TS N—2AEBWL AT L 29— 3
(1982 3 17)

GOING --- A DaTa SuBLANGUAGE UsING A GRAPHICS DISPLAY

(5374998 T4 AT L-YRAOET - 9455 GOING)

Yoshihisa Udagawa
and Setsuo Ohsuga

Institute of interdiscriplinary research
faculity of engineering, Tokyo University
4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan

1. Introduction
This paper concerns design and implementation of a friendly user interface
language for the relational databases. A less procedural or non-procedural

language is considered to be preferable to end user languages, bacause it
permits a user to focus on the functional specifications of a given problem
rather than on its solution methodology.

So far, a number of non-procedural interface languages have been proposed
for expressing queries against relational databases. GOING (a Graphics
Oriented INteractive data sublanGuage) , the language discussed in this paper,
belongs to the graphics oriented data languages. By taking advantage of two-
dimensional representation of a query by using a graphics display , queries
are expressed within a simple and easy-to-understand conceptual framework.
GOING is designed to enable the wuser to express queries in terms of nodes,
arcs, comparison predicates and functions. Other well known language with a
similar basic orientation includes Query-by-Example [8] and CUPID [2].

The main features of GOING are as follows :
(1) GOING uses little Englishlike text, thus avoiding difficult language pro-
cessing by the system and spelling mistakes by the users ;
(2) GOING does not require knowledge on the predicate logic ;
(3) GOING does not require to invent the variable names ;
(4) GOING provides a concise, easy-to-understand representation of queries ;
(5) GOING enables the user to state a query in a non-procedural way ;
(6) GOING provides high expressive power and has strong theoretical basis.

In section 2, we illustrate GOING and compare it with two other graphics
oriented languages, 1i.e. CUPID, Query-by-Example. Section. 3 discusses how to
define a virtual relation through a GOING expression. Section 4 contains the
proof of relational completeness of the data sublanguage GOING. Section 5 deals
briefly with implementation of the overall database system.

2. Describing queries in terms of GOING expressions, comparing GOING with

CUPID and Query-by-Example)

In this section , the query 1language GOING is illustrated by means of
example queries and is compared with other graprhics oriented languages, 1i.e.
CUPID, Query-by~-Example. The database consists of the following relations.

LYP(LAND, YEAR, PRIC) ;
LU (LAND, USAG) ;
LDA(LAND, DIST, AREA).

The relation LYP has a row giving price for each 1land's identifier and
year. The relation LU gives the usage of each land. The relation LDA gives,
for each land, its area and the distance from the center of a city in which it
is located.

A query against more than one relation with Boolean conditions

Query 1. List the lands of usage a and their areas, which are less than
35 kilometer aprat from the center of a city and whose prices are less than
600,000 YEN/m? in the year 1981.

A domain or literal

expression preceded by GOING LYPAYEAR IS #1981
""" symbol denotes to

list the value of it. LU
The arc which connects

inside of the right

ellipse and the first

argument of the Boolean

predicate LU:USAG IS 'A'

indicates that there are

LYP/PRIC IS GLT #60

LDg:DIST IS GLT #35

some lands in the ~LDA+AREA Ebg:tgug
column LAND in the LDA:LAND

relations LU, LYP, LDA

whose usages are 'A',

The literal expressions LYP:PRIC IS @LT #60 and LDA:DIST IS @LT #35 denote that
the values of the price in the relation LYP and the values of the distance in
the relation LDA are less than 60 and 35, respectively.

CUPID

LDA[LAND [DIST | AREAJ Lu| Lanp | usaG | LYp| LAND | YEAR | PRIC |

é): & & ©

Query-~by-Example

LYP LAND YEAR LU LAND USAG LDA LAND DIST AREA
1 '1981! P. te! 1 <135 P.

A query against more than one relation with a universal quantification
Query 2. List the lands which are
inquired in all the years, their
usage and distance from the center
of a city.

GOING ~LU:USAG

~LDA:DIST

Note that only those domains
referred need be represented in the
GOING expression. In this example,
the column PRIC in the relation LYP

and column AREA in the relation LDA ALU:LAND

LYP:LAMHD
are not used in the above expression. LDA:LAND
LYP ' YEAR

CUPID /\ /\
A EQ E

NS4 Q
@ LaND | YEAR | [LYp[cCanp[veEar] [Lu] cLanp[usac| [Lba] LaND [DIST |

[

&

Query-by-Example

LYP LAND YEAR LU LAND USAG LDA LAND DIST
P. 1 all 1 P. 1 P.

