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1. INTRODUCTION

A database is a collection of database relations each representing facts of a specific type
in the real world. For retrieving and updating database relations, we have to provide various
database manipulating operations. Some of them are relatively simple but some others are very
complicated. It is desirable to have a finite set of database operations by whose combinations
we can achieve any desired database manipulation. Hence we would like to clarify what the essen-
tial operations are. This may leads us to abstract the database operations. Several different
levels of abstraction can be established.

In this paper three levels of abstract database operations are introduced. One is composed
of only one operation called the alpha operation. It is specified by a pair of a calculus and a
tuple generating function. The relational calculus is somewhat extended to enable definition of
any logical function defined on a Cartesian product of databse relations.

The second level is composed of various algebraic operationms, including relational algebra,
information algebra, and navigations. The alpha operation can be decomposed into a procedural
combination of these algebraic operations. However., such a decomposition is not always brings
the best performance into executing an alpha operation.

The third level is composed of tuplewise operations that are obtained by a direct decomposi-
tion of alpha operations. They are necessary for achieving optimal implementation of certain
database manipulations. Data manipulation languages can be designed with these three levels of
abstract database operations taken into consideration.

2. FUNCTION OF TUPLES

A function whose domain is a Cartesian product of m database relations

Az RlXRZX...XRm'*V

is called a function of lines of span m regardless of what its range is. In particular, A is call-
cd a function of points if m=1.
A function whose domain is a power set of database relation
u: P(R) >V
is called a function of areas regardless of what its range is. Functions of lines and functions of
areas are collectively called functions of tuples.
For example, 'overtime-charge' is a function of points defined on a relation EMP if koth the
'overtime' and 'overtime-rate' are its attributes. In this case.
overtime-charge(t) = overtime(t)Xovertime-rate(t)
for any tuple teEMP. We may write the right hand side simply as (overtimeXovertime-rate)(t). If
the 'overtime-rate' is an attribute of EMP but the 'overtime' is an attribute of another relation
TRANS, then the 'overtime-charge' becomes a function of lines of span 2 defined on EMP TRANS, that
is
overtime—charge(tl,tz)s overtime—rate(tl)XOvertime(tz)
for t. €EMP and tzeTRANS.
%he 'weekly-salary-total' of a department is a function of areas defined on the power set of
EMP if the 'salary' is one of its attributes. For a subset, say 'MARKETING'. of EMP, this function
can be defined by
weekly-salary—total (MARKETING)=Z
using an aggregate function I.
Among the function of points, the following three types are called the basic functicns of
proints, since they are the only data that can be directly obtained from the database relations:
(1) A(t) = constant

teMARKETINGS 21T (1)

(2) A(t)EEAk(t) the k~th attribute value of tuple t.
- a monadic logical function that takes 'true' value if and only if t belongs
(3) A(t) = teR
to relation R.

From a set B of the basic functions of points, we can generate various functions of tuples.
Operators defined in various value sets are extended to the operators combining functions of
tuples. If an operator

I V1><V2><...><vm—>vf

is defined in a Cartesian product of m value sets, then f can be extended to an operator

1.
Fr'i FXE X XE_>Fp

with each F, being a set of functions of tuples whose range is V, and F being a set of functions
of tuples wﬁose range is Vf. The extention is achieved homomorph%cally y defining
Py el ) () 2 £(51(27),85(25) 5o e 8 (5)),

where z is a tuple (point), an ordered set of tuples (line) or a set of tuples (area), and each z,
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is a point, a line or an area, which, as a set of pointG is a Subset of z.
An aggregate operator

a: P(V)~>vVv
defined in a value set V can be extended to an aggregate operator

a': I_+M

v v

where I is a set of functions of points whose range is V, and Mv is a set of functions of areas
whose range is V. The extention is achieved by defining

a'(A)(8) = dtssk(t)

for aell and SeP(R).

