
Electronic Preprint for Journal of Information Processing Vol.29

Regular Paper

CoSAM: Co-Simulation Framework for ROS-based
Self-driving Systems and MATLAB/Simulink

KeitaMiura1,a) Shota Tokunaga2 Yuki Horita3 Yasuhiro Oda4 Takuya Azumi1

Received: June 30, 2020, Accepted: December 1, 2020

Abstract: In recent year, autonomous vehicles have been developed worldwide. ROS, which is a middleware suitable
for the development of a self-driving system, is rarely used in the automotive industry. MATLAB/Simulink, which
is a development software suitable for Model-based development, is usually utilized. To integrate a program created
with MATLAB/Simulink into a ROS-based self-driving system, it is necessary to convert the program into C++ code
and adapt to the network of the ROS-based self-driving system, which makes development inefficient. We used Auto-
ware as ROS-based self-driving system and provided a framework which realizes co-simulation between Autoware and
MATLAB/Simulink (CoSAM). CoSAM enables developers to integrate the program created with MATLAB/Simulink
into the ROS-based self-driving system without converting into C++ code. Therefore, CoSAM makes the development
of the self-driving system easy and efficient. Furthermore, our evaluations of the proposed framework demonstrated
its practical potential.

Keywords: self-driving system, development framework, MATLAB/Simulink, robot operating system, and autoware

1. Introduction

Recently, autonomous vehicles have been developed
rapidly [1]. The autonomous vehicle is composed of vari-
ous parts such as a camera, LIDAR, GNSS (GPS), millimeter
wave radar, and steering control device. In developing these
various parts, Robot Operating System (ROS) [2] has been used.
ROS is an open-source middleware running on Linux, and it
provides functionalities such as inter-process communication
and package management for robot applications.

One of the autonomous driving systems based on ROS is Au-
toware [3]. Autoware is open-source software for autonomous
driving systems. Autoware has a rich set of modules for the self-
driving systems, such as detection, localization, planning, and ac-
tuation, and cannot only operate the autonomous vehicle but also
simulate with actual data.

However, in the automotive industry, the development
has often used MATLAB R©/Simulink R© [4], because MAT-
LAB/Simulink is suitable for Model-based development
(MBD) [5]. MBD is a development method using Simulink
models and has an advantage that simulation can be per-
formed at the stage of writing the specifications. Therefore,
MATLAB/Simulink is often used in the automotive indus-
try. However, a program (which means MATLAB code or
a Simulink model) created with MATLAB/Simulink cannot
directly communicate to Autoware in the currently adopted
development framework. To incorporate such programs into

1 Saitama University, Saitama 338–8570, Japan
2 Osaka University, Suita, Osaka 565–0871, Japan
3 Hitachi, Ltd., Chiyoda, Tokyo 100–0004, Japan
4 Hitachi Automotive Systems, Ltd., Chiyoda, Tokyo 100–0004, Japan
a) k.miura.017@ms.saitama-u.ac.jp

Autoware, it is necessary to convert the programs to C++ code.
Although MATLAB/Simulink can automatically generate C++
code from MATLAB code and Simulink model, the C++ code
does not correspond to Autoware (i.e., ROS). Moreover, it is
possible that a program ported to Autoware will not perform as
designed because the MATLAB/Simulink environment differs
from that of Autoware. To solve these problems, we proposed
a framework called CoSAM (Co-Simulation between Autoware
and MATLAB/Simulink) that manages the programs created
with MATLAB/Simulink as nodes that represent individual
processes in ROS. This framework enables communication
between MATLAB/Simulink and Autoware without converting
the programs to C++ code.

To the best of our knowledge, this is the first work cover-
ing co-simulation and operation of a real vehicle using MAT-
LAB/Simulink for the self-driving systems. The main contribu-
tions of this study are as follows:
• We provided the framework which enables communication

between MATLAB/Simulink and ROS-based self-driving
system, and confirmed the practicality of the framework by
comparing the data communication time and processing ca-
pacity.

• We improved the development efficiency in MAT-
LAB/Simulink based on CoSAM generating MATLAB
template scripts and Simulink template models (Sec-
tion 4.2), which can help a developer design nodes for
Autoware using MATLAB/Simulink.

