
IPSJ SIG Technical Report

Energy Aware Scheduler of Single/Multi-node Jobs
Exploiting Node Heterogeneity

Jiacheng Zhou1 Fukazawa Keiichiro2 Hiroshi Nakashima2

Abstract: Modern CPUs suffer from power efficiency heterogeneity, which can result in additional energy cost or
performance loss. On the other hand, future supercomputers are expected to be power constraint. This report focuses
on energy aware scheduling algorithms target on two situations. In single-node situation, workload consists of various
single-node jobs, Combinatorial Optimization Algorithm saves energy by calculating a local optimal allocation plan
with KM algorithm. In multi-node situation, power cap causes load unbalancing in multi-node jobs. Sliding Window
Algorithm targets on reducing such unbalancing by sliding window. Proposed algorithms are evaluated in the simula-
tion and real supercomputer environment. In single-node situation, Combinatorial Optimization Algorithm achieved
up to 2.92% saving. For the multi-node situation, workload is designed based on real historic workload, and up to
5.36% saving was achieved by Sliding Window Algorithm.

1. Introduction
After a long period of exponential improvement in transistors

density, Dennard scaling appeared to break down. According to
Dennard scaling, with the density of transistor doubles, CPU fre-
quency increases by 40% and the power reduces by 50%, which
means the total power of a chip stays in a level the same and
performance per watt grows in the same rate as Moore’s Law
[1]. However, in recent years, such performance improvement
without increasing power consumption becomes harder due to the
current leakage and high temperature of transistors at extremely
small size. For example, in 2001, NERSC’s 3 Tflops HPC system
uses less than 400 KW of electrical power[2] while the top petas-
cale system*1 in 2008 consumes only 2 MW of power, which
means 5 times higher power gives us a huge performance im-
provement of hundreds time. However, in November 2016, Sun-
way TaihuLight with 93 Pflops reaches 15 MW[3] to exemplify
that the growth rate of performance per watt has been going down
significantly. Since Dennard scaling is over, the performance
improvement means power consumption increasing commensu-
rately. Thus, the power consumption of future supercomputers
may be restricted due to the facility capacity[4]. The US Depart-
ment of Energy has identified the power management as a pri-
mary challenge for exascale systems, and set a goal that exascale
systems operate under 20 MW[4].

On the other hand, as the size of transistors becomes smaller,
processors with the same architecture show randomness in power
efficiency between each other[5]. This kind of manufactur-
ing variation causes the different power efficiency of computing
nodes in HPC systems, and has been observed in supercomputer

1 Graduate School of Informatics, Kyoto University
2 Academic Center of Computing and Media Studies, Kyoto University
*1 Systems capable for 1 Pflops.

Fig. 1 Distribution of static power consumption in Laurel 2.

systems. Figure 1 shows the distribution of static power*2 in Ky-
oto University’s supercomputer system B, which is also known
as Laurel 2 (Intel Xeon Broadwell, 18 cores, 2.1 GHz). X-axis is
the static power of nodes normalized by its average, and y-axis is
the number of nodes. From this figure, the static power of more
than 800 computing nodes in Laurel 2 shows a large variation of
31% (87%–118%).

There are supercomputers consuming tens of WM at the max-
imum power in the operation. These systems are used to be de-
signed to endure the maximum power consumption by prepar-
ing high power supply and expensive cooling system. However,
such a maximum case rarely happens and this designing is con-
tinuously wasting energy. In order to reduce the cost, the power
cap is another method to prevent the peak power from exceed-

*2 Power consumed when nodes were idle.

1ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-178 No.13
2021/3/15

IPSJ SIG Technical Report

ing the predetermined threshold. One problem of the power cap
is that nodes can show significant performance variation under a
cap[6] even with the same architecture. This variation is referred
to as a node-level power/performance heterogeneity. Most par-
allel applications are designed to be load-balanced to maximum
the performance of all computing nodes. Thus, the node-level
performance heterogeneity may cause serious imbalance in par-
allel applications depending on nodes they are assigned to.

There is also another problem that will cause load imbalance,
most applications in supercomputers mainly use part of compo-
nents, such as CPU, memory and internal network[7]. For exam-
ple, some computation-intensive applications consume only very
little memory and internal network power. With such an intensive
use of a particular component, the power/energy consumption of
an application is determined by not only the node-level power ef-
ficiency but also component-wise efficiency. Thus, applications
should be assigned to nodes which can perform better. In super-
computer systems, the node allocation plan is determined by the
job scheduler. Thus, to achieve efficient power management, it
is necessary to study energy aware scheduling considering node-
level heterogeneity and property of jobs.

This report proposes two kinds of energy-aware scheduling al-
gorithms for supercomputer systems. Combinatorial Optimiza-
tion algorithm (COA) targets on the situation of scheduling dif-
ferent kinds of jobs, such as computation-intensive and memory-
intensive jobs, using one node for each (single-node situation).
Sliding Window algorithm (SWA) targets on reducing load im-
balance caused by the performance heterogeneity among nodes
executing the same type jobs under a tight power cap possibly
using multiple nodes (multi-node situation). The common basic
idea behinds two algorithms is using Power/performance Vari-
ation Table (PVT). PVT is a profile characterizing power effi-
ciency of all nodes and can be built by test runs[6], [8] or historic
data[9]. With information of power efficiency of each node, al-
gorithms output the energy-efficient allocation plan depending on
property of jobs.

This report are organized as follows. Section 2 first introduces
several tools used in experiments, then explains the design of the
scheduling simulator and two scheduling algorithms. Section 3
shows observed behaviors of ITO-A under different power cap
and evaluates energy saving capability of scheduling algorithms.
Related work are presented in Section 4 and Section 5 concludes
this report.

2. Methodology
2.1 Power Measuring

The composition of power consumption in supercomputer sys-
tem is very complex. However, the main power consumption still
comes from CPUs and memories. Current technology can mea-
sure the power consumption of two generic components, identi-
fied as PKG for CPUs and DRAM for memories, with high ac-
curacy[10]. Thus, energy saving capability of scheduling algo-
rithms is evaluated by energy consumption of PKG and DRAM
during the workload in this report. Power/performance hetero-
geneity occurs at transistor level. However, this report mainly
focuses on job scheduling by which a set of nodes is allocated

to a job. Hence, this report chooses node as the smallest unit of
heterogeneity.

