
IPSJ SIG Technical Report

Generating Intrinsic Rewards by
Random Recurrent Network Distillation

ZeFeng Xu1,a) KoichiMoriyama1 TohgorohMatsui2 AtsukoMutoh1 Nobuhiro Inuzuka1

Abstract: Exploration in sparse reward environments pose significant challenges for many reinforcement learning
algorithms. Rather than solely relying on extrinsic rewards provided by environments, many state-of-the-art methods
generate intrinsic rewards to encourage the agent explore the environments. However, we found that existing models
fall short in some environments, where the agent must visit a same state more than once. Thus, we improve an existing
model to propose a novel type of intrinsic exploration bonus which will reward the agent when a new sequence is
discovered. The intrinsic reward is the error of a recurrent neural network predicting features of the sequences given
by a fixed randomly initialized recurrent neural network. Our approach performs well in some Atari games where
conditions must be fulfilled to develop stories.

Keywords: Curiosity-driven Exploration, Recurrent Network, Reinforcement Learning, Deep Learning, Intrinsic Re-
wards

1. Introduction
With the development of artificial intelligence, people have in-

creasingly pursued the performance of learning algorithms. As
one of the important branches of machine learning, reinforcement
learning does not need to be familiar with the mathematical model
of the problem when solving problems, nor does it need to manu-
ally provide a large amount of labeled training data. Its trial-and-
error learning pattern is also very close to the human learning pat-
tern. It has strong versatility and is considered to be one of the im-
portant foundations of artificial intelligence. Coming out of deep
learning has brought the performance of reinforcement learning
to a higher level. The reinforcement learning method combined
with deep learning is called deep reinforcement learning. Deep
reinforcement learning combines the decision-making ability of
reinforcement learning and the perception ability of deep learn-
ing [1][2].

Reinforcement learning algorithms learn policy through artifi-
cially designed rewards. When the reward is very sparse, rein-
forcement learning is likely to fail to learn. However, in many
real-world problems, rewards to the agent are extremely sparse,
or absent altogether. Therefore, exploration in sparse reward en-
vironments pose significant challenges for many reinforcement
learning algorithms. Rather than solely relying on rewards pro-
vided by environments, many state-of-the-art methods generate
intrinsic rewards to encourage the agent to explore the environ-
ments. For example, Random Network Distillation (RND) [3]
emboldens the agent to visit new states, Intrinsic Curiosity Mod-

1 Department of Computer Science, Graduate School of Engineering,
Nagoya Institute of Technology, Nagoya,Japan

2 Department of Clinical Engineering, College of Life and Health Sci-
ences, Chubu University, Kasugai, Aichi, Japan

a) z.xu.089@nitech.jp

ule (ICM) [4] encourages the agent to learn environment dynam-
ics and Sequential Intrinsic Reward Generator (SRG) [5] encour-
ages the agent to visit new sequences. This kind of intrinsic re-
ward comes from the imitation of human learning skills using
intrinsic motivation [6].

In these methods, rewards are generated by evaluating the nov-
elty of states, but the novelty of the order of states is not con-
sidered. For SRG, the teacher signal provided by the target net-
work is the features of the states rather than the features of the
sequences. Therefore, SRG fails to learn the sequential informa-
tion as intended. The purpose of our research is to improve the
performance of intrinsic motivation methods by proposing a nov-
elty exploration mechanism. In this work, we improve the SRG
algorithm to propose a novel type of intrinsic exploration bonus.
The intrinsic reward is the error of a recurrent neural network
predicting features of the sequences given by a fixed randomly
initialized recurrent neural network.

2. Deep Reinforcement Learning in Hard Ex-
ploration Environments

The premise of reinforcement learning is that the agent has no
prior knowledge of the environment. That is, the agent does not
know what state it will transition to and what reward it will get
when taking a certain action in a certain state. In addition, it can
be seen from Bellman’s equation that unless rewarded, the rein-
forcement learning agent cannot learn anything. Therefore, the
agent is very difficult to learn in an environment where rewards
are very sparse. Especially in deep reinforcement learning, this
problem becomes more prominent. Because the dimension of
the state to be processed by deep reinforcement learning is very
large, general exploration methods, such as ϵ-greedy, are very in-
efficient. This section will describe how to solve this problem.