• We improved the usability by extending Runtime Manager,
which is a graphical user interface (GUI) tool for Autoware,
to enable operations for MATLAB/Simulink (Section 4.3),
as well as by making available the other functionalities pro-

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 1 System model of CoSAM.

vided by CoSAM (e.g., template generation).

2. System Model

The proposed framework (CoSAM) provides several
functionalities to enable co-simulation Autoware and MAT-
LAB/Simulink, as shown in Fig. 1. Autoware, based on Robot
Operating System (ROS), is a popular open-source software
project developed for the autonomous vehicles. The colored
areas in Fig. 1 are the proposed framework. The solid ar-
rows mean that Runtime Manager launches software, such as
MATLAB/Simulink, MATLAB code, Simulink model, and
visualization tools. The dashed arrow means that Runtime
Manager generates templates with MATLAB/Simulink. The
solid arrows and dashed arrow are running commands. The
dotted two-way arrow means co-simulation between Autoware
and MATLAB/Simulink by using data of the self-driving system,
such as “current pose” including the ego-vehicle’s position. This
section explains the background of the proposed framework,
such as ROS, Autoware, and MATLAB/Simulink.

2.1 Robot Operating System
The Robot Operating System (ROS) [2] is an open-source mid-

dleware suite for robot development. ROS includes many soft-
ware modules with individual capabilities (called packages), and
almost all of them have been disclosed. The visualization tool,
Rviz, is also a package that can display three-dimensional (3D)
models, coordinate systems, and 3D point clouds.
2.1.1 Distributing Computing

In ROS, a large system is separated into small codes called
nodes. By communicating between nodes, the large system is
realized. Therefore, ROS can be the distributed computing and
improve reusability and readability. This communication method
is called publish/subscribe communication, and the data commu-
nicated between nodes is called topics. Here, the terms publish

Fig. 2 Screenshot of co-simulation using CoSAM: (a) RViz displaying Au-
toware status, (b) the rqt graph autoware, and (c) the Runtime Man-
ager for CoSAM.

and subscribe refer to the sending and receiving of a topic, re-
spectively. All nodes are supervised by the ROS master, which
stores the names and types of the topics and the IP addresses of
the nodes.
2.1.2 RViz

Software can be developed efficiently by visualizing the state
of the system. RViz (as shown in Fig. 2 (a)) is a 3D visualization
tool for ROS. RViz can display various robots and sensor infor-
mation, and it also supports the ROS topics such as cameras and
lasers data. When developing control programs, it is possible to
confirm the operation in advance by performing simulation using
RViz, and then improve the development efficiency.
2.1.3 rosbag

Bag is a file format that stores ROS Messages data. ROS has a
console tool called rosbag that has a code API to read and write
a Bag file in C++ or Python. By using rosbag, ROS Messages
data on topics and its transmission time can be stored in a Bag
file. Rosbag can also reproduce ROS Messages data recorded
in the Bag file on topics. Since the ROS Messages contain the
transmission time, it is possible to reproduce the same state as at

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 3 Autoware node graph.

recording in program reproduction. Since the same situation can
be reproduced when problems occur, rosbag is useful for prob-
lem analysis. It can also be used for performance comparison. In
Autoware, simulation using rosbag is performed.

2.2 Autoware
Autoware [3], [6] is an open-source self-driving system and

ROS-based software. Autoware can be used in embedded sys-
tems, such as NVIDIA DRIVE PX2 [6] and Kalray MPPA-
256 [7]. Autoware is composed of a Localization module, Detec-

tion model, Prediction module, Mission module, Motion module,
and Actuation module, and cannot only operate the autonomous
vehicle but also simulate with actual data (which is rosbag data).
Fig. 3 is the node graph of Autoware. The Localization mod-
ule is to estimate position. The Detection module receives sensor
data such as image data and LiDAR scanner data, and detects sur-
rounding objects. The Prediction module predicts the moving of
the detected objects. The Mission module plans a trajectory from
the place of departure to the destination. The Motion module cal-
culates next velocity and angular of the ego-vehicle to move along
the trajectory of the Mission module. The Actuation module op-
erates the ego-vehicle using data from the Motion modules.