In order to simulate the power behavior of systems having
node-level heterogeneity, the simulator needs to be able to char-
acterise the power consumption of different jobs running on dif-
ferent nodes. One technique to achieve this is PVT. In this re-
port, PVT is built by test runs of applications. PKG energy and
DRAM energy data of test runs and evaluation runs is recorded
by a power management tool named RAPL*3. For benchmark ap-
plications, STREAM and HPCG*4 are used in single-node situ-
ation and HPCG is also used in multi-node situation. Test runs
and evaluation are launched on Kyushu University’s ITO-A su-
percomputer system.
2.1.1 RAPL

RAPL is a tool introduced in Intel Sandy Bridge processor fam-
ily at first to provide energy model interfaces in its first genera-
tion. Then, it has been constantly enhanced in its successive gen-
erations and now provides more valuable interfaces. Ilsche et al.
[11], Desrochers et al.[12] and Hackenberg et al.[13] verified the
power information and showed that its accuracy has been much
improved from Sandy Bridge to the modern state-of-the-art archi-
tecture.

In this report, RAPL is used for setting power cap and col-
lecting power data of PKG and DRAM. The specification of
RAPL covers DRAM power cap, but supercomputers supporting
this functionality rarely exist. Thus, this report mainly studies the
behavior of systems under CPU power cap in multi-node situa-
tion.
2.1.2 Benchmarks

The STREAM benchmark is used to measure a sustain-
able memory bandwidth and executes simple vector operations.
In single-node situation, STREAM is chosen as the memory-
intensive benchmark application. HPCG aims to create a new
metric for the ranking of HPC systems and was exploited by Top
500 Supercomputer Site from November 2017[3]. Since HPCG
mainly carries out sparse matrix-vector multiplications and vec-
tor updates, the evaluation in single-node situation picks it as the
computation-intensive benchmark application. One execution of
HPCG contains several iterations, and during each iteration of
multi-process HPCG, several MPI communications and synchro-
nizations are required between processes. Thus, it is also used for
evaluating load imbalance caused by performance heterogeneity
in multi-node situation.
2.1.3 ITO-A Supercomputer System

The specification of ITO-A is in Table 1. It is a subsystem of
Kyushu University’s supercomputer system and started its oper-
ation from January 2018. Its specification satisfies the demand
of this report with its sufficiently large system scale, and accord-
ing to experimental results node-level power/performance hetero-
geneity has been observed in it. For each benchmark used in the
simulation and evaluation, power and execution time in the PVT
are collected from the average value of more than 10 times test
runs on all 2,000 nodes in ITO-A. The evaluation of real power
consumption of each scheduling algorithms is also carried out on

*3 Running Average Power Limit.
*4 High Performance Conjugate Gradients.

2ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-178 No.13
2021/3/15

IPSJ SIG Technical Report

Table 1 Specification of ITO-A

Machine Fujitsu PRIMERGY CX2550/CX2560 M4
System

Number of Nodes 2,000
Total Cores 72,000

Memory 384 TB
Peak Performance 6.91 Pflops (Double Precision)

Interconnect InfiniBand EDR 4x (100 Gbps)
Node

CPU Intel Xeon Gold 6154 (Skylake-SP)
3.0 GHz (Turbo 3.7 GHz) 18 core x 2 / node

Peak Performance 3,456 Gflops / node (Double Precision)
Memory DDR4 192 GB / node

Memory Bandwidth 255.9 GB/sec / node
Measurement Tool Intel RAPL

Fig. 2 Simulator architecture

ITO-A.

2.2 Multi-node Scheduling Simulation
In supercomputer systems, execution time of jobs varies from

few seconds to hours, and computing nodes provided to each job
are also limited. As a result, evaluating scheduling algorithms in
real computing environments is inappropriate, even if such a chal-
lenge is allowed. Thus, a reliable and customizable simulation
environment is necessary for studying the behavior of large-scale
systems and evaluating scheduling algorithms. Scheduling simu-
lation introduced in this report supports scheduling of multi-node
jobs and is able to characterise power efficiency of each nodes by
PVT.

Fig. 2 shows the architecture of the simulation configuration.
In Simulation Module, Workload Generator creates a workload,
which determines the timing to submit various kind of jobs to
the Scheduler, depending on the workload configuration. Simu-
lator submits jobs to Resource Management Module. Submitted
jobs are added to the job queue in Resource Management Mod-
ule, then Scheduler will calculate the allocation plan depending
on the scheduling algorithm, jobs in the queue, available nodes in
the node pool and PVT in the Power Database. Power Monitor
simulates the job execution after scheduling, and records energy
consumption.
2.2.1 Workload Generation

There are two states of computing nodes, one is executing a
job and another is waiting for scheduler to assign a job. In this

Fig. 3 Supercomputer utilization rate tracing of generated workload

report, these two states are called busy and available. Depending
on whether the system is busy or not, the energy saving capabil-
ity of scheduling algorithms can be different. System utilization
rate describes how busy the system is, and it is defined by the
following:

U =
Nbusy

Navailable + Nbusy
(1)

where U means utilization rate, Nbusy and Navailable present the
number of busy and available nodes respectively. In the real su-
percomputer system, the utilization rate is not constant in time.
Previous research[14] reported the utilization rate of ITO-A sys-
tem has been traced for two weeks (from Jul 08 2018 15:10:37 to
July 21 2018 03:30:40) and ranged from 40% to 90%. Thus, the
generated workload is designed to keep the utilization rate fluctu-
ating around a certain value according to the workload configura-
tion, so that the behavior of the supercomputer can be simulated
under different utilization rate. Figure 3 shows system utiliza-
tion rate of generated workload in three configurations, in which
system utilization rate is fluctuating around 40%, 60% and 80%,
respectively.
2.2.2 Power Monitor

After the allocation plan is made during each step, the power
monitor updates the power, elapsed time and total energy con-
sumption. Since several researches have been carried out about
how to predict the power and the influence of heterogeneity by
power logs[6], [9], [15], simulation in this report is based on the
assumption that the power consumption, execution time and influ-
ence of heterogeneity can be accurately predicted. Thus, the final
power and execution time have the same value as in PVT. For
multi-node jobs, the simulation assumes that the computational
load amount of each node is perfectly balanced.