Amdng various functions of tuples generated from the set of B of basic functions of points,
the following two play very important roles in database manipulation. One is the logical functiomn
of lines

A RIXRZX...XRm~>{'true','false'},

which can be regarded as a predicate with m free variables.

A predicate can include bound variables in addition to free variables. They are bounded by
universal or existential quantifications or by some other means. In its prenex normal form, A can
be written as

= T
A(tl,tz,...,tm): Q1Q2...QP(A (tl,tz,...,tm,tm+l,tm+2 ...ﬁtm+q))
with p<q. Here t, is a free variable for Ogkzm, a quantified variable for mtl<k<mtp, and another
bound variable £or mtp+l<k<mip+q. A Q,_ is of the form t /R or Jt, /R ,,, which are respectively
. == k k' Tmtk k' Ttk
a shorthand notation of

Vtk(mtkng+kV(. ) and Ity (eR oaCe D).

For examnle, in 3
AMe) 2T, /R (AL (£)=A, (£ )84, (£,)=2 - A (E))
1 A0y A T R R A A § t3€R3AA3(t3)—A3(tl) 2°73

defined for t aRl, t. is a free variable, t, is an existentially quantified variable, and t3 is a
variable bounéed in %he scope of aggregate %unction .

As a special case, we may have predicates without free variables, that is. m=0. They cannot be
regarded as a logical functions of tuples, instead they can be considered to be statements regard-—
ing the whole database.

The other is the function of tuples defined as an ordered set of n functions of tuples, that
is,

(6y58gs e enb ) (2) % (L ()55 (2) 500 en (@)
with z being a point, D line or-anm aréa. For a given z. such a function generates a point (tuple).
Hence we will call such functioms tuple gemerating functions.

Generation of functions of tuples from the basic functions of points accords with a certain
generative grammar. Let G be the set of productions of the grammar and & be the set of operators
combining functions of tuples, quantifiers and other symbols such as those determining the woperator
precedence. We have a set F(B,®,G) of all the functions of tuples that can be generated from B
according to G using ®. This set represents the computational capability possessed by the given
system.

3. ALPHA OPERATION

Database manipulation, in general, can be seen as a transformation from m input relations into
m' output relations.as shown in Figure 1. Obviously, this transformation can be regarded as a com-
bination of m' transformations each transforming m input
relations into one output relation. Each transformation
can be considered as an m—ary set operation
T(Rl,Rz,...,Rm)=R.

There are a variety of set operations that can be
applied to a database. They cannot be classified into a
finite number of patterns. Therefore, we cannot prepare Transformation J
all such set operations as basic database operatioms.
However, if we could have a collection of elementary
set operations by whose combination any database manipula-
tion could be described, they would be a gcod abstraction.
A number of trials to find such a collection of elementary wmmma-
set operations have been made. Information Algebra [CODA-
SYL 1962] provided five set operations; Relational Algebra
[Codd 1972] provided eight set operations; and Extended
Set Theory [Childs 1968] provided about twenty set opera- Fig, 1: patabase Manipulation
tions. Here, we will consider only one elementary set as an m-ary Set Operation.
operation, which we call the alpha operation after Codd's
Alpha Sublanguage [Codd 1971].
An alpha operation is the set operation which extracts all the lines (ordered sets of tuples)
satisfying a logical function A of lines out of a Cartesian product of m relations and, for each
qualified line, generates a point (tuple) using a tuple generating function B of lines. It is
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defined by
a[B:A](Rl,Rz,...,Rm)={8(2)lzes[k}(Rl,Rz,...,Rm)}
where

s[A](Rl,Rz,...,Rm)={2|ZeRlXR2X...XRmAA(l)}.

The s-operation defined as above is called a search. In particular. if m=1, the search operation

s[AT(R)={t|ter A(r)}
is called a retrieval.