2.3 MATLAB/Simulink
MATLAB/Simulink [4] is composed of MATLAB and

Simulink. MATLAB is development software specialized for
matrix calculations and vector operations. MATLAB contains
many libraries and toolboxes, and is widely used in diverse

fields. Simulink is MATLAB-based designing software enabling
graphical visualization. Simulink represents the processing
units as connecting input and output of blocks by lines. Since
Simulink can display programs graphically, it is useful for
co-development and MBD. Simulink programs only the block
placements for different parameters: knowledge of the detailed
block processing is not needed. This programming method is
called Block Diagram and the programs created with this method
are called models. Simulink can change Block Diagram models
into C or C++ code.
2.3.1 Robotics System Toolbox

Robotics System Toolbox [8], [9] is a system toolbox provided
by MathWorks [4]. Robotics System Toolbox provides blocks
which act as interface between ROS and MATLAB/Simulink.
By creating models using these blocks, the model can commu-
nicate to ROS systems as a node. Therefore, the model can be
co-simulation without converting models to C++ code.
2.3.2 Autoware Toolbox

Autoware Toolbox [10], [11] provides a part of the self-
driving systems with MATLAB code and Simulink models us-
ing Robotics System Toolbox. Autoware Toolbox is composed of
11 MATLAB code and 7 Simulink models. Because the models
and code in Autoware Toolbox are developed imitating Autoware
nodes, they are able to communicate with ROS. By referring to
Autoware Toolbox, developers can design the code and models
using Robotics System Toolbox, which is an effective develop-
ment approach. CoSAM which is provided by this paper makes
the approach more efficient.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

3. Design and Implementation

The functionalities provided by CoSAM facilitate the inte-
grated development of Autoware and MATLAB/Simulink. The
key functionalities are as follows (Fig. 1):
• They can generate MATLAB template scripts and Simulink

template models, and provide visualization tools to aid the
template generation (Section 3.1);

• They enable MATLAB/Simulink to operate on Runtime
Manager, to display node information, and to make use of
the other provided functionalities (Section 3.2).

In this section, we describe the design and implementation of
each of these functionalities, and use cases of the proposed frame-
work are shown.

3.1 Template Generation
When designing MATLAB code and Simulink models as a

node co-simulating with Autoware, the code and models must re-
quire essential information, such as a node name, the topics to
publish/subscribe, and the message type of each topic. These
information can be obtained by surveying the source code of
Autoware and executing ROS commands. However, the need
for such analyses places a burden on developers, especially for
those who are unfamiliar with ROS. Therefore, we provided the
functionalities that enable to generate MATLAB template scripts
and Simulink template models that include these necessary infor-
mation, as the templates help developers design nodes in MAT-
LAB/Simulink. Moreover, we provided two visualization tools to
help the template generation. One is the rqt graph autoware plu-
gin (Fig. 2 (b)). In addition to the functionalities of rqt graph [2],
rqt graph autoware can render node dependency for the Auto-
ware applications. The other tool displays a list of the running
nodes and provides information on any node selected from the
list.

As noted, before the template of the desired node is gen-
erated, it is necessary to obtain the node information; there-
fore, we created a .yaml file containing information pertaining
to all Autoware nodes. The .yaml file also includes the topic

information (e.g., topic name, message structure) of each node.
The topic information is required to configure Robotics Sys-
tem ToolboxTM [8]. Because automatically configuring the in-
formation to Robotics System Toolbox, the proposed framework
can generate templates without any configuration by developers.
Therefore developers can create nodes for Autoware in MAT-
LAB/Simulink using the generated template.

The original rqt graph can only display the node graph of run-
ning nodes. The rqt graph autoware, an extended version of
original rqt graph provided by the proposed framework, can dis-
play the node list in each module. The rqt graph autoware can
help developers to look for appropriate nodes. To implement the
rqt graph autoware plugin, we created .dot files that render node

dependency graphs for each Autoware’s application. Moreover,
to create the GUI for rqt graph autoware, we added buttons to
rqt graph using Qt designer, which is a Qt tool for designing a
GUI. The buttons were configured to open each .dot file, and
rqt graph autoware is drawn by clicking on these buttons. There-

Fig. 4 Runtime Manager of the proposed framework.

fore, this enables developers to display the relation of the nodes

included in each Autoware’s application as shown in Fig. 3.
To display node information, we used the rosnode command-

line tool [2]. This tool includes commands that fetch the node

information, including rosnode list and rosnode info node name.
The rosnode list command displays a list of running nodes,
whereas rosnode info node name displays information about the
topics to be published/subscribed by the node. Displaying the re-
sults of these commands in Runtime Manager renders the node

information easily comprehensible. Section 3.2 describes the
method for displaying these results in Runtime Manager.