For a multi-node job j assigned to nodes N0, N1, . . . , Nq−1, the
total power P, execution time t and total energy E are calculated
as follow:

P =
q−1∑
k=0

P j,k (2)

P j,k = PPKG
j,k + PDRAM

j,k (3)

t = max(t j,k : k = 0, 1...q − 1) + tcomm (4)

E = Pt (5)

where P j,k, PPKG
j,k , PDRAM

j,k and t j,k is the node-level total power,

3ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-178 No.13
2021/3/15

IPSJ SIG Technical Report

PKG power, DRAM power and execution time of the execution
of a single-node job jsingle on the node Nk. The job jsingle is used
to estimate node-level performance numbers of j which is con-
sidered as the weakly-scaled parallel version of jsingle. For ex-
ample, j is HPCG with problem size (256, 384, 256) requiring
8 nodes, corresponding jsingle is HPCG with problem size (128,
192, 128) requiring 1 node. The time tcomm represents the total
communication cost paid in j’s execution. In multi-node situa-
tion, the execution time is difficult to be predicted by PVT, be-
cause the job execution time of one node is related to other nodes
executing the job. Thus, the simulation assumes that the execu-
tion time of a multi-node job only depends on the node with the
worst performance. To simplify the model, this report does not
consider the relationship between the communication cost and
power-efficiency of nodes, which means tcomm only depends on
application, problem size and number of required nodes.

2.3 Heterogeneity Aware Scheduling Algorithms
This section introduces scheduling algorithms applied to the

scheduler. The scheduler is a component of Resource Manage-
ment Module, which consists of scheduler, power database, one
FIFO*1 job queue and one node pool. The architecture of this
module allows each components easy to modify, in case new sys-
tems or scheduling policies have different requirements. PVT is
saved in the power database, recording the average PPKG, PDRAM

and t collected from test runs. Scheduler assigns jobs in the job
queue to available nodes in the node pool. Currently four schedul-
ing algorithms are applied to the scheduler:
• Naive: An application-unaware, heterogeneity-unaware

scheduling, applied to single-node and multi-node situa-
tions. This scheduling algorithm always chooses available
nodes with the smallest ID number. It is the baseline to eval-
uate the energy saving capability of other algorithms.

• Power Aware Algorithm (PAA): An application-unaware,
heterogeneity-aware scheduling, applied to single-node and
multi-node situations. In this algorithm, as long as there are
enough available nodes, the scheduler assigns the earliest job
in the job queue to the most power efficient nodes regard-
less of the state in the node pool and job queue. Power effi-
ciency of nodes is ranked according to the average value of
all benchmarks’ predicted powers in PVT. It saves energy by
using efficiency nodes as much as possible, and the energy
saving capability has been reported in previous study[14].

• Combinatorial Optimization Algorithm: An application-
aware, heterogeneity-aware scheduling, applied to single-
node situation. It is the same as PAA if the same application
are executed on all nodes. When scheduling various kinds of
jobs, COA finds an optimal energy-saving solution by KM
algorithms for jobs with different property. Scheduling pol-
icy not only depends on power efficiency, but also on the
property of applications.

• Sliding Window Algorithm: An application-unaware,
heterogeneity-aware scheduling, applied to multi-node situ-
ation. This algorithms only targets on multi-node situation

*1 First In First Out.

under the power cap, and based on the assumption that
execution time of a load-balanced multi-node job depends
on the worst performance node. In multi-node situation, the
performance of highly efficient nodes will be dragged down
by other less efficient nodes executing the same job. SWA
uses the sliding window so that performance gap between
nodes running the same job is not too large. Current SWA
in simulations and experiments is application-unaware, but
it can be extended to application-aware version.

COA and SWA will be introduced in detail in Section 2.3.1 and
Section 2.3.2.
2.3.1 Combinatorial Optimization Algorithm

PAA is an application-unaware scheduling algorithm and thus
only considers the ranking of power efficiency. However, some
nodes may show the high power efficiency when executing
memory-intensive applications, and is not very efficient when ex-
ecuting computation-intensive applications. Thus, the allocation
plan in PAA is not the best because PAA does not always choose
the most suitable nodes according to the property of applications.
Since there are usually two or more jobs in the job queue during
each scheduling interval, the queue likely has two ore more jobs
to be scheduled at the next interval in its head segment. With this
information, COA computes an allocation plan that has minimum
energy cost by KM algorithms.

Considering p single-node jobs J = { j0, j1... jp−1} assigned to q
nodes N={n0, n1...nq−1} (q ≥ p), the problem can be transformed
into the optimal matching problem in a graph: giving a bipar-
tite graph G(V, E) (V = J ∪ N, E = J × N), the weight of edge
w(j, n) is the energy consumption of job j running on node n. M
(M ⊆ E) is called a matching if ∃(j, n) ∈ M holds for ∀ j ∈ J; for
∀(j, n) ∈ M, (j, n′) < M and (j′, n) < M hold for ∀n′ ∈ N − {n}
and ∀ j′ ∈ J − { j}, respectively. Then, energy consumption of
matching M is defined as follow:

CM =
∑

(j,n)∈M

w(j, n) (6)

The matching M with minimum CM is called a minimum-
weighted matching, which is also the minimum energy consump-
tion allocation plan.