1ⓒ 2021 Information Processing Society of Japan

Vol.2021-MPS-132 No.15
2021/3/1

IPSJ SIG Technical Report

2.1 Intrinsic Motivation
Psychologists distinguish between extrinsic motivation and in-

trinsic motivation. Extrinsic motivation refers to doing something
as a result of certain rewards, while intrinsic motivation refers to
doing something voluntarily due to a certain intrinsic enjoyment.
Intrinsic motivation allows organisms to explore the environment
without clear rewards. These activities favor the development of
broad competence rather than being directed to more externally
directed goals [7]. Intrinsic motivation may help guide the ex-
ploration of reinforcement learning agents, especially in environ-
ments where the extrinsic feedback is sparse or missing altogether
[8]. One of the most effective intrinsic motivation methods in re-
inforcement learning agents is the curiosity-based method that
encourages the agent to learn about the environment dynamics.

2.2 Curiosity-Driven Exploration
Curiosity-driven exploration encourages agents to explore the

environment through bonuses to learn about the dynamics of the
environment. Curiosity can be formulated as the error or uncer-
tainty of predicting the consequences of an agent’s actions [9].
Pathak formulated curiosity as the error in an agent’s ability to
predict the consequence of its own actions in a visual feature
space learned by a self-supervised inverse dynamics model [4].
Burda formulated curiosity as the error of a neural network pre-
dicting features of the observations given by a fixed randomly ini-
tialized neural network [3]. In the next section, we will introduce
the Burda’s method.

2.3 Random Network Distillation (RND)
In order to implement the curiosity exploration, it is necessary

to record the visited states. However, since deep reinforcement
learning assumes that the number of dimensions of the state is
large, it is difficult to record all of them. Therefore, the following
prediction errors framework is generally used.

ŷt+1 = f (st, at) (1)

it = ||ŷt+1 − yt+1||2 (2)

where ŷt+1 is the predicting feature of next state, yt+1 is the real
feature of next state, it is the intrinsic reward and f is the Deep
Neural Network (DNN). Considering the framework, the state of
frequent input is easier to predict, so the error will be small, and
the intrinsic reward also will be small. On the contrary, the state
of infrequent input is difficult to predict, so the error becomes
larger and the intrinsic reward also becomes larger. In general,
prediction errors can be attributed to a number of factors [3]:
(1) If the predictor cannot be generalized from the examples pre-

viously seen, the prediction error is high. Then, the novel
experience corresponds to a high prediction error.

(2) Since the prediction target is stochastic, the prediction error
is high.

(3) Prediction error is high because information necessary for
the prediction is missing, or the model class of predictors is
too limited to fit the complexity of the target function.

Factor 1 is a useful source of error since it quantifies the nov-
elty of experience, whereas Factors 2 and 3 cause the noisy-TV

Fig. 1 Random Network Distillation (RND)

problem [10].
RND [3] can avoid Factors 2 and 3 with a new exploration

bonus derived by predicting an output from a fixed and randomly
initialized neural network. The intrinsic reward calculation pro-
cess is shown in the Fig. 1. RND uses two DNNs to calculate the
intrinsic reward as follows.

it =
1
N
|| f̂ (st+1) − f (st+1)||2 (3)

where N is dimension, f (st+1) is the target network and f̂ (st+1)
is the predictor network. In other words, the output of the target
network is used as the teacher signal, and the predictor network
learns this signal. The advantage of using RND is that we can
have the prediction target be deterministic (bypassing Factor 2)
and by using the architecture of the target, the predictor can rep-
resent the function class of the target (bypassing Factor 3). These
choices make RND immune to the noisy-TV problem.

2.4 Sequential Intrinsic Reward Generator (SRG)
RND only measures the novelty of the state, without consid-

ering the novelty of behavior. In addition, it does not support
exploration in POMDP [11]. Therefore, SRG [5] has been pro-
posed to address this issue. SRG not only measures the nov-
elty of a certain state but extends it to measure the novelty of
a sequence of states. For example, when RND transitions from
s0 → s1 → s2 → s3 → s0, each step will generate intrinsic
rewards until s3 is visited, but there is no intrinsic reward when
s0 is visited the next time. This is because the agent has already
visited s0. On the other hand, in SRG, the sequence when s0 is
firstly visited is s0, but when s0 is secondly visited, the sequence
is s0 → s1 → s2 → s3 → s0. The two sequences are different. It
can be said that s0 → s1 → s2 → s3 → s0 is a novel sequence
for s0. Therefore, even if you visit s0 again, intrinsic rewards will
be generated. Since SRG also retains the history of states, it can
respond to POMDP. The intrinsic reward calculation process is
shown in the Fig. 2. The intrinsic reward formulate as follows.

it = α
1

N1
|| f1(st+1) − f̂1(st+1)||2

+ (1 − α)
1

N2
|| f2(ϕ(st+1)) − f̂2(ϕ(st+1))||2

(4)

where α is a hyperparameter. N1 and N2 are the number of out-
put dimensions. f1 and f̂1 have same architecture with RND. f2
and f̂2 are newly extended DNNs and f̂2 includes recurrent layer.