This functionality aims to developers of the self-driving sys-
tems as the Autoware nodes in Fig. 3. By using this functionality,
the code and blocks provided by Robotics System Toolbox are set
in MATLAB and Simulink, respectively. Therefore, the devel-
opers can use the functionality without looking for the essential
information, such as the topic name and type in the node.

Autoware has many nodes as shown in Fig. 3. The tem-
plate generation and rqt graph autoware have corresponded to all
nodes in Autoware.

3.2 Runtime Manager for CoSAM
Since Autoware and MATLAB/Simulink are operated with dif-

ferent GUI tools, this is troublesome for developers who want
to use the two pieces of software simultaneously. Therefore,
we extended the Autoware’s GUI tool (i.e., Runtime Manager
Fig. 2 (c)) to allow use of MATLAB/Simulink and the func-
tionalities provided in CoSAM (Fig. 4). Because the original
Runtime Manager can not directly operate MATLAB/Simulink,
the difference of GUI tools between Autoware and MAT-
LAB/Simulink was a cause of trouble. By adding the GUI for
MATLAB/Simulink to Autoware’s GUI tool, developers can op-
erate both software on the same GUI tool. These GUIs enabled
the following functionalities:
• Starting MATLAB, Simulink, and rqt graph autoware;
• Executing MATLAB scripts and Simulink models;
• Generating MATLAB template scripts and Simulink tem-

plate models;
• Displaying node information.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

This unification of operation method simplifies the MAT-
LAB/Simulink operation and utilization of the provided function-
alities.

Runtime Manager was designed using the wxPython
toolkit [12]. Therefore, we designed the GUIs for the added
functionalities using wxGlade, and outputted its designs as
wxPython. The GUIs involve buttons and panels that execute
each functionality.

We next changed the execution code of the Runtime Man-
ager to configure them for GUI functionalities. The execu-
tion code imports modules, includes the code generated by
wxGlade, and loads the .yaml files. In the execution code,
loading .yaml files initiates functions that align simple opera-
tions to specify buttons. Therefore, by creating a .yaml file for
MATLAB/Simulink, we configured the initiation of MATLAB,
Simulink, and rqt graph autoware to each button.

To enable to execute MATLAB scripts and Simulink models on
Runtime Manager, we provided multiple GUIs with the following
configurations:
• A button to open a dialog for file selection;
• A panel to display the absolute path of the selected file; and
• A button to execute the file displayed on the panel.

This execution button was configured to run if the selected file
was a MATLAB/Simulink file (i.e., a .m or .slx file).

To generate MATLAB template scripts and Simulink template
models, we designed the GUIs (like Fig. 2 (c)), such as a panel to
input the node name and buttons to run the execution code that
generates the template of the input node.

For the node information display, we designed two panels, with
the first panel displaying the output of the executing a rosnode list

command. When a node is selected from the list, the second panel
displays the output of rosnode info the selected node name com-
mand, which eliminates the need to enter the rosnode command.

3.3 Use Case
The flow of CoSAM is three steps as shown in Fig. 5. At

first, “pure pursuit sl.slx” file which is referred in Fig. 5 (a) is a
Simulink model provided by Autoware Toolbox. The Simulink
model is launched by pushing the “simulink code” in Runtime
Manager (Fig. 5 (a)). Next, Autoware nodes are launched by Run-
time Manager. Finally, running the Simulink model can perform
co-simulation between Autoware and MATLAB/Simulink. Thus,
CoSAM enables developers to operate MATLAB/Simulink and

Fig. 5 Use case of Runtime Manager for CoSAM.

Autoware with the same GUI tool. CoSAM can reduce the trou-
ble caused by them and improve the usability.

The demonstration video as shown in Fig. 5 can be viewed at
the following hyperlink: https://youtu.be/NU3ujOiBrqI. In this
video, one of the nodes in the planning module is executed by
MATLAB/Simulink. This simulation facilitates an operational
check of MATLAB/Simulink nodes.