KM algorithm is one of the most popular algorithm that solves
this assignment problem in polynomial time[16]. The whole pro-
cess to compute the allocation plan with minimum energy con-
sumption is described in Fig. ??. The basic idea of this algorithm
is defining a label l(v) for each jobs and nodes, and looking for
the M∗ that satisfies the following equation:∑

(j,n)∈M∗
{l(j) + l(n)} =

∑
(j,n)∈M∗

w(j, n) (7)

When a job can not be matched, the algorithm will adjust l(v)
while keeping l(j) + l(n) ≤ w(j, n) (∀ j ∈ J,∀n ∈ N), then try to
match the job again. Assuming M∗ is generated by the algorithm
in Fig. ??, then for any M the following inequality is satisfied:

CM =
∑

(j,n)∈M

w(j, n) ≥
∑

(j,n)∈M

{l(j) + l(n)} (8)

Note that, with definitions N(M) = {n : (j, n) ∈ M} and
J(M) = { j : (j, n) ∈ M}, following hold; l(n) ≤ 0 for ∀n ∈ N(M∗);

4ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-178 No.13
2021/3/15

IPSJ SIG Technical Report

input: J,N, PVT
output: Mmin

initialize

∀ ji ∈ J, n j ∈ N, set w(ji, n j) according to PVT
for i in 0, 1...p − 1:

l(ji) = min(w(ji, n j), j = 0, 1...p − 1)
for k in 0, 1...q − 1:

l(nk) = 0
for i in 0...p − 1:

while True :
clear all marks

gmin = in f inity
if(match(ji)):

break

for v in marked j and n in the last match://adjust l(v)
if v in J:

l(v) = l(v) + gmin

if v in N:
l(v) = l(v) − gmin

return M

def match(ji):
mark ji
for k in 0...q − 1 ://traverse all nodes and find nodes that can be matched

if nk is marked:

continue

else:

g = w(ji, nk) − l(ji) − l(nk)
if g==0://g cannot be less than 0, if g==0, try to assign the job to the node

mark nk

if nk is not assigned://no other jobs will be assigned to the node

M.add((ji, nk))
return True

else://another job will be assigned to the node

j∗ = current job assigned to nk

if(match(j∗))://try to assign the job to another node
M.remove((j∗, nk))
M.add((ji, nk))
return True

else:

gmin = min(gmin, g)
return False

Fig. 4 Optimal allocation plan with KM algorithm

l(n) = 0 for ∀n < N(M∗); and
∑

j∈J(M) l(j) =
∑

j∈J(M∗) l(j). There-
fore, the following is obtained to show the optimality of M∗:∑

(j,n)∈M

{l(j) + l(n)} ≥
∑

(j,n)∈M∗
{l(j) + l(n)} =

∑
(j,n)∈M∗

w(j, n) (9)

Therefore, the allocation plan generated by COA consumes less
energy than all other allocation plans. If the number of jobs in the
job queue m is more than the number of available nodes n, only
the earliest n jobs in the queue can be scheduled to obey the FIFO
principle.
2.3.2 Sliding Window Algorithm

When power cap is not applied to nodes, the difference of CPU
frequency between nodes is very small. Considering a q-node
job j assigned to q nodes (n0, n1... nq−1), let P, t and E be the
power consumption, execution time and energy consumption of
j’s execution, respectively. Suppose q single-node weakly-scaled
jobs jsingle,k (k = 0, 1...q − 1) are assigned to the same q nodes,

and let Psingle,k, tsingle,k and Esingle,k be the power consumption,
execution time and energy consumption of the job jsingle,k, re-
spectively. Since the relationship between communication cost
and nodes is ignored and CPU frequency may be assumed inde-
pendent of nodes in the case without power capping, following
equations are obtained:

t = max(tsingle,k)+ tcomm = tsingle,k + tcomm, k = 0, 1...q− 1(10)

E = Pt =
q−1∑
k=0

Psingle,kt =
q−1∑
k=0

{Esingle,k + Psingle,ktcomm} (11)

It is proved that the scheduling of multi-node jobs can be trans-
formed to the scheduling of several single-node jobs based on
Equation (2)–(5), and COA still works. In the situation with
power capping, however, Equation (10) does not hold anymore,
which means COA can not be applied to such situation. In this

5ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-178 No.13
2021/3/15

IPSJ SIG Technical Report

report, SWA focuses on multi-node situation, where multi-node
jobs are assigned to nodes under power caps.

In multi-node situation, the simulation assumes that the ex-
ecution time is determined by the node with the worst perfor-
mance when load-balanced multi-node job is executing on nodes
with different computational performance. Thus, if good per-
formance nodes (good nodes) and bad performance nodes (bad
nodes) are executing the same multi-node job, the performance
of good nodes will be dragged down by bad nodes. Since this
performance loss is caused by the load imbalance within multi-
node jobs, the load imbalance can be reduced if the scheduler
chooses nodes of similar performance to execute the a multi-node
job. Such allocation plan makes it more difficult to assign good
nodes to a multi-node jobs, but these nodes still have chance to
have smaller scale multi-node jobs or, more likely, single-node
jobs fully exerting their performance if such small jobs are ready
to run in the queue. Since single-node and small scale multi-node
jobs are dominant, the allocation plan aware of node performance
similarity will work well without degrading the utilization rate of
good nodes.

SWA performs node assignment for a q-node job taking care of
the performance similarity by sliding a window wider than q over
all nodes, ranked by their computational performance, one by one
from the ranking top to the bottom until q available nodes are in-
cluded in the window. As exemplified in Fig. 5 for an 8-node job,
SWA successfully finds eight nodes whose performance is simi-
lar to each other, leaving two most efficient nodes which will be
likely utilized immediately by a 2-node job or two single-node
jobs at the head of the queue. Note that SWA can successfully
terminate with more than q available nodes in the window only
when they are found at the very beginning of the sliding. In this
case it simply chooses most efficient available nodes.

As discussed above, Equation (10) does not hold under the
power cap so that KM algorithm is difficult to be applied in
multi-node situation, since w(j, n) is not a constant value. Thus,
scheduling algorithms used in this experiment of multi-node situ-
ation are application-unaware with a workload consisting of jobs
for one particular application but with different problem size and
the number of required nodes. However, there are some ways
extending SWA to an application-aware version, for example, re-
sorting nodes and updating the ranking before scheduling a new
job. The detail of the application-aware SWA is discussed in Sec-
tion 5.