A query using built-in arithmetic and aggregation fuctions
Query 3. List, for GOING LUjUSAG IS 'A’
each land of usage a ———

and inquired in the
year 1981, its ~SUBC K, AVGCK) >

ldentifire, its price .o wrar 1ske1o81 LYP\YEAR IS #1981
and the difference of
the price with the
average price computed
on all lands inquired
in the year 1981.

~LU:LAMD ~LYP:PRIC
The literal expression SUB(*,AVG(*)) demonstrates that a built-in function may
be nested to any levels so far as the value of arguments are properly defined.
Note that first argument of SUB(*, AVG(*)) is some values of column PRIC in
the relation LYP, while the argument of AVG(*) is some subsets of column PRIC.
This difference is explicitly expressed in the above GOING expression.

CUPID

N
€

) & e

€9 € <

LYP| LAND | YEAR] PRIC | @LPRIC [YEaR]
0o 0| _ (o3

Query-by-Example : Not expressible

A query with a nested aggregation function and a Boolean condition

Query 4. What is the
average number of GOING LDA|AREA IS RGE #1008
lands per usage, which AAUGCUCOUNTC X > >

‘are inquired in the
year 1981 and whose
areas are not 1less
than 100 square meter.

LYPYEAR IS #1981

This query contains
the nested aggregation
function AVG(UCOUNT(%*)).

The argument of this LU:USAG
function is a set of LU:LAND
subsets of lands teg:tgng

inquired in the year

1981 and corresponding area is greater than or equal to (not less than) 100
square meter. The subsets of lands are determined for each usage. This fact is
represented by the arc connecting inside of the ellipse LU:USAG and the
innermost ellipse of the right figure.

CUPID

(58 ©
&5

[EE] LAND | USAG | QEEH' LAND | YEAR | LDA] LAND | AREA |

& ©

(I

Query-by-Example : Not expressible

3. Defining a virtual relation through a GOING expression

A virtual vrelation supports high level relational database schema. In
other words, it provides the language level interface which is suited to user's
goals. Virtual relations are an important component of a database system
because (1) users often focus on a subset of the database, (2) from the human-
machine point of view, the re-execution of similar queries causing extensive
retrievals is expensive and increase the human labor. GOING allows a user to
define a virtual relation that can be used for formulating queries. An example
is given here. A virtual relation
Large-1and81(1,p,u) is defined by LBA)AREA IS @-LT #100
the following GOING expression by LYP,YEAR 1S #1981
using the base relations LYP, LDA

and LU. It gives, for each land

inquired in the year 1981 and whose %9 é%
area 1is not less than 100 square

meter, its price and usage. Once tgﬁitﬁﬁg LYP:PRIC LUUSAG
Large-land81(1,p,u) is defined , a U:LAND

user can describe the query 4 in

section 2 by the following GOING

expression.

LARGE-LANDBIC X , % b

Comparing this expression with one for the query query 4 illustrated in section
2, we find that the former GOING expression is shorter and clearer than the
latter in its representation. AAUGCUCOUNTCK D)

LARGE-LANDB1 :USAG

LARGE~-LANDS1 :LAND

4, Relational completeness of the data sublanguage GOING

The concept of "relational complete" is defined by [1] and is an
accepted standard for the theoretical power of relational database query
languages. A query language 1is said to be relational complete if any query
expressible by a relational algebra (a relational calculus) can be described
by a statement in the language.

In this section, we provide the operations in the relational algebra and
the semantically equivalent GOING expressions. Thus, GOING is shown to be at
least relational complete, in fact it 1is strictly more powerful than the
relational algebra , which will be also discussed.

In the following, let wus assume that R and S are relations over the
attributes Al...Am and B1...Bn respectively. A and B represent subsets of {Ai},
{Bj}, where 1 i <{m, 1< j<n, respectively.'? ,'? indicates the vectors of
variables {Xi}’ {y;} defined over the q&pributes A, B. A denotes the subset
complementary to A, i.e. A = {Ai} - A. b is a tuple of appropriate degree with
appropriate attributes.

In section 4.1, we list each operator of relational algebra, the formula
in the relational calculus, the formula in the multi-layer logic [3,4,6] and
the corresponding expression in GOING. Section 4.2 deals briefly with the gaps
between GOING and relational algebra.