4. Evaluations

This study aims to improve the development efficiency. We
demonstrated this improvement and evaluated the practicality, ef-
ficiency, and usability of CoSAM. To evaluate the practicality, we
compared the communication time between ROS nodes and be-
tween a MATLAB/Simulink node and ROS nodes. Additionally,
we performed co-simulation and operation of an autonomous ve-
hicle to show the practicality of the proposed framework. We
investigated the design efficiency by measuring the generated
MATLAB/Simulink template. To evaluate the usability, we com-
pared the development environments with Autoware, Robotics
System Toolbox, and CoSAM. These evaluations demonstrated
that CoSAM improved the development efficiency. Table 1 sum-
marizes the software and hardware environments used in the ex-
periments. We updated the version of ROS, MATLAB/Simulink
and OS. These are the latest version in 2019.

4.1 Practicality
CoSAM realized the communication between nodes designed

using MATLAB/Simulink and Autoware nodes to improve the
development efficiency. However, it is necessary to consider the
practicality of the nodes created with MATLAB/Simulink com-
paring to ROS nodes. Therefore, to evaluate the practicality, ROS
and MATLAB/Simulink were compared as follows:
(1) according to the relationship between the communication

time and the data size when a message is sent via ROS and
via MATLAB/Simulink, respectively; and

(2) according to the processing capacity when the same type of
method was used.

As shown in Fig. 6, the communication time was defined as the
elapsed time from Node 1 published the message to Node 3 which
subscribed the message via Node 2. We compared the processing

Table 1 Evaluation environment.

CPU

Model number Intel Core i7-6700K
Cores 12

Threads 8
Frequency 4.00 GHz

Memory 32 GB
ROS kinetic

MATLAB/Simulink R2019a
OS Ubuntu 16.04 LIT

Fig. 6 Measurement of the communication time.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 7 The communication time according to the size of the message data.

Fig. 8 The average processing time according to each matrix size.

performance by the result using the same machine and running
1,000 iterations (Node 1 published the message at 10 Hz).

We measured the communication time between ROS and MAT-
LAB/Simulink when the message data size on each topic was
configured to 100, 1 K, 10 K, 100 K, and 1 M bytes. Fig. 7
shows the communication time via ROS and MATLAB/Simulink
summarized against each data size. Both the ROS and MAT-
LAB/Simulink communication time increased along with data
size, although the data transfer by MATLAB/Simulink had
an overhead exceeding that of ROS. However, the MAT-
LAB/Simulink communication time did not exceed the Autoware
maximum of 32 Hz. Human drivers generally take more than
100 ms to understand traffic conditions and make motion deci-
sions [13]. The communication time is significantly lower than
100 ms, therefore the development of the self-driving system will
not be affected.

To evaluate the processing capacity, we calculated square ma-
trices in the order of 50, 100, 150, and 200 with ROS and
MATLAB/Simulink, and measured the execution time. The
time required to process each matrix size was measured and we
evaluated the performance of the functions provided by MAT-
LAB/Simulink. Therefore, we measured the MATLAB/Simulink
processing by using two MATLAB scripts: one written in the
same way as the ROS code, and the other using MATLAB ma-
trix functions. Fig. 8 shows the processing time at each matrix
size. When running for the MATLAB script written in the same
way as the ROS code, the processing time of ROS and MAT-
LAB/Simulink was approximately the same. However, when the
MATLAB script used the matrix functions, its processing time
was significantly shorter than that of the other two methods, be-
cause the processing was executed on multiple cores with multi-

Fig. 9 The communication time according to the size of the message data.

ple threads, even when this was unspecified. Comparison of the
processing time with the communication time revealed that the
script using the matrix functions was again significantly faster,
thereby confirming that applications of the functions provided by
MATLAB/Simulink code enabled the handling of processes with
more complexity (e.g., image processing), even when accounting
for the communication time. Therefore, as shown in the videos in
Section 3.3, the practicality of CoSAM is demonstrated.

Moreover, we measured the execution time when communicat-
ing multiple topics for the evaluation of the practicality. The topic
type is “geometry msgs/TwistStamped” which is actually used
in Autoware. This experiment gradually increased the number
of topics and checked whether the difference in performance be-
tween ROS and MATLAB/Simulink appears. As shown in Fig. 9,
MATLAB/Simulink was found to be stable while ROS had vari-
ability. The number of topics published and subscribed in Au-
toware is no more than 1,000. Therefore, the result shows the
proposed framework can be used for the development of the self-
driving systems.