2ⓒ 2021 Information Processing Society of Japan

Vol.2021-MPS-132 No.15
2021/3/1

IPSJ SIG Technical Report

Fig. 2 Sequential Intrinsic Reward Generator (SRG)

ϕ is a function to compress the state to a smaller size that can
be fully learned. It prevents a problem that the sequence-based
intrinsic rewards may be difficult to reduce by equating highly
similar sequences. Due to the addition of a recurrent layer, SRG
can measure the novelty of the sequence.

3. Proposal Method
RND only generates intrinsic rewards through the novelty of

the state, without considering the novelty of behavior. In addi-
tion, it does not support exploration in POMDP environments.
SRG has improved the problem of RND and expands the intrin-
sic reward to the novelty of the state sequence. However, there
is a problem with SRG. In the following, first we see the prob-
lem and after that, we propose a novel method that addresses the
problem.

3.1 The problem of SRG
In the previous section, we saw that SRG encourages the agent

to visit new sequences. However, we found a problem that, al-
though the predictor network in the SRG uses recurrent network
to learn the features of the sequences, it still performs poorly for
environments with sequential relationships. The reason is that the
teacher signal provided by the target network is the features of the
states rather than the features of the sequences. Suppose that we
have two sequences; one is s0 → s1 → s2 → s3 and the other is
s0 → s2 → s1 → s3. When the agent visits s3 through the two
sequences, the features output by the predictor network should be
different because the sequences are different. According to the
network architecture of SRG in Fig. 2, on the other hand, the out-
put of the target network is the feature of s3 at this time, which
the predictor network will learn. Therefore, the predictor network
will gradually correct its own “mistake”, so that regardless of in-
put s0 → s1 → s2 → s3 or s0 → s2 → s1 → s3, it will output
the feature of s3. That is to say, the recurrent neural network will
lose the ability to extract sequence features after training and can
only extract features of the current state. To improve this problem
of SRG, we propose a novel type of intrinsic exploration bonus
which we will introduce next section.

3.2 Generating Intrinsic Rewards by Random Recurrent
Network Distillation (RRND)

We propose a novel type of intrinsic exploration bonus which
will reward the agent when a new sequence is discovered. The

Fig. 3 Random Recurrent Network Distillation (RRND)

intrinsic reward is the error of a recurrent neural network predict-
ing features of the sequences given by a fixed randomly initialized
recurrent neural network. The architecture of RRND is shown in
the Fig. 3. The intrinsic reward formulate as follows.

it = α
1

N1
|| f1(st+1) − f̂1(st+1)||2

+ (1 − α)
1

N2
|| f2(ϕ(st+1)) − f̂2(ϕ(st+1))||2

(5)

where α is a hyperparameter. N1 and N2 are the number of out-
put dimensions. f is the target network and f̂ is the predictor
network. f1 and f̂1 have same architecture with RND. f2 and f̂2
are similar to SRG but both contain recurrent networks. Because
of Factor 3 of the prediction errors, the model class of predic-
tors needs to fit the complexity of the target function. Therefore,
f̂2 must have stronger expressive ability than the f2. GRU [12]
is similar to LSTM [13], both of which are recurrent neural net-
works, but the expression ability of GRU is not as good as LSTM.
Thus, we add GRU layer to f2 while f̂2 uses LSTM.

In addition, RRND uses various normalization to ensure that
the scale of intrinsic rewards is consistent in various environ-
ments. First it normalizes the scale of rewards to alleviate the
non-stationarity of reward functions. Second, it normalizes the
observations to ensure that they have less variation across dif-
ferent environments. Finally, RRND uses feature normalization,
which is shown as useful by Burda [3], to ensure that the scale of
intrinsic rewards is consistent throughout the state space. We use
this method in our work.

The pseudo-code of RRND is shown in Algorithm 1.