3. Validation and Evaluation
3.1 Single-node Situation

COA focuses on scheduling single-node jobs with the differ-
ent property to nodes with the different power efficiency. Thus,
the power saving capability of COA not only depends on nodes,
but also relates to applications. In this section, an experiment is
carried out to verify the difference between the power behavior
of benchmark applications. Then the same workload is executed
on both the simulator and ITO-A to evaluate the accuracy of the
simulator and power saving capability of scheduling algorithms.
The evaluation is carried out under two different utilization rates.

3.1.1 Node-level Heterogeneity Verification
This section verifies that memory-intensive applications show

different power behavior from computation-intensive applica-
tions. For verification, STREAM and HPCG are chosen as the
memory-intensive and computation-intensive benchmark appli-
cations, respectively. Two benchmark applications are executed
for 10 times on 2,000 nodes on ITO-A. The average value of PKG
power and DRAM power are measured by RAPL. The scheme of
experimental setup is briefly shown in Table 2.

Figure 6 shows results of the verification. To study the dif-
ference between benchmark applications, the PKG power and
DRAM power of nodes are displayed separately and exceptional
points have been removed. X-axis represents the ranking of 2,000
nodes, and is ordered by the average PKG/DRAM power of two
benchmark applications. It should be noted that these two rank-
ings are different and no clear relationship was found. Y-axis
shows the average PKG/DRAM power consumption of 10 execu-
tions.

For the PKG power consumption, the variation in HPCG
reaches up to 17W (107W–124W), about 14.4% of the aver-
age value. However, the PKG power consumption of STREAM
shows a variation of 4W (119W–123W), only 3.3% of the average
value. The PKG power consumption of these two applications
among all nodes does not show a strong relation. In contrast,
for the DRAM power consumption, tendencies of STREAM and
HPCG are similar. The DRAM power of STREAM shows a 16W
(60W–78W) variation, which is 23.5% of the average value. Sim-
ilarly, the result of HPCG is 25.0% of the average value ranging
in 30W–40W.

Two important facts can be inferred from the result. One is that
a PKG-efficient node may not be a DRAM-efficient node since
the DRAM power ranking of nodes has no obvious relationship
with the PKG power ranking. Thus, application-aware schedul-
ing is necessary because the power consumption not only depends
on the ranking of nodes, but also depends on the property of ap-
plications. The other is that the variation of STREAM is much
less than HPCG in terms of the total power consumption, which
means assigning HPCG to a power-efficient node can save more
power compared to STREAM. In contrast, even if STREAM is
assigned to a power-inefficient node, the additional power con-
sumption is relatively acceptable. This requires the scheduling
algorithm not to consider the earliest job in the queue, but to trade
off in all jobs that need to be assigned.
3.1.2 Simulation and Evaluation of Combinatorial Opti-

mization Algorithm
The evaluation of scheduling algorithms was carried out both

in the simulator and ITO-A. Only one representative workload
is used due to the limitation of experiment time in ITO-A.
The workload includes two different kinds of jobs, representing
computation-intensive jobs and memory-intensive jobs. Without

Table 2 Experimental setup of node-level power heterogeneity verification

Node 2,000 nodes
Benchmark Node(Process/Thread) Problem Size

STREAM 1 (1/ 36) ARRAY SIZE=6G
HPCG 1 (1/ 36) X=128, Y=192, Z=128

6ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-178 No.13
2021/3/15

IPSJ SIG Technical Report

Fig. 5 Process of Sliding Window algorithm (WindowS ize=10)

Fig. 6 Power consumption heterogeneity of STREAM and HPCG

Table 3 Experimental setup of the evaluation in single-node situation

Scenario Utilization Rate Node
Busy 80% 1,990 nodes
Free 40% 1,990 nodes
Benchmark Problem Size Count
STREAM ARRAY SIZE=6G 5,700
HPCG X=128, Y=192, Z=128 3,400
All jobs use 1 node, 1 process and 36 threads for each

loss of generality, the total time for two benchmark applications
in the workload is set to be similar. The evaluation is carried out
under two scenarios (busy and free) with different utilization rates
to verify how the utilization rate affects the energy saving capa-
bility. Workload and allocation plan applied to the simulation and
ITO-A is the same in order to evaluate the accuracy of the simu-
lator. In each scenario, three scheduling algorithms, Naive, PAA
and COA, are applied. The experimental setup is briefly shown
in Table 3.

To compare the energy saving capability of algorithms quan-
titatively, the energy saving rate of algorithm A in scenario S is
defined as follow:

S avingA,S =
ENaive,S − EA,S

ENaive,S
(12)

where EA,S is the total energy consumption of algorithm A in the
scenario S . The comparison of scheduling algorithms in two sce-
narios is shown in Fig. 7. X-axis represents whether the energy
consumption is from the simulation or real, Y-axis is the energy
saving rate. Both PAA and COA show better energy saving capa-
bility in the free scenario. This is because both algorithms save
power by using good nodes as much as possible. However, the
busy scenario, in which almost all good nodes are busy, forces
some jobs to be assigned to bad nodes. In all scenarios, COA

saves more energy than PAA. As discussed above, the total power
consumption variation of STREAM is less than HPCG, then COA
can use this fact to save more energy when jobs must be assigned
to bad nodes, while PAA cannot. Thus, the difference between
two algorithms is more significant in busy scenario as shown in
the figure, where COA saves 17% more energy than PAA.

To describe the difference between the simulation energy con-
sumption Esimulation and real energy consumption Ereal, the error
of the simulation is defined as follow:

Error =
|Ereal − Esimulation|

Ereal
(13)

Figure 8 shows the error of simulations in different scenarios.
The maximum error is only 0.68% of total energy consumption.
Comparing with PAA and COA, the simulation error of Naive is
much smaller. There are many possible explanations for this. For
example, PAA and COA always assigning jobs to the same node
may cause the overheat, then it forces CPU frequency to decrease,
which results in the changes of power and worse accuracy[17].