The alpha operation must, therefore, be specified by two arguments, a logical function X of
lines (a predicate) and a tuple generating function B of lines, both defined on R, XR_X..

have m operand relations. In Codd's terminology,
B

is called an Alpha expression, in which the B is called the target list and the A is called the
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.XR_, and
m

relational calculus. In Information Algebra, the alpha operation is called bundling, in which the
B is called the function of bundle (FOB) and the A is called the bundling function.

In relational calculus, domains of free (tuple) variables are explicitly specified by range

terms, that is,
tlaRlAtgeRzé...AtmeRmAx(tl,tz,...,tm).
Range term of the form
e E

is allowed only when it is conjunctively combined with another range term regarding t, . In Alpha

Sublanguage, such domain specifications together with quantifications for bound variables are
described separately from the Alpha expression. In Codd's relaticnal calculus, predicate X

is a logical combination of unit terms each composed of an attribute and another attribute or a
constant combined by one of relational operators =, #, >, <,
relax this restriction. In fact, in our definition A is an arbitrary logical function of lines.

For example, we may have logical functions such as

Al(t)<3XA2(t),

Ay (e d=A, (£))+A(t,)

sin(Al(t))+3Xcos(A2(t))>l/2

and
(Al(t),q)/|A1(t)|]q[>0.75.

The last expression shows the search condition in cosine retrieval which freduently aprears in
pattern matching applications. A,(t) and q are respectively a pattern and a query vector. (p,q)

> and <. Our definition somewhat

is an inner product of p and q. and |p| and [q| are respectively the norm of p and q. Hence we

deal with somewhat extended relational calculi.

Figure 2 illustrates an alpha oneration. Database
manipulation, in general, can be expressed by an alpha
operation or a (procedural) combination of several
alpha operations.

4. RELATIONA ALGEBRA

We will next discuss seyeral sets of special alpha
operations that plays certain important roles in database
manipulation. Codd [ 1972]|presented eight algebraic
operations collectively called the relational algebra.

Of them the following five are basic. The first two are
binary set operations whose operands are two relations
with a common set of attributes

A={A1,A2,...,An}

(1) difference defined by
d(Ry,R,)=alB:A](R))

Ae) = €' /R, ([AI(E)# 141 (e ")) 1

with

and
B(t)=t.
Here [A](t) means concatenation of Ak(t) values for
AksA.
(2) union defined by
U(Rl,R2)=a[B:T](Rl,RZ,d(Rl,RZ))

where T is a logical function of lines that assigns 'true' value to every lime (t

Rlszxd(Rl,Rz), and

a[B:Al(R R

B(L,)

Fig.2: Alpha Operation

1°%2

€, GE [A(e=141(t,) or [A)(t)#IA1(E,) AL141(E)=[41(E))

3<t1’t2’t3)5{ ty (F [A1(eD#1A1(e,) A T4 (e #1A1(E ).

IR

,t3) in

The above definition implies a procedural combination of two alpha operations. It may generate

= =t 1
ﬁ(ll)—X(Rz) true

.,Rm)



a number of duplicated tuples, however, they are eliminated according to the definition of the
alpha operation.

The next two are unary set operations. Let R be a relation with attribute set 4.
(3) selection (or restriction) defined by

s[A1(R)=a[B:A](R)
B(t)=t.

The X is an arbitrary logical function of points defined on R. It is no other than the retrieval
operation we defined in 3. Hence we use the same notation.
(4) projection defined by

plA' I(R)=a[B:T1(R)

where
BIE)ECA; (£),A 5 (E)5uen A (£))
R L T

This operation again includes elimination of duplicated tuples.

The last one is a binary operation whose operand relations are not necessarily with a common
set of attributes. Let R, and R2 be two relations respectively with attribute set
A={A Ay, e K 3

with

with

and
A2={Ai+l§Ai+2""’Aj}'
(5) multiplication defined by
] m(R ,R,)=a[B:T]1(R;,R,)
with
B(tl’tz):(Al(tl)’AZ(tl)""’Ai(tl)’Ai+l(t2)’Ai+2(t2>""’Aj<t2))'

The multiplication resembles making a Cartesin product. However, different from the Cartesian pro-
duct, it generates a relation instead of a set of tuple pairs.