4.1. Relational operators and corresponding GOING expressions

Codd wuses the four operators union, intersection, difference, and
Cartecian product to manipulate relations as sets of tuples. The four special
relational operators, i.e., projection, join, restriction and division, are
used to give the relational algebra its selective power. Note that the division
operator is not strictly necessary for relational completeness.

Union

Relational algebra : R
Relational calculus : {
Multi-layer logic : (

GOING : O

r €&R V r €3}

R:A
. 1) $:B
Intersection
Relational algebra RN S
Relational calculus : { y*: r € ngnd r €35}
-
Multi-layer logic : (3 x/A) [R(x) & 3(x) 1]

GOING : O

R:A

S:B
Difference
Relational algebra : R -3
Relational calculus : {r { r €R *and re& S}
Multi-layer logic s (@M LR & S)
GOING H

R:A

Cartesian Product - S8

Relational algebra : Rx S

Relational calculus : { (r,s)! r €R and r €5}, where (r, s) denotes the
ordered pair of r and s 1n that order.

Multi-layer logic : (3 */8)(3 ¥/B) {R(X) & S(¥) 1, where sets of domains A
and B are disjoint, i.e., {A} N {B} = & .

GOING

Projection

Relational algebra
Relational calculus
Multi-layer logic

GOING
Theta-join

Relational algebra

Relational calculus
Multi-layer logic

GOING

Restriction
Relational algebra

Relational calculus
Multi-layer logic

GOING

Division
Relational algebra
Relational calculus

Multi-layer logic

GOING

: R [A & B]

O

R:
x §:8

: R [A]

{ r[A] | r €R}
(3 %/8) [R(...,X,...) 1, where ...
lation contain other columns.

O

A R:AQ

indicates the re-

, Where € is one of the Boolean conditions
’ y <2, & 1

{ (r,s) | €ER and r €3 and (r(A] & s[Bl) }
(3T/MDET/B) [RC....%,...) &5(...,7,...) &

Bc(¥,¥) 1, where BC is an element of Boolean condi-
tions { EQ, NE, GT, LT, GE, LE }.

R;ﬁ ee S?B
R:A $:B

S
{=’#>
) r

->

R [A© 'b'] , where & is an element of { = , ¢ , > ,
<,2>,<1 -
{rir &R and (r[A]l€ 'b') }.

(38 [R(...,%,...) & BCC %,'B') 1, where BC is an
element of { EQ, NE, GT, LT, GE, LE }.

R})A @ 8 'CONSTANT'

~ R:A

R [Ai + Bjl S

{ rfAi] ! r €R _and { ¥ ! (r(AL], ¥) €R } D SIBj] },
where (r(Ail, ¥) denotes the ordered pair of r[Ai] and
y in that order.)

(¥ /A1) [SIX1 = R(...,%;,...) 1, where Ai is the
domain of a variable 7} and S[x;] is an abbreviation of
CRIZIDITHE R RN RPN R FIVEV PRI I ALY

S(;',...,xi,...x").

o€

~ R:A §$:B

4,2. The gaps between the GOING expression and the relational algebra

The relational algebra has two deficiencies for practical use.
does not contain arithmetic functions.
arithmetic functions are provided as built-in functions.
so far as domains and ranges are properly defined.

First, it
as shown in section 2 , the
They can be composed
The other problem with the

In GOING,

relational algebra 1is that the relational algebra is essentially a first order
language. Thus, queries containing grouping operations and aggregation
functions can not be expressed. Since, in GOING, the concept of a set and a
set of sets etc. are dealt with explicitly,

grouping operations and aggregation functions ~AGC XD

are described without expedient. (Note that

any GOING expressions correspond to a formula

in the multi-layer 1logiec. This fact is

discussed in [3,4,7].) For example, the

expression below applies the given

aggregation function AG to a subset of S:B ,

which is determined for each elememt of R:A. R:A S:B

5. Implementation of a database system

Figure 1 illustrates an overall database system designed and implemented.
This system supports a user interface language GOING. The query described by
GOING expression is then translated into the corresponding formula in the
multi-layer logic by the GOING processor. GOING has been implemented on top of
the MRDOS operating system for Data General Corporation ECLIPSE S/130 computer
system and programmed in FORTRAN IV. The results of experiments show that GOING
processor is efficient enough comparing with database access. Typcal GOING
expressions are translated into corresponding formulas in the multi-layer
logic in a second.