3.2 Multi-node Situation under Power Cap
In this section, several experiments are carried out to verify the

power behavior of multi-node jobs under power caps. Then three
algorithms (Naive, PAA, SWA) are compared in the simulator and
ITO-A. The workload used for evaluation is set to be similar to a
historic workload in the real supercomputer.
3.2.1 Verification of Power Behavior in Multi-node Situa-

tion Under Power Caps
One feature of supercomputers under power caps is that node-

level power heterogeneity is transformed into node-level perfor-
mance heterogeneity. In this case, the variation of power is very

7ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-178 No.13
2021/3/15

IPSJ SIG Technical Report

Fig. 7 Comparison of energy saving rate in single-node situation

Fig. 8 Error of single-node simulations

Fig. 9 Execution time of HPCG under different power caps

small, while nodes show different computational performances.
The most important factor to determine the energy consumption is
the execution time, which depends on the performance of nodes.
To verify this, the performance of all nodes is measured under dif-
ferent CPU power caps. Each node executes single-node HPCG
with one process, 36 threads and problem size of (104,104,104)
for ten times. The same set of jobs has been launched for four
times under different CPU power cap and one time without cap-
ping for comparison. The execution results are shown in Fig. 9
and the power consumption is shown in Fig. 10.

For the execution time, all nodes show similar computational
performances when there is no power cap. The execution time
range from 130s–151s, its variation is about 15% of the aver-
age value, and no strong relationship with power heterogeneity
is observed as discussed in Section 3.1.1. Thus, this variation
may be caused by other reason instead of node-level heterogene-
ity, for example, the CPU frequency changing in the execution.
As the power cap becomes tighter, the execution time becomes
longer. When the power cap is extremely tight (40W), the exe-

cution time increases significantly, and shows clear relationship
with the power efficiency of nodes. It is also observed that the
execution time ranges in 250s–400s resulting in a large variation
of almost 50% of the average value, much larger than the 14.4%
variation of power consumption shown in Section 3.1.1. It can be
inferred that the node-level heterogeneity becomes more serious
under the tight power cap.

In contrast to the situation in Section 3.1.1, the PKG power
consumption of all nodes are very close under each of CPU power
caps. As for DRAM power, it is almost insensitive with the tight-
ness of power capping and almost independent of PKG power as
well. Thus, the power heterogeneity is smaller in this case, and
the performance heterogeneity, which reflected in the variation of
execution time, becomes the most important factor of total energy
consumption. Following simulations and experiments are carried
out under the power cap of 40W.

An important assumption in this work is Equation (4), which
states that the execution time of multi-node job is determined by
the worst performance node under the power cap. A small-scale
experiment is carried out to study the execution time of multi-
node jobs under the power cap, and to prove that it is possible to
save energy by SWA. Figure 11 explains graphically the differ-
ence between allocation plans of PAA and SWA when assigning
one multi-node job (j1) and 4 single-node jobs (j2, . . . , j5). The
ID of the node is labeled from the ranking of its computational
performance. In PAA, j1 first arrives and is assigned to the best 8
nodes (node 1, 2, 11, 12, 21, 22, 23 and 24), then single-node jobs
j2, . . . , j5 are assigned to nodes 25, . . . , 28. In this situation, node
1 and 2 are both good nodes, but they cannot take their perfor-
mance advantages because the execution time is decided by node
24. In SWA with the window size of 10 nodes, the job assigned to
each of nodes 1, 2, 11 and 12 is the single-node job, which means
there is no performance loss on these nodes. The multi-node job
must suffer an unavoidable performance loss of some nodes, such
as the node 21. However, the performance difference between the
node 21 and 28 is much smaller than difference between the node
1 and 24. Hence, the performance loss of SWA is less than that
of PAA.

30 nodes were selected according to the stratified sampling on
ITO-A to verify the power consumption and execution time in the
above situation. Figure 12 shows the experimental result. It is ob-
served that, compared with PAA, SWA brings a small rise of 15s

8ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-178 No.13
2021/3/15

IPSJ SIG Technical Report

Fig. 10 Power consumption of HPCG under different power caps

Fig. 11 Allocation plans of PAA and SWA

to the execution time of the multi-node job, while it significantly
decreases the execution time of single-node jobs. For example, a
single-node job assigned to the node 1 by SWA takes 65s shorter
execution time than the node 25 chosen by PAA. Compared to
PAA, the total energy consumption of SWA is reduced by 1.7%.
Another important observation is that the difference of execution
time between single-node jobs and multi-node jobs is relatively
large and cannot be ignored, even though the problem size for
each node is the same. Theoretically, the communication cost
is related to the performance of nodes but the prediction of the
communication cost is so complicated, thus that the current sim-
ulation does not consider the relationship.
3.2.2 Simulation and Evaluation of Sliding Window Algo-

rithm
The power saving capability of SWA depends on the number

and execution time of both multi-node and single-node jobs in
the workload. This comes from that the number of jobs assigned
to both good nodes and bad nodes is related to the arriving time,
execution time and number of required nodes. Thus, in order to
simulate the workload in real supercomputers faithfully, a historic
workload of Laurel 2 was analyzed (from September 18 2019
00:00:00 to September 25 2019 00:00:00). Table 4 shows the
result of classifying all jobs during this period according to the
execution time and the number of required nodes. The number in
the table is the total of classified jobs. It is observed that multi-
node jobs are much less than single-node jobs, and the number of
required nodes for most multi-node jobs is less than 8.

In the evaluation, four configurations of HPCG are used to rep-
resent jobs with different execution time and required nodes. The
difference among these four configurations is shown in Table 5.
The number of iterations is used to control the execution time of

Table 4 Classification of jobs in Laurel 2

<360s 360s-3,600s >3600s
1 node 10,472 7,749 10,437

2-8 nodes 253 172 516
>8 nodes 1 0 3

jobs, rather than using the problem size whose change also affects
the execution time but causes a chaotic behavior in power con-
sumption due to the complicated structure of HPCG. The number
of jobs is set according to the historic workload in Laurel 2. Due
to the resource constraints, it is difficult to run workload that lasts
for more than an hour in ITO-A. Thus, comparing with the real
execution time in Laurel 2, the execution time of jobs in the eval-
uation is cut down. Jobs with extremely short execution time (≤
20s) are discarded because the power consumption of these jobs
cannot accurately be measured and is a very small proportion of
the total energy consumption.