4.2 Efficiency
To improve the design efficiency, we provided functionality

to generate both the MATLAB template scripts and Simulink
template models. These templates assist developers to design
nodes for Autoware in MATLAB/Simulink. In order to quanti-
tatively evaluate the efficiency, not the communication time, we
counted the number of lines and blocks of the automatically gen-
erated template code and models. Because the generated code
and blocks do not need to be written by the developers, a large
amount of the code and blocks will be more efficient.

Table 2 shows the amount of the template generated by a MAT-
LAB template script. The MATLAB template script defines the
essential information, as mentioned in Section 3.1, and creates
callback functions used when a topic is subscribed. For example,
the lane stop node required for planning has one publisher and
five subscribers. One line is generated to define a node, a sub-

scriber, and a publisher, and two lines are generated to define the
callback function. Therefore, in total, 17 lines are generated for
the MATLAB template script for the lane stop node.

When creating a Simulink model, it is necessary to place and
configure the Simulink blocks, to define the model name, and
to connect the blocks. Table 3 shows the number of Simulink
blocks placed and the settings created by a Simulink template

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Table 2 Task reduction using MATLAB template scripts.

MATLAB template scripts
Generated lines (1) + α(2) + β((3) + 2(4))
(1): Defining node
(2): Defining publisher
(3): Defining subscriber
(4): Defining callback function
α: The number of publishers
β: The number of subscribers

Table 3 Task reduction using Simulink template models.

Simulink template models
Simulink blocks α((1) + (2) + (3)) + β((4) + (5) + (6))

Settings (i) + (α + β)((ii) + (iii) + (iv) + 2(v))
(1): Placing Publisher (i): Defining model name
(2): Placing Message (ii): Setting message name
(3): Placing Bus Assignment (iii): Setting topic name
(4): Placing Subscriber (iv): Configuring topic source
(5): Placing Bus Selector (v): Connecting blocks
(6): Placing Terminal α: The number of publishers

β: The number of subscribers

Table 4 Functionalities available with Autoware, Robotics System Tool-
box, and CoSAM.

Robotics [8]
Autoware [3] System CoSAM

Toolbox

Operating Autoware � �
Operating MATLAB/Simulink � �

Communicating between � �
Autoware and MATLAB/Simulink

Drawing node dependency � �
Generating MATLAB/Simulink �

Displaying node information �

model. CoSAM defines the model name and places the essen-
tial Simulink blocks, thereby creating a model for Autoware.
Additionally, the Simulink blocks are configured and connected
together. For example, when the Simulink template model of
lane stop node is generated, 18 Simulink blocks are placed and
31 settings are configured in total.

If the functionality allowing the MATLAB/Simulink templates
to be generated is not provided, the developer must examine the
node information and define it in a MATLAB script or a Simulink
model. By contrast, when the templates are used, this becomes
unnecessary; therefore, this improves design efficiency.

The template created with CoSAM is used by Autoware Tool-
box [10], [11]. Autoware Toolbox is an open-source self-driving
system using the template. The developer who does not know
how to use the template can refer to Autoware Toolbox.

4.3 Usability
CoSAM realized the operation of MATLAB/Simulink in Au-

toware and provided functionalities to improve the usability. We
compared with each functionality of Autoware, Robotics System
Toolbox, and CoSAM, as summarized in Table 4.

Autoware cannot operate MATLAB/Simulink, and Robotics
System Toolbox cannot operate Autoware. CoSAM can oper-
ate the functionalities required to operate MATLAB/Simulink
in Runtime Manager for CoSAM, such as starting MAT-
LAB/Simulink or executing MATLAB scripts and Simulink

Fig. 10 The correct answer rate.

Fig. 11 The time taken for the experiment.

models. Therefore, CoSAM can operate both of the systems.
Communication between Autoware and MATLAB/Simulink is
possible in Robotics System Toolbox and CoSAM. More-
over, CoSAM enables to visualize node dependency using the
rqt graph autoware plugin created by extending the rqt graph
available in Autoware. In addition to these features, CoSAM
can generate the MATLAB/Simulink templates and display the
node information. Because increasing the number of the avail-
able functionalities, the usability is also enhanced, which in turn
improves the development efficiency.