The following three are the set operations which Codd originally presented in addition to the
above five. They are described as procedural combinations of the basic five operations. The first
one is a binary operation applied to two relations with a common attribute set.

(6) intersection defined by
1(R1’R2) _—d(Rl,d('Rl ’Rz)) .

The second is also a binary set operation but the two operand relations are not necessarily

with a common attribute set.
(7) join defined by
JIMIR R =8 A 1(m(R) ,R,)) s

where A is an arbitrary logical function of lines of span 2 defined on RlXR , which has an
equivalent effect to that of A', a logical function of points defined on m(ﬁl,Rz).
For example,
At ,t,)ZA (. )=A, (t,)
defined on R ;Rzzis équ%valéntzto
Ao g (=4, ()
defined om m(Rl’R2)°
The last Opefation is a binary set operation. Attribute set 4. of the first operand relation

Rl must include attribute set A2 of the second operand relation RZ‘

(8) divisiod defined by

(R} ,R,)=d(p T4 =4, 1(R)) ,p 144, 1 (d(m(p [4;-4, 1(R)) 1R,) ,R}D)) -
The division can also be defined directly by

V(R),R,)=alB:A](p (44,1 (R))

Ae)E ey /Ry Fe /Ry (14, 1(£)=14,1 (e )74, -4, 1 (1) =14, -4, 1(£))

where

and
B(t)=t.
It is sure that all the relational algebra operations can be defined as an alpha operation or
a procedural combination of alpha operations, and hence they can be described in terms of the alpha
operation if it is implemented as a standard database procedure. However, relational algebra opera-
tions can be directly implemented to improve their execution performance.
Conversely, the search operation
s[X](Rl,Rz,...,Rh?
can be achieved by a procedural combination of several relational algebra operations. This was
shown by Codd as the relational completeness of relational algebra [Codd 1972]. In this semnse,
the relational algebra is said to be equivalent in expressive power to that ot relational calculus.
Note that the relational algebra is not equivalent in expressive power that possessed by the
alpha operation. To make it equivalent, we must provide an additional operation:
(9) transformation defined by
t[BI(R)=a[B:T1(R)



where B is an arbitrary tuple generating function of points.

5, INFORMATION ALGEBRA

CODASYL Development Committee [1962] presented five set operations as a set of elementary set
operations. They were not devised with regard to the database management, but they can be consider-
ed as a database manipulation abstraction. The first three of these five are unien, intersection
and difference, which we have already defined in relational algebra. The fourth is called the
bundling. Although the bundling was defined in a little conventional manner and few people recogniz-
ed its equivalence to the alpha operation, the essentials of the bundling are those of the alpha
operation.

The last operaion is the summary operation, which was called the glumping. It can be defined by

gly: A1 (R)=alB:T1(alX:T1(R))
with A being a function of points defined on R and Yy being a pair

YE(al,az,...,anzkl,lz,...,xn)

composed of a list of n aggregate functions, al,az,...,un, and a list of n functions of points, Al,
AgsesasA o -
2 Thenfirstly applied alpha operation a[A:T](R) generates a relation with only one attribute A
(duplicate tuples are eleimnated), that is,

a[x:T1(R)={(A(t)) |ter},
For the next alpha operaion, the B is defined by
B(tM=(a ;85,0052 )
with n

a, =0 A (E) .

K kerpa(e)=ae ) &

This operation classifies R according to the A (usually called the control break) value, and then
generates a (summary) tuple for each class.

Though the summary operation can be defined as a procedural
combination of two alpha operaions as shown above, it can be
implemented much more efficiently using a sequential processing
applied to R In the sequence of A value). A summary operaion is R
illustrated in Figure 3.