A database system based upon the multi-layer logic, named SBDS-F3 (
Structure Based Deduction System - Fortran version 3) has also been developed
by modifying SBDS-F2 that is based on the many-sorted logic. SBDS-F3 parses a
query expressed in the multi-layer logic, developes a virtual relation (if any
) by wusing its definition and reduces the resultant query into a sequence of
operations in the relational algebra. Thus, 1in the overall database system ,
SBDS~-F3 plays the role of transforming non-procedural expressions into
corresponding procedural expressions. On SBDS-F3 , [3,4,6] can be referred.

Notation GOING expression Formulas in the Relational
multi-layer logic algebra
System GOING SBDS~F 3

Role of accept parse
the system request inference, etec.

Figure 1. Overall database system designed and implemented.

ACKNOWLEDGEMENTS
I wish acknowledge all the members of Meetings of Information Systems for
their encouragements and constructive comments.
I would like to express my appreciation to Dr.K.Agusa, Ohno Lab. of Kyoto
University , for providing the SAFE editor system. The SAFE system is very
useful and exclusively used for preparing this paper.

REFERENCES

1] Codd,E.F. "Relational completeness of data base sublanguages," Data Base
Systems, Courant Computer Science Symposia Series, Vol.6 (R. Rustin, Ed.),
Prentice-Hall, (1971),pp65-98

2] McDonald,N. "CUPID -- A graphics oriented facility for support of non-
programmer interactions with a data base," ERL, Univ. Calif. Berkeley, Mem
#ERL-M563, (Novem. 1975).

3] Udagawa,Y " A Study on Design and Implementation of a Database System Based
on Predicate Logic," Doctorial Thesis, Tokyo University, February, 1982.

4] Udagawa, Y. and Ohsuga,S. "The multi-layer logit as a relational database
query language and its reduction algorithm to relational procedures," (in
Japanese), Joho-Shori (submitted).

5] Udagawa,Y. and Ohsuga,S. "Design and implementation of a database system
based on the multi-layer logic," Proc. of Advanced Database Symposium
(Dec. 1981) pp31-42.

6] Udagawa,Y. and Ohsuga,S. "Construction of SBDS-F3 : a relational database
with inference mechanism," RIMS, Univ of Kyoto, Kokyu-Roku, 1982 (in print-
ing).

7] Udagawa,Y. and Ohsuga,S. "Implementation of GOING : a data-language using
graphics display," RIMS, Univ of Kyoto, Kokyu-Roku, 1982 (in printing).

81 Zloof,M.M. : Query-by-Example : a data base language, IBM Syst. J.H4, pp324-

343(1977).

APPENDIX
Commands for GOING expression
Command 1 : <e¢> S m <c/r>
Command 2 : <¢> P m <e/r> .
Command 3 : <¢> T m <c/r> .
Command 4 : <e> N s <e/r>
Command 5 : <c¢> A <Kec> E <Le/r> .
Command 6 : <e¢> E <Ke> E <e/r>
Command 7 : <e> A <Ke> A <Le/r> .
Command 8 : <¢> E <e> A <Le/r> .
Command 9 : <e> D <e> <Le/r>
Command 10 : <e¢> X s <ec/r>

As an example, the query 4 illustrated in Section 2 is expressed by means
of the following command sequence

<e> S 4 <Le/r> _—— (1
<e> N LU:USAG <e/r> —_— (2)
<ed> T 6 <e/r> -——- (3)
<e> N LU:LAND <c/r> -——)
<c> N LDA:LAND <c/r> ———— (5)
<e> N LYP:LAND <c/r> ———— (6)
<e> A <e> E <e/r> -—— (7)

(First, the carsor is pointed inside of the ellipse defined by (1) , next it
is on the side of the innermost ellipse specified by (3).)

<e> X LYP:YEAR IS #1981 <e/r> ———— (8)

<e> A <Ke> E <e/r> ———— 9)

(First, the carsor is pointed inside of the innermost ellipse specified by
(3), next it is pointed the first argument of the expression specified by (8),
i.e.":",)

<e> X LDA:AREA IS @GE #100 <e/r> - (10)
<ed> A <e> E <Le/r> ——— (11)
(Similar to the command 9.)

<e> X “AVG(UCOUNT(¥*)) <c/r> ———— (12)
<e> A <> E <e/r> _— (13)

(Similar to the command 9.)
However, the order of commands is immaterial.