4. Experiment
In this section, we introduce the detail of the experiment, the

optimization objective, the hyperparameters, and the architecture
of the neural network used in this experiment. In all this exper-
iment, we used a machine having two Intel Xeon E5-2650 v4
CPUs and one NVIDIA GeForce GTX1080 Ti. Tensorflow 1.5,
OpenAI Baselines, CUDA, and cuDNN were used as calculation
libraries.

4.1 Environment
We used OpenAI Gym’s Atari2600 [14] as benchmark to test

the performance of the RRND algorithm. We chose three games
used in the SRG paper: Montezuma Revenge, Private Eye and
PitFall! These are called hard exploration environments because

3ⓒ 2021 Information Processing Society of Japan

Vol.2021-MPS-132 No.15
2021/3/1

IPSJ SIG Technical Report

Algorithm 1 RRND pseudo-code
N ←number of rollout
K ←length of rollout
ce, ci ←coefficient of extrinsic and intrinsic reward
γe, γi ← discount rate of extrinsic and intrinsic reward
t = 0
Sample state s0 ∼ p0(s0)
while z = 0 to N do

while j = 1 to K do
Sample action at ∼ π(at |st)
Sample state st+1, extrinsic reward et , terminal dt ∼ p(st+1, et |st , at)
Calculate intrinsic reward

it = α|| f̂1(st+1) − f1(st+1)||2 + (1 − α)|| f̂2(st+1) − f2(st+1)||2

Calculate state value vi,t and ve,t
Add st , st+1, at , et , it , dt ,vi,t ,ve,t to batch Bz

t+ = 1
end while
Normalize the intrinsic rewards contained in Bz

Normalize the extrinsic rewards contained in Bz

Calculate returns Ri,z using γi and intrinsic reward
Calculate advantages Ai,z using Ri,z and state value Vi,z

Calculate returns Re,z using γe and extrinsic reward
Calculate advantages Ae,z using Re,z and state value Ve,z

Calculate combined advantages Az = ciAi,z + ceAe,z

Update observation normalization parameters using Bz

Train policy network parameters on batch Bz,Re,z,Ri,z, Az using Adam
Update feature normalization parameters using Bz

Train RRND parameters on batch Bz using Adam
end while

it is difficult to obtain extrinsic rewards. In this experiment, we
studied the difference between RRND, SRG and RND. The state
that the agent can acquire is the images of game screen. These
images are called observations. The agent will get +1 extrinsic
reward when it gets the score. When the agent loses score, it will
get −1 extrinsic reward.

Here, we detail the key setting we made in the all experiment.
These settings were to reduce non-stationarity in order to make
learning more stable and consistent in different environments.
(1) Reward normalization. We normalized the scale of rewards

by dividing the rewards by a running estimate of the standard
deviation of the sum of discounted rewards.

(2) Feature normalization. We use batch-normalization algo-
rithm [15] to achieve this.

(3) Observation normalization. Steps of rollout means the step
length of one simulation. We run a 50 times steps of rollout
steps random agent on the target environment, and then cal-
culate the mean and standard deviation of the observations,
and use them to normalize the observations during training.

4.2 Architecture of Neural Networks
RRND is a DNN used to output intrinsic rewards. The archi-

tecture of f1 and f̂1 are same as RND. The architecture of f̂2 is
determined by preliminary experiments.
(1) Increase the fully-connected layer in f̂2.
(2) Test in Montezuma Revenge.
(3) Check the intrinsic rewards. If the decrease in intrinsic re-

wards is faster than the previous architecture, return to 1, and
if it is slower, the previous architecture is adopted.

Fig. 4 Architecture of Target Network

Fig. 5 Architecture of Predictor Network

Fig. 6 Architecture of Policy Network.

The policy network is a DNN used to output π(a|s), Ve and Vi.
π(a|s) is the probability distribution of actions. Ve is a value func-
tion based on extrinsic rewards, and Vi is a value function based
on intrinsic rewards. The architecture of neural network in this
experiment is shown in Figs. 4, 5 and 6.

4.3 Optimization Problem
The error function of intrinsic rewards is defined as follows.

Lintrinsic f1
(θInt1) =

1
M

M∑
i=0

|| f1i − f̂1i||2 (6)

Lintrinsic f2
(θInt2) =

1
M

M∑
i=0

|| f2i − f̂2i||2 (7)

where M is the number of data used to update the parameters.
The overall optimization problem that is solved for training the

agent is

4ⓒ 2021 Information Processing Society of Japan

Vol.2021-MPS-132 No.15
2021/3/1

IPSJ SIG Technical Report

min
θπ ,θInt1 ,θInt2

[
LPPO(θπ) + αLintrinsic f1

(θInt1) + (1 − α)Lintrinsic f2
(θInt2)

]
(8)

where θπ are the parameters of the policy network. α is same as
equation 5. Same as RND and SRG, we used PPO [16] as learn-
ing method for the policy network. LPPO(θπ) is the loss function
in PPO algorithm. θInt1 and θInt2 are the parameters of the neural
networks that generate intrinsic rewards. These parameters are
updated by optimization algorithm Adam [17].