Union, intersection, difference, alpha operation and
summary operation are collectively called the <Information algebra.
Information algebra seems to be convenient in describing conven-
tional data processing like various file maintenance operations.

6. Imaginary Tuples

Bundling operation in Information Algebra was originally
devised as an abstraction of collating m files (relations). In
fact, collation is a basic procedure in the file maintenance
which is the most important operation in traditional data pro-
cessing. In the file maintenance involving one master and one or gly: Al (R)
more transaction files, an alpha operation
with a[B')‘](Rl’RZ’""Rm) Fig.3: Summary Operation.

Atpatyseent )AL (A (£)=A (£)),
where R, is the master (relation) and Rys...,R are transactions
(relatidons), is a basic operation. "

In many applications frequently occur the cases where a match is found except for some rela-
tions. For example, let R,,R, and R, be three relations respectively representing an inventory
master, a warehousing trafisaCtion aid a delivery transaction.in an inventory control application.
Tuples in these relations are to be matched by a common primary key Ap. In this case, we have to
consider seven different matches each specified by one of the following conditions:

Yﬁsl)

¥(8,)

1° Al(tl,tz,tB)EA (tl)=Ap(t2)AAp(tl)=Ap(t3) (defined on RlszxR3)
2° Az(tl,tz)EAp(tl)=Ap(t2)At3/R3(Ap(tl)#Ap(t3)) (defined on R, *R,)

3° A3(t1,t3)5Ap(t1)=Ap(t3)At2/R2(Ap(tl)#Ap(tz)) (defined on RlxR3)

4° AA(t2,t3)EAp(t2)=Ap(t3)Atl/Rl(Ap(tl)%Ap(tz)) (defined on R,*Ry)

57 X5 (t)) 5ty /Ryta/Ry(A (£)FA (£5)0A (2)#A (€3)) (defined on R, )

6° l6(t2)Etl/th3/R3(Ap(tl)#Ap(tz)AAb(t2)¢Ap(t3)) (defined on R))

7% A (eg) =t /Ry ty /Ry (A ()74 (£2)AA (£))FA (t4)) (defined on R,).

The seven different matches are illustrated in Figure 4.

To each of the above seven matches, an appropriate tuple generating function of lines (of span
1, 2 or:3) must be given for generating a new tuple when a match has been found. Then the new
inventory master 1is obtainable by seven separate alpha operations each corresponding to one of the



seven different matches, followed by union operations combining the results, that is,
ualt:hd (R)) ,uCu(@lB A TR LR, Ry ulalBy 1 (R, Ry) ulalBy A1 (Ry,Ry),

al8,:0,1(R,,R)))) ,ulalBeihg] (Ry),alBy:A;1 (R,

where i is an identity tuple generating function R, R,
() =¢t,
and B,,8,,B,,8,,B, and B, are tuple generating functions
defined respectively on RlxRZXR R RlxR . RIXR3, szR3,
R, and R3. The above very awkwara descr%ption ctan “be
s%mplified if we introduce imaginary tuples défined below
into the relations to be collated. The imaginary tuple %t
of relation R, is a tuple to be supplemented to s whic%
acts as if it were a real tuple with appropriate attribute
values when ) value is to be evaluated but acts as a null
tuple when B value is to be calculated. That is, Fig.4: Different Matches in
)‘(tl’tz’ LR ’tk—l’Tk’ tk+l’ e ,tm) Collating Relationms.

becomes 'true' if and only if
A Avu A A € Aoyl A A v .o e
e eter s AR TR A R Ny SRy e TR TR € MEpEyse st g B oo ty))
is satisfied and
A}
X(tl,tz,...,tk_l,tk,tk+l,...,tm)
would become 'true' if an appropriate tuple ti were appended to Rk’ The tuple generating function
R must be calculated without t! in this case.
In the above condition for activating imaginary tuple Tyer other tuples t ’t2""’tk—1’tk+1’
<y tocan also be imaginary tuples. However, at least one Of them must be a'real tuple.
Let us denote R.u{T,} by R, .
Having intFoduCed an Imaginary tuple into each of R
inventory control example simply as
al[B:A] (R}, R,,Ry)

x(tl,tz,t3)EAp(t1)=Ap(t2)AAp(tl)=Ap(t3)