Moreover, we evaluated the usability of the proposed frame-
work by having eight people use the rqt graph autoware. The
usability test let the users enumerate the publish and subscribe
topics of a particular node within five minutes which is the time
limit and measured the time and correct answer rate. The time
and correct answer rate represent the usability quantitatively be-
cause reducing the time means that working processes are de-
creased and increasing the correct answer rate means the high
coverage. Eight people who normally use ROS tried the usability
test. The usability test was conducted two times because of com-
paring the time and coverage between using the proposed frame-
work and not using it. As the result in Fig. 10 shows, if not us-
ing the rqt graph autoware, the users could not find the node and
topics, because they have no knowledge of the structure of Auto-
ware. By using the rqt graph autoware, all users could find more
topics than when not using it. As the result in Fig. 11 shows,
if not using the rqt graph autoware, all users took five minutes.
Because the users needed to use commands to find the node and
topics if not using the rqt graph autoware, the result of the ex-
periment was five minutes for all users. However, by using the
rqt graph autoware, the time taken for the experiment decreased
for all users because the tool leads to a quick understanding of
the node relation graph. Therefore, the proposed framework can
enhance the usability.

5. Related Work

To the best of our knowledge, this is the first work cover-
ing co-simulation and operation of a real vehicle using MAT-
LAB/Simulink for the self-driving systems. This section intro-
duces similar frameworks and compares our work and them.

MontiSim [14]: This framework tests the behavior of self-
driving systems using a model environment that simplifies the

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

real-world environment. The simulator supports both high-level
simulations (performed in large environments, such as urban
areas) and low-level simulations (detailed testing of individual
components). Furthermore, map data are generated from Open-
StreetMap, with road signs and traffic lights generated for each
intersection on the map. Unlike this framework, our framework
has a framework that promotes the development of autonomous
driving systems.

AsFault [15]: This is a tool that automatically creates vir-
tual test environments for lane-keeping systems. Compared with
randomly created road networks, AsFault creates road networks
occurring lane departures twice as many as random networks,
thereby creating difficult networks. Unlike this framework, our
framework is used for not only lane-keeping systems but all self-
driving systems.

AutonoVi-Sim [16]: AutonoVi-Sim improves learning by au-
tonomous driving algorithms and creates autonomous driving
tests and environmental elements, including changes according
to time and weather. This simulator allows the study of machine
learning. Our framework is not aimed at the machine learning.
Our framework focuses at a development approach that combines
MATLAB/Simulink and ROS.

CARLA [17]: CARLA is an open-source simulator focused
on city driving by allowing establishment of sensor parameters
and test environments, such as weather and time. Additionally,
CARLA can create datasets for machine learning and imitation
learning. Our framework is different from this research because
our work is not to create a simulator.

6. Conclusion

In this paper, we described the development of an integrated
development framework for Autoware with MATLAB/Simulink
(CoSAM) that facilitated communication between Autoware and
MATLAB/Simulink. We evaluated the data communication time
and processing capacity of MATLAB/Simulink, and confirmed
the practicality of the method by using both co-simulations and
experiments using an autonomous vehicle. CoSAM facilitated
the generation of MATLAB/Simulink templates that can help
developers create models using MATLAB/Simulink for Auto-
ware, thereby improving the design efficiency. The function-
alities added to CoSAM allow Runtime Manager to operate
MATLAB/Simulink and various functionalities, further improv-
ing the usability. Furthermore, we make this framework corre-
spond to Autoware Toolbox, which improves the efficiently and
usability. For future work, the proposed framework has cur-
rently only corresponded to Autoware, because we extended Run-
time Manager of Autoware GUI. The template generation and
rqt graph autoware can be improved to correspond to other self-
driving systems. It would be better to change to a framework that
can be adapted to other self-driving systems.

Acknowledgments This work was partially supported by
Mr. Tohru Kikawada and JST PRESTO, Japan (grant No.
JPMJPR1751).

References

[1] Berger, C. and Rumpe, B.: Autonomous driving – 5 years after the
urban challenge: The anticipatory vehicle as a cyber-physical system,
Computing Research Repository (2014).