4.4 Hyperparameters
The hyperparameters are shown in Table 1. We set the coef-

ficient of extrinsic reward higher than intrinsic reward because
we do not want the agent to focus solely on obtaining intrinsic
rewards. If α is set to 0, the agent may spend a lot of time to
explore useless sequences. This is inefficient. To prevent this, we
set α to 0.5. We use the episode length for the evaluate length of
sequence, because it is more likely to find a correct sequence to
complete the game from various sequences as the length of the
sequence is longer. If γE higher than γI , the agent will focus on
extrinsic rewards. Clip range is a hyperparameter in PPO. We
used the same scale as PPO.

Table 1 Hyperparameters: ce, ci, γe, γi and rollout length are in Algorithm
1, α is in Equation 5.

Hyperparameter Value
Number of parallel environments 32
Rollout length 128
ce 2
ci 1
γE 0.99
γI 0.99
α 0.5
Clip range [0.9, 1.1]
Learning rate of policy network 0.0001
Learning rate of f̂1 0.0001
Learning rate of f̂2 0.0001
Evaluate length of sequence length of episode

5. Results and Discussion
In this section, we will discuss the experimental results based

on the experimental design and details in Section 4.

5.1 Montezuma Revenge
The results of Montezuma Revenge are shown in the Figs. 7

and 8. We can find that RRND performs better than SRG and
RND in both the average episodic score and the average num-
ber of rooms found. In addition, our method can reach a higher
score faster. For example, the average episodic score of RRND
has exceeded 4,000 at about 7,000 parameter updates, but both
SRG and RND took more than 10,000 parameter updates to get
the score. In all our experiments, the best one of these runs was
that 21 rooms had been found in 35,000 parameter updates. Due
to the limitation of computing resources, we could not continue
the experiment. Finally, when we watched the video of the agent
playing Montezuma Revenge, we found that the agent did learn
sequential relationship. For example, when the agent found a key,
they would actively look for a door, no matter where the key was

Fig. 7 The performance in Montezuma Revenge. The upon shows the aver-
age episodic score and the below shows the average number of rooms
found. The blue curve represents RRND, the green curve represents
RND, and the orange curve represents SRG.

Fig. 8 The intrinsic rewards in Montezuma Revenge. The blue curve repre-
sents RRND, the green curve represents RND, and the orange curve
represents SRG.

Fig. 9 The performance in Private Eye. The blue curve represents RRND,
the green curve represents RND, and the orange curve represents
SRG.

found. However, unfortunately, this may reduce the efficiency of
exploration, because sometimes the agent will return to the place
where the door has been opened.

5.2 Private Eye
The results of Private Eye are shown in the Figs. 9 and 10.

We found that the RRND algorithm performed very well in this
game. After updating about 30,000 times, the agent scored from
5,000 to 9,000 in a short time, and finally reached 15,000. Com-

5ⓒ 2021 Information Processing Society of Japan

Vol.2021-MPS-132 No.15
2021/3/1

IPSJ SIG Technical Report

Fig. 10 The intrinsic rewards in Private Eye. The blue curve represents
RRND, the green curve represents RND, and the orange curve rep-
resents SRG.

pared with RRND methods, both of RND and SRG have almost
no score. In Private Eye, if you want to get a higher score, you
must get a specific item and return to the corresponding room. So
in some cases, you have to go back to the room you have visited
(this is a common situation in this game). However, agents who
use the RND algorithm to explore, in theory, will not return to
the original room because returning to the room they have visited
will not generate intrinsic rewards. Similarly, due to the problem
mentioned above, that is, the recurrent network has not learned
the sequential feature, SRG also will not return to the room that
have visited. Thus, both RND and SRG are difficult to get a high
score. On the other hand, RRND generates intrinsic rewards ac-
cording to different state sequences. For RRND, returning to the
visited rooms is a different order, which means that returning to
the visited rooms will generate intrinsic rewards. Therefore, the
agent has the motivation to return to the room that has been vis-
ited after obtaining the item.