1 R2 and R3, we can describe the subject

with

and
Bty sy, t) =8y (by,85,t5), BlE) ), To) =By (8),8,), BLE), Ty, t0) 3By (Ey,t5),
B(letz,t3):84(t2,t3), B(ty,T,y,T5) 3t B(Tyst,,T4) =B, (t,) and B(rl,rz,t3):s7(t3).
Introduction of the imaginary tuples not only enables simpler description of some traditional
data processing operations but also enables an efficient implementation of the operations to which
a sequential collation procedure is applicable.

7. NAVIGATIONS

Sometimes it is convenient to distinguish relationship relations from other entity relations.
In particular, data models like Entity-Relationship Model [Chen 1976], Information Space Model
[Kobayashi 1975] and Coset Model [Bachman 1974] assume some normal forms regarding relationship
relation [Kobayashi 1980]. When we use such a model as the basis of database design, some special
alpha operations become very important.

Let R, and R, be two relations respectively with attribute set A, and 4,. Let R be a relation-
ship relatIon defined between R, and R2 (R, and R, are not necessarily diffeTYent relations). The
attribute set of R is composed of Arl whic% is a subset of 4,, Ar2 which is a subset of 4,, and a
set Ao of other attributes. Here [Arl} and [ArZ] are respect%vely the selected primary key of Ry
and Ry.

%he following four alpha operations are collectively called the napigations along relationship
relation R:

(1) ng(t),R),R)=a[B:Al(R,,R)
TR (e, 0 S 1= 1Ce )AL, ] (0)=14,, ] (E))

and
CONOE CH O NN ORI ON W CON W COPRN W)

A4,={A Ay, o5A ) and A2={Ai+1,Ai+2, oo .,Aj}.
(2) n, (Ry,t,,R)=alg:31(R;,R)

with _ _
o A(tl,t)smrzl(t)—lflﬂ](.tz)A[Arl](.t)~[Arl](tl)

where

B<t1’t)E(Al(t)’AZ(t)"'"Ah(t)’Ah+1(ﬁl)’Ah+2(tl)"”’Ai(tl))

where

T N N i
(3 n, (R;,R)=alg:3}(R))

VIER ) (e)E/R(A_ 1 (014 1(E,))



and

Mtﬁsﬁj
(4) n,(R,,R)=a[B:A](R,)
PR A (e,) t/RAUA,1(0)#14_,1(x,))
and

B(t,)=t,.

The ng (forward navigation) and ny, (backward navigation) retrieve all the tuples that are con-
nected respectively with t; and with t) by some tuples in R. The n, (apex navigation) and ny (ter-
minal navigation) retrieve all the gpices and all the terminals respectively with respect to R. By
these four operations, we can traverse the relationship relation R as shown in Figure 5.

Navigations are special alpha operations; however, they
can be implemented directly in some more efficient ways, in
particular, when binary relationship relations are physically
represented in a different way from that in which entity
relations are represented.

8. TUPLE-BY-TUPLE OPERATIONS

We may have a data manipulation language with only one
statement corresponding to the alpha operation. Because of
the relational completeness, we may have another data mani-
pulation language with statements embodying the rélational
algebra plus transformation (See 4). Also, we may have one
with statements corresponding to the information algebra.
These statement languages can be enriched with statements
embodying navigations. (Without navigations discrimination

between entity and relationship relations is not so signifi- na(tl’Rz’R)
cant.)