Fig. 13 shows the energy saving rate of PAA and SWA in the
simulation and ITO-A. Compared to the energy saving rate with-
out the power cap, the energy saving rate of PAA under the tight
power cap becomes higher since the performance heterogeneity
under the power cap of 40W is larger than the power heterogene-
ity without power cap. In free scenario, there are many available
nodes with similar performance so that the number of jobs as-
signed to a mixture of good and bad nodes is small. Thus, the
power savings of PAA and SWA is close in free scenario. How-
ever, since there are not many available good nodes to choose
in busy scenario, PAA assigns more jobs to the mixture of good
and bad nodes resulting in performance loss. Thus, SWA saves
more energy than PAA in the busy scenario. Another observa-
tion is that both algorithms show better power saving capability
in the free scenario, which is the same as single-node situation.
The reason is that more available nodes in the free scenario mean
more options for the scheduler, making it possible to assign more
jobs to good nodes keeping bad nodes less busy, while in the busy
scenario the scheduler has to assign jobs to bad nodes since the
number of available good nodes is not enough.

In multi-node situation, the error of the total power consump-
tion between simulation results and real results is larger than
single-node situation, as shown in Fig. 14. The difference is
caused by many factors. For example, the execution time of jobs
is unstable under tight power cap and sometimes exceptionally
long. Another possible reason, as discussed above, is that com-

9ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-178 No.13
2021/3/15

IPSJ SIG Technical Report

Fig. 12 Experimental result of allocation plans in Fig. 11

Table 5 Configuration of jobs in the simulation

Scenario Utilization Rate Nodes Power Cap
Busy 80% 665 nodes 40W
Free 40% 665 nodes 40W
Job Node(Process/Thread) Iterations Number of Jobs Benchmark

A 1 (1/ 36) 1 times 774 HPCG (104-104-104)
B 1 (1/ 36) 10 times 1,043 HPCG (104-104-104)
C 8 (8/ 36) 1 times 17 HPCG (208-208-208)
D 8 (8/ 36) 10 times 51 HPCG (208-208-208)

munication cost of multi-node jobs is related to the performance
of nodes but not considered in the current simulation.

4. Related Work
Several studies have been carried out to reduce the additional

energy consumption caused by power/performance heterogene-
ity in supercomputers. Inadomi et al. reported that the node-
level power heterogeneity is transformed to the node-level perfor-
mance heterogeneity under power caps, and introduced a power
budgeting framework, which is based on the power variation es-
timation with PVT[6], [8]. Uno et al. also proposed a power
budgeting framework based on power estimation, and discussed
the scheduling from another viewpoint, which reduces perfor-
mance loss by preventing the power of job from exceeding the
power constraint[18]. A node-level power heterogeneity aware
resource management was proposed in [14], the algorithm pre-
sented in which is the prototype of PAA in this report, and is
the very fundamental version of the algorithms proposed in this
report. Comparing with these works, this report takes different
perspectives to reduce additional energy consumption caused by
power/performance heterogeneity. COA focuses on both power
heterogeneity and application factors by solving the optimal as-
signment problems, and SWA prevents the performance loss
caused by tight power constraint by reducing load imbalance with
the sliding window.

For power estimation, Inadomi et al. introduced a power model
predicting power and performance variation by test runs[6], [8].
The approach presented in [9] and [15] used historic execu-
tion data, such as the username, number of required nodes and
real/estimated execution time to estimate the power consumption.
The power estimation in this report refers to the methods in these
works.

5. Conclusion and Summary
This report first presented a newly developed a multi-node

scheduling simulator that can be applied to nodes with differ-
ent power efficiency and computational performance, then pro-
posed two scheduling algorithms. COA is an application-aware
scheduling algorithm targeting on single-node situation without
power constraint, and saves the energy by solving the optimal as-
signment problem with KM algorithm. SWA reduces the load
imbalance in multi-node jobs caused by the performance hetero-
geneity under tight power caps by a sliding window. These two
algorithms are compared to Naive and PAA in the simulation and
the real supercomputer. As a result, COA saved up to 2.92% en-
ergy saving rate compared to Naive in single-node situation. In
multi-node situation, the best energy saving rate of SWA reached
5.36% compared to Naive under a power cap of 40W . It should
be noted that 40W is a very strict power cap for computing nodes,
and thus is not usually applied in real supercomputers. However,
studying power behavior of supercomputers under such a power
cap is necessary, because in future it is expected that even a re-
laxed capping will cause a more significant performance degrada-
tion in multi-node job execution due to the enlargement of semi-
conductor process variation according to the shrinkage of transis-
tors.

In this report, SWA is application-unaware because the exe-
cution time of of a multi-node job for a node depends on other
nodes involved in the job, making it hard to apply to KM al-
gorithm to job scheduling. However, there are still some way
to exploit SWA to application-aware version. One way is to re-
sort the ranking of nodes according to the property of the job to
be scheduled although it may result in a sparse distribution of
available nodes. Another way is dividing nodes into a number
of node pools by CPU performance and DRAM performance to

10ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-178 No.13
2021/3/15

IPSJ SIG Technical Report

Fig. 13 Comparison of energy saving rate in multi-node situation

Fig. 14 Error of multi-node simulations

make sure all multi-node jobs are assigned to nodes in a pool with
a similar performance. In this case, it is possible that the utiliza-
tion rate of one node pool is very high and others are very low,
resulting in some good nodes being idle for a long time.