6. Conclusion
In this work, we propose a novel type of intrinsic exploration

bonus which will reward the agent when a new sequence is dis-
covered. The intrinsic reward is the error of a recurrent neural
network predicting features of the sequences given by a fixed
randomly initialized recurrent neural network. We tested the pro-
posed method called RRND in the hard exploration environment
of Atari2600 and found that RRND performed very well in en-
vironments where the sequential relationship is very important,
such as Private Eye. At the same time, the performance in other
hard exploration environments is better than the other two meth-
ods. Therefore, RRND does improve the problem of recurrent
neural network degradation in the SRG method.

However, on the other hand, we also found a limitation with
RRND. Suppose the environment shown in the Fig. 11. When
using RRND or the others, such as SRG, RND, etc., since some
area on the left have been explored by the agent, the agent will
choose to explore the right, but the real goal is on the left. This
causes the agent to fail to find the goal. It is a future work to
address this limitation. We can possibly use the Intra-life intrin-
sic rewards [18] to solve the problem because they encourage the
agent to periodically revisit familiar (but probably not fully ex-
plored) states over several episodes.

Acknowledgments This work was partly supported by JSPS
KAKENHI Grant Number JP19K12118.

Fig. 11 Example of an environments where RRND will probably fail to ar-
rive the goal. Green represents the area that has been explored,
while red represents the goal and blue represents the agent.

References
[1] D Zhao, K Shao, Y Zhu, D Li, Y Chen, H Wang, D Liu, T Zhou,

C Wang. Review of deep reinforcement learning and discussions on
the development of computer Go, Control Theory and Applications
33 (6), 701-717, 2016

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Belle-mare, Alex Graves, Martin Riedmiller,
Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra,Shane Legg, and Demis Hassabis. Human-level con-
trol through deep reinforcement learning.Nature, 518(7540):529–533,
February 2015.

[3] Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov.
Exploration by random net-work distillation. In 7th International Con-
ference on Learning Representations, ICLR 2019, NewOrleans, LA,
USA, May 6-9, 2019.

[4] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell.
Curiosity-driven exploration by self-supervised prediction. In pro-
ceedings of the IEEE Conference on Computer Vision andPattern
Recognition Workshops, pp. 16–17, 2017.

[5] Kazuhiro Murakami, Koichi Moriyama, Tohgoroh Matsui, Atsuko
Mutoh, and Nobuhiro Inuzuka. Exploration Improvement by Sequen-
tial Intrinsic Reward Generator in Deep Reinforcement Learning.
IPSJ Transactions on Mathematical Modeling and Its Applications,
14(1):1-11, 2021. (in Japanese).

[6] E. L. Ryan, Richard; Deci. Intrinsic and extrinsic motivations: Classic
definitions and new directions.Contemporary Educational Psychology,
2000.

[7] R. W. White. Motivation reconsidered: The concept of competence.
Psychological Review,66:297–333, 1959.

[8] Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic moti-
vation? a typology of computational approaches.Frontiers in neuro-
robotics, 1:6, 2009.

[9] Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing ex-
ploration in reinforcement learning with deep predictive models.arXiv
preprint arXiv:1507.00814, 2015.

[10] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor
Darrell, and Alexei A. Efros. Large-scale study of curiosity-driven
learning. In arXiv:1808.04355, 2018.

[11] Åström, K.J. (1965). Optimal control of Markov processes with in-
complete state information. Journal of Mathematical Analysis and Ap-
plications. 10: 174–205.

[12] Junyoung Chung et al.: Empirical Evaluation of Gated Recurrent
Neural Networks on Sequence Modeling, arXiv: 1412.3555 [cs.NE]
(2014)

[13] Sepp Hochreiter, Jurgen Schmidhuber.: Long short-term memory,
Neural Computation, 9(8), p. 1735–1780 (1997)

[14] Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig, Schneider,
Jonas, Schulman, John, Tang, Jie, and Zaremba, Wojciech.: Openai
gym. arXiv:1606.01540 (2016).

[15] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift.arXiv preprint
arXiv:1502.03167, 2015.

[16] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[17] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic op-
timization. ICLR, 2015.

[18] Christopher Stanton and Jeff Clune. Deep curiosity search: Intra-life
exploration can improve performance on challenging deep reinforce-
ment learning problems.arXiv preprint arXiv:1806.00553,2018.

6ⓒ 2021 Information Processing Society of Japan

Vol.2021-MPS-132 No.15
2021/3/1