These statement languages are in most cases suitable Fig.5: Forward and Backward
for casual users who make queries to the database in an Navigation.

interactiye processing mode. However, there are other user

types, for example, realtime users who use the database in

their routine works, parameter users who retrieve and

update the database in batch mode, and programmers who

implement end-user languages for various types of users.

The above statement languages are not always suitable for these users. This is because all the
alpha operations are "set'" operations.

It is true that the alpha operation is powerful enough in describing a diversity of data
manipulations. Given a data manipulation, we can describe it as an alpha operation or a proce-
dural combination of several alpha operations, which we will call an alpha construct. However,
the alpha construct have several difficulties.

(1) It usually contains many redundant data transfers.
(2) Integrity and security become difficult problems.
(3) It is not fit for being integrated into the host language.

For example, let us consider a simple file maintenance operation, which is written as an alpha
construct

u(d(R;,al¢: A1 (R ,R,),a[B:A] (R} ,R,))),

where ¢ is a tuple generating function that extracts the first component of a pair of tuples, that
is, _

¢(tl,t2) ty-
The above alpha construct updates master relation R, using transaction relation R,..It includes

four alpha operations that must be executed proceduf¥ally like 2
begin R:=a[¢:k](Rl,R2); R':=d(Rl,R); R":=a[B:A](R1,R2); Rl:=u(R',R") end;

(The last assignment statement implies that the old master is to be replaced by the new master.)
It is obvious that this procedure coantains many redundant data transfers, that can be avoided if
the whole process is executed in parallel using a traditional sequential collation. Integrity and
security should be specified for the whole file maintenance operation. It is very difficult to
specify them for each component of the alpha construct.

In order to avoid these difficulties, we may decompose the alpha operation into certain finer
operations, and combine these finer operations in an appropriate sequence to achive the given
data manipulation more efficiently. By arranging them in a proper sequence, we can remove duplicate
data transfers, that were inavoidable in a procedural execution of alpha operations. Also, the
integrity and security problems can be dealt with much more easily.

Three classes of such finer operations can be considered. The first one fetches a tuple or an
ordered set of tuples into one or a set of workspaces, Usually one workspace is provided for each
database relation. A workspace can accommodate a tuple at a time. The first class is called the
read class operation. The second class includes operations to generate a new tuple using one or



more tuples in the workspaces. The result is stored into an appropriate workspace. This class is
called the calculate class. It also contains some control transfer operations that determine the
operation to be executed next according to the value of a certain function of tuples.

The last class, which we will call the write class, is composed of the update operations,
which add, delete or replace a tuple in a database relation with reference to a tuple currently
in a specific workspace.

These three classes are collectively called tuple-by-tuple operations (piped-mode operations
[Codd 1971]). Among them, the calculate class operations can be committed to the care of the host
language, while the other classes can be implemented as database routines to be supplemented to it.

Read class operations can be obtained by decomposing the search operation s[AI(R,,R,,...,Ry).
The qualified tuples are arranged in a certain sequence, for example, in the sequence of the value
of a specified function A' of lines, and fetched one by one according to this sequence. A cursor
must be provided for each relation Ry. If relationship relations are distinguished from entity
relations, another type of read class operation can be obtained by decomposing navigations.

Write class operations are composed of add, delete and replace a tuple. If relationship
relations are distinguished from entity relations, some additional write class operations that
update relationship relations together with entity relations on which they are defined can be
provided.

9. CONCLUSION

We have so far discussed three different abstractions of data manipulation; one composed of
only one set operation, the alpha operation; one composed of various algebraic operations; and
one composed of three classes of tuple-by-tuple operations. The first two can be implemented as
a statement language for casual users. The last one leads us to implementing host language type
database management systems.

There can be many more data manipulation abstraction levels which are suitable for various
classes of end-users. End-user languages for such users can be implemented using the host language
enriched by the database routines. Different from the three abstractions thus far presented, they
are usually not necessarily equivalent in expressive power to the alpha operation.
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