Tsai, J.-L., Zhang, L. and Chen, C.C.-P.: Statistical Timing Analy-
sis Driven Post-Silicon-Tunable Clock-Tree Synthesis, Proc. ICCAD-
2005, IEEE/ACM International Conference on Computer-Aided
Design, pp.575–581, IEEE (online), DOI: 10.1109/ICCAD.2005.
1560132 (2005).

Kohei Nozawa received his B.Eng. de-
gree from Waseda University in 2019
in computer science and communications
engineering. He is presently working to-
ward his M.Eng. degree there. His re-
search interests are hardware Trojans and
adversarial examples.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Kento Hasegawa received his B.Eng.,
M.Eng., and Dr.Eng. degrees from
Waseda University in 2016, 2017, and
2020, respectively, all in computer sci-
ence and communications engineering. In
2020, he joined KDDI Corp. His research
interests are secure encryption circuit
design and hardware Trojans.

Seira Hidano received his M.E. and
Ph.D. degrees in computer science and
engineering from Waseda University,
Japan, in 2009 and 2012, respectively. In
2010, he was a JSPS research fellow. In
2011 and 2012, he was a research assis-
tant at Waseda University. In 2013, he
joined KDDI. He is currently a research

engineer of the Information Security Lab. in KDDI Research,
Inc. His research interest includes trustworthy AI, information
theoretic security, and privacy preservation.

Shinsaku Kiyomoto received his B.E. in
engineering sciences and his M.E. in Ma-
terial Science from Tsukuba University,
Japan, in 1998 and 2000, respectively. He
joined KDD (now KDDI) and has been
engaged in research on stream ciphers,
cryptographic protocols, and mobile secu-
rity. He is currently a senior researcher

at the Information Security Laboratory of KDDI Research, Inc.
He was a visiting researcher of the Information Security Group,
Royal Holloway University of London from 2008 to 2009. He
received his doctorate in engineering from Kyushu University in
2006. He received the IEICE Young Engineer Award in 2004,
Distinguished Contributions Awards in 2011, and Achievement
Award in 2016. He is a member of IEICE and JPS.

Kazuo Hashimoto received his M.Eng.
in Electronics, Tohoku University in
1979, M.Sci. degree in Computer Science,
Brown University in 1986 and his Ph.D.
degree in Information Science, Tohoku
University in 2001. He is presently a
Professor of Research Innovation Center,
Waseda University. His research interests

include machine learning and information security.

Nozomu Togawa received his B.Eng.,
M.Eng., and Dr.Eng. degrees from
Waseda University in 1992, 1994, and
1997, respectively, all in electrical engi-
neering. He is presently a Professor in
the Department of Computer Science and
Communications Engineering, Waseda
University. His research interests are

VLSI design, graph theory, and computational geometry. He is a
member of IEEE, ACM, and IEICE.

c© 2021 Information Processing Society of Japan