[2] ROS.org, available from 〈http://www.ros.org〉.
[3] Autoware/github.com, available from 〈http://github.com/CPFL/

Autoware〉.
[4] MATLAB/Simulink, available from 〈http:///www.mathworks.com〉.
[5] Honda, K., Kojima, S., Fujimoto, H., Edahiro, M. and Azumi, T.:

Mapping method of matlab/simulink model for embedded many-core
platform, Proc. PDP (2020).

[6] Kato, S., Tokunaga, S., Maruyama, Y., Maeda, S., Hirabayashi, M.,
Kitsukawa, Y., Monrroy, A., Ando, T., Fujii, Y. and Azumi, T.: Au-
toware on board: Enabling autonomous vehicles with embedded sys-
tems, Proc. ICCPS (2018).

[7] Maruyama, Y., Kato, S. and Azumi, T.: Exploring scalable data allo-
cation and parallel computing on NoC-based embedded many cores,
Proc. ICCD (2017).

[8] Robotics System Toolbox, available from 〈https://mathworks.com/
products/robotics.html〉.

[9] Saito, Y., Azumi, T., Kato, S. and Nishio, N.: Priority and synchro-
nization support for ROS, Proc. ICCPS, Networks, and Applications
(2016).

[10] Tokunaga, S., Ota, N., Tange, Y., Miura, K. and Azumi, T.: MATLAB/
Simulink Benchmark Suite for ROS-based Self-driving System: demo
abstract, Proc. ICCPS (2019).

[11] Miura, K., Tokunaga, S., Ota, N., Tange, Y. and Azumi, T.: Auto-
ware Toolbox: MATLAB/Simulink Benchmark Suite for ROS-based
Self-driving Software Platform, Proc. RSP (2019).

[12] wxpython.org, available from 〈http://wxpython.org〉.
[13] Lin, S.-C., Zhang, Y., Hsu, C.-H., Skach, M., Haque, M.E., Tang, L.

and Mars, J.: The architectural implications of autonomous driving:
Constraints and acceleration, Proc. ASPLOS (2018).

[14] Filippo, G., Evgeny, K., Roth, A., Bernhard, R. and von Wenckstern,
M.: Simulation framework for executing component and connector
models of self-driving vehicles, Proc. International Conference on
MODELS (2017).

[15] Gambi, A., Mueller, M. and Fraser, G.: Automatically testing self-
driving cars with search-based procedural content generation, Proc.
ISSTA (2019).

[16] Andrew, B., Sahil, N., Lucas, P., Barber, D. and Dinesh, M.: Autonovi-
sim: Autonomous vehicle simulation platform with weather, sensing,
and traffic control, Proc. IEEE/CVF Conference on CVPRW (2017).

[17] Dosovitskiy, A., Ros, G., Codevilla, F., López, A. and Koltun1, V.:
Carla: An open urban driving simulator, Proc. CoRL (2017).

Keita Miura is a master student of Grad-
uate School of Science and Engineering,
Saitama University. He received his B.E.
degree from Saitama University in 2019.
His research interests in self-driving sys-
tems.

Shota Tokunaga received his M.E. de-
gree from Osaka University in 2019. His
research interests in self-driving systems.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Yuki Horita received his M.S. degree
from the University of Tokyo in 2006.
He then joined the Research and Develop-
ment Group of Hitachi Ltd. His research
interests include automated vehicles, co-
operative ITS, embedded systems and par-
allel processing.

Yasuhiro Oda received his B.E. degree
from Yokohama National University in
2002. Currently he is in the Embedded
Systems Engineering Group of Hitachi In-
dustry & Control Solutions, Ltd. His re-
search interests include automated vehi-
cles, embedded systems.

Takuya Azumi is an Associate Professor
at the Graduate School of Science and
Engineering, Saitama University. He re-
ceived his Ph.D. degree from the Graduate
School of Information Science, Nagoya
University. From 2008 to 2010, he was
under the research fellowship for young
scientists for Japan Society for the Pro-

motion of Science. From 2010 to 2014, he was an Assistant
Professor at the College of Information Science and Engineer-
ing, Ritsumeikan University. From 2014 to 2018, he was an As-
sistant Professor at the Graduate School of Engineering Science,
Osaka University. His research interests include real-time operat-
ing systems and component-based development. He is a member
of IEEE, ACM, IEICE, and JSSST.

c© 2021 Information Processing Society of Japan