The error between the power consumption in the real super-
computer and simulation is less than 0.68% in single-node sit-
uation. However, considering the amount of saved power, it is
still hard to be ignored, and the error is even bigger in multi-
node situation. The communication cost of multi-node jobs is
also an important factor that makes results less faithful. Thus,
the accuracy of simulation still needs to be improved by some
techniques. For example, the granularity of power consumption
and computational performance heterogeneity can be cut down to
each core in the node, and the error of data collected from test
runs can be reduced by strictly controlling the frequency of each
CPU. Studying the relationship between the communication cost
and performance of nodes is also necessary.

Finally, the workload in the evaluation is not perfectly same
as the historic workload in Laurel 2, because it is generated in a
stochastic process and applications in it are also different. When
a workload includes jobs lasting for hours and jobs only execut-
ing for few seconds, it must be considered that whether SWA still
saves energy or not.

Acknowledgements
In this research work we used the supercomputer of ACCMS,

Kyoto University.This work was supported by“Advanced Com-
putational Scientific Program”of Research Institute for Informa-
tion Technology, Kyushu University.

References
[1] Hadi Esmaeilzadeh, Emily R. Blem, Renée St. Amant, Karthikeyan

Sankaralingam, and Doug Burger. Power challenges may end the mul-
ticore era. Commun. ACM, 56(2):93–102, 2013.

[2] Shoaib Kamil, John Shalf, and Erich Strohmaier. Power efficiency in
high performance computing. In 2008 IEEE International Symposium
on Parallel and Distributed Processing, pages 1–8, 2008.

[3] Performance development.
[4] Pete Beckman, Ron Brightwell, Maya Gokhale, Bronis R de Supinski,

Steven Hofmeyr, Sriram Krishnamoorthy, Mike Lang, Barney Mac-
cabe, John Shalf, and Marc Snir. Exascale operating systems and run-
time software report. 2012.

[5] Shekhar Y. Borkar. Designing reliable systems from unreliable com-
ponents: The challenges of transistor variability and degradation.
IEEE Micro, 25(6):10–16, 2005.

[6] Yuichi Inadomi, Tapasya Patki, Koji Inoue, Mutsumi Aoyagi, Barry
Rountree, Martin Schulz, David K. Lowenthal, Yasutaka Wada,
Keiichiro Fukazawa, Masatsugu Ueda, Masaaki Kondo, and Ikuo
Miyoshi. Analyzing and mitigating the impact of manufacturing vari-
ability in power-constrained supercomputing. In Jackie Kern and Jef-
frey S. Vetter, editors, Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC 2015, Austin, TX, USA, November 15-20, 2015, pages 78:1–78:12.
ACM, 2015.

[7] 稲富雄一,和田康孝,深沢圭一郎,青柳睦,近藤正章,三吉郁夫,井上
弘士.電力性能特性ばらつきを考慮したMPI並列アプリケーション
の性能最適化.情報処理学会研究報告, 2014-HPC-147(6):1–8, 2014.

[8] 稲富雄一,井上弘士,和田康孝,深沢圭一郎,上田将嗣,近藤正章,三
吉郁夫,青柳睦.電力制約スーパーコンピューティングにおける製
造ばらつき問題とその対策–大規模計算機システムを対象とした
電力バジェット配分法の提案–.情報処理学会研究報告, 2015-HPC-
150(27):1–8, 2015.

[9] 山本啓二,末安史親,宇野篤也,塚本俊之,肥田元,池田直樹,庄司文
由.過去の実行実績を利用したジョブの消費電力予測.情報処理学
会研究報告, 2015-HPC-151(2):1–7, 2015.

[10] 小野美由紀, 山本昌生, 中島耕太.ソフトウェアの消費電力分析手
法.情報処理学会研究報告, 2015-HPC-150(29):1–6, 2015.

[11] Thomas Ilsche, Robert Schöne, Joseph Schuchart, Daniel Hackenberg,
Marc Simon, Yiannis Georgiou, and Wolfgang E. Nagel. Power mea-
surement techniques for energy-efficient computing: reconciling scal-
ability, resolution, and accuracy. SICS Softw.-Intensive Cyber Phys.
Syst., 34(1):45–52, 2019.

[12] Spencer Desrochers, Chad Paradis, and Vincent M. Weaver. A valida-
tion of DRAM RAPL power measurements. In Bruce L. Jacob, editor,
Proceedings of the Second International Symposium on Memory Sys-
tems, MEMSYS 2016, Alexandria, VA, USA, October 3-6, 2016, pages
455–470. ACM, 2016.

[13] Daniel Hackenberg, Robert Schöne, Thomas Ilsche, Daniel Molka,
Joseph Schuchart, and Robin Geyer. An energy efficiency feature sur-
vey of the Intel haswell processor. In 2015 IEEE International Parallel
and Distributed Processing Symposium Workshop, IPDPS 2015, Hy-
derabad, India, May 25-29, 2015, pages 896–904. IEEE Computer
Society, 2015.

[14] LE LI, Keiichiro FUKAZAWA, Hiroshi NAKASHIMA, and Takeshi
NANRI. A node level performance/power efficiency aware resource
management technique. IPSJ SIG Notes, 2018-HPC-166(3):1–7,
2018.

[15] 宇野篤也, 末安史親, 山本啓二, 肥田元, 池田直樹, 辻田祐一. ジョ
ブの時系列電力変動の推定手法の検討. 情報処理学会研究報告,
2018-HPC-167(20):1–6, 2018.

[16] Hong Cui, Jingjing Zhang, Chunfeng Cui, and Qinyu Chen. Solving

11ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-178 No.13
2021/3/15

IPSJ SIG Technical Report

large-scale assignment problems by kuhn-munkres algorithm. 2016.
[17] M. Platini, T. Ropars, B. Pelletier, and N. De Palma. CPU overheating

characterization in HPC systems: A case study. In 2018 IEEE/ACM
8th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS),
pages 59–68, 2018.

[18] 宇野篤也,末安史親,山本啓二,肥田元,池田直樹,辻田祐一.消費電
力の変動を考慮したジョブスケジューリングの検討.情報処理学会
研究報告, 2018-HPC-167(5):1–6, 2017.

12ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-178 No.13
2021/3/15

