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Abstract: Multivariate public key cryptography is a candidate for post-quantum cryptography, and it al-
lows generating particularly short signatures and fast verification. The Rainbow signature scheme proposed
by J. Ding and D. Schmidt is such a multivariate cryptosystem and is considered secure against all known
attacks. The Rainbow-Band-Separation attack recovers a secret key of Rainbow by solving certain systems
of quadratic equations, and its complexity is estimated by the well-known indicator called the degree of reg-
ularity. However, the degree of regularity generally is larger than the solving degree in experiments, and an
accurate estimation cannot be obtained. In this paper, we propose a new indicator for the complexity of the
Rainbow-Band-Separation attack using the F4 algorithm, which gives a more precise estimation compared
to one using the degree of regularity. This indicator is deduced by the two-variable power series∏m

i=1(1− tdi1
1 tdi2

2 )

(1− t1)n1 (1− t2)n2
,

which coincides with the one-variable power series at t1 = t2 deriving the degree of regularity. By consider-
ing this relation and our indicator, we obtain a new complexity estimation for the Rainbow-Band-Separation
attack. Consequently, we are able to understand the precise security of Rainbow against the Rainbow-Band-
Separation attack using the F4 algorithm.
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1. Introduction

Standard RSA and EC cryptosystems are designed based on

difficult mathematical problems such as prime factorization

and discrete logarithm problems. However, these mathemat-

ical problems are known to be solved in polynomial time by

a large scale quantum computer. Therefore, it is required to

construct cryptography that is based on new mathematical

problems and is resistant to quantum computers. Such cryp-

tography is referred to as post-quantum cryptography. In

2015, National Security Agency (NSA) announced a plan of

a transition to post-quantum cryptography, and National In-

stitute of Standards and Technology (NIST) started a public

recruitment of such cryptography candidates in 2016 [23].

Multivariate public key cryptography [10] is based on an

NP-hard problem of solving a system of quadratic equa-

tions, that is called the MQ problem [18]. It is especially
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expected to have potential in building post-quantum signa-

ture schemes. Rainbow is a multivariate signature scheme

proposed by J. Ding and D. Schmidt in 2005 [9]. This signa-

ture scheme can be implemented simply and efficiently using

linear algebra methods over a small finite field, and in par-

ticular produces shorter signatures than those of RSA and

other post-quantum signature schemes [13]. In NIST Post-

Quantum Cryptography (PQC) 2nd round, secure Rain-

bow parameter sets are proposed and several attacks against

them are analyzed [13]. In particular, the Rainbow-Band-

Separation (RBS) attack [11] is the best among known at-

tacks against Rainbow with a certain parameter set and is

important.

Previous estimation methods [13], [29] for the complexity

of the RBS attack use the degree of regularity [1], [2] as its

indicator under the assumption that the system of quadratic

equations solved in the attack is semi-regular (see [1] for the

definition). For a semi-regular system, the degree of regu-

larity is given as the degree Dreg of the first term whose

coefficient is non-positive in the power series

(1− t2)m

(1− t)n
, (1)

where m and n are the numbers of equations and variables,

respectively. Since a public quadratic system solved in the
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direct attack is often semi-regular, the complexity estima-

tion of the direct attack uses the degree of regularity [2], [13].

However, by our experiments, the quadratic system solved

in the RBS attack is non-semi-regular. Therefore, it is im-

portant to find an optimal indicator for estimating the com-

plexity of the RBS attack.

1.1 Our Contributions

The purpose of this paper is to give a more precise com-

plexity estimation for the RBS attack. Since the attack

solves a certain quadratic system whose solving complexity

dominates the overall attack, that we call a RBS dominant

system, we need to estimate the complexity of a Gröbner

basis algorithm solving this system. In particular, for es-

timating the complexity, this paper considers (theoretical)

indicators approximating its solving degree, that the max-

imal degree in steps which add a new non-zero polynomial

during the Gröbner basis algorithm F4 [15]. As mentioned

above, previous estimation methods have used the degree

of regularity as its indicator. However, an RBS dominant

system is solved faster than a semi-regular system, and its

solving degree is lower than the degree of regularity. These

are probably caused by the fact that an RBS dominant sys-

tem has a relation between its variables which is said to be

bi-graded.

In this paper, we consider a polynomial h in

F[x1, . . . , xn1 , y1, . . . , yn2 ] graded by

(d1, d2) = (degx1,...,xn1
h, degy1,...,yn2

h) ∈ Z2
≥0

which is called a bi-graded polynomial, such as a bilinear

polynomial graded by (1, 1). Then, for a bi-graded poly-

nomial system (h1, . . . , hm), we introduce a new indica-

tor Dbgd that is defined as the minimum total degree of

the terms whose coefficient are negative in the two-variable

power series ∏m
i=1(1− tdi1

1 tdi2
2 )

(1− t1)n1(1− t2)n2
. (2)

For a Rainbow parameter set (v, o1, o2), the top homoge-

neous component of an RBS dominant system consists of

v+o1+o2−1 bilinear polynomials and o1+o2 quadratic ho-

mogeneous polynomials in v+ o1 and o2 variables. Namely,

RBS dominant systems are bi-graded. By our experiments

using F4 on RBS dominant systems with v = oi and v ≲ 2oi

(i = 1, 2), we show that our new indicator Dbgd tightly ap-

proximates the solving degree of the system than the degree

of regularity Dreg . Note that the one-variable power series

(1) deriving the previous indicator Dreg is the same as the

two-variable power series (2) at t = t1 = t2. Hence, we can

expect a relation Dbgd ≤ Dreg since tDreg in the series (1)

has a negative coefficient in our experiments, which deduces

one of td1
1 td2

2 in the series (2) where d1 + d2 = Dreg .

By using our indicator, we can obtain a new complex-

ity estimation for the RBS attack using F4. Consequently,

we are able to understand the precise security of Rainbow

against the RBS attack using F4.

Our work is independent of the paper [25] which was sub-

mitted to the Cryptology ePrint Archive (https://eprint.

iacr.org) one day before the preprint version [24] of this

paper.

1.2 Organization

This paper is organized as follows. In Section 2, we ex-

plain Rainbow and the RBS attack. In Section 3, we explain

the previous complexity estimation of the RBS attack using

the degree of regularity and present experiments for scaled

down Rainbow parameter sets in NIST PQC 2nd round. In

Section 4, we introduce a new indicator for estimating the

complexity of the RBS attack and demonstrate that this in-

dicator more tightly approximates the solving degree of the

quadratic system solved in the attack. In Section 5, by using

our indicator, we give a new complexity estimation for the

RBS attack. In Section 6, we conclude the results.

2. The Rainbow Signature Scheme

In this section, we briefly explain the Rainbow signature

scheme and several attacks against it. We explain Rainbow

in Subsection 2.1 and its parameter sets in Subsection 2.2. In

Subsection 2.3, we describe the Rainbow-Band-Separation

(RBS) attack in detail.

2.1 Rainbow

Let n and m be positive integers. We denote by F the finite

field of order q. An element (f1, . . . , fm) of F[x1, . . . , xn]
m

is called a polynomial system and gives a map Fn → Fm by

a 7→ (f1(a), . . . , fm(a)) which is called a polynomial map.

A multivariate public key signature scheme consists of the

following three algorithms:

Key generation: We construct two invertible linear

maps S : Fn → Fn and T : Fm → Fm randomly and

an easily invertible quadratic map F : Fn → Fm which

is called a central map, and then compute the composi-

tion P := T ◦ F ◦ S. The public key is given as P . The

tuple (T, F, S) is a secret key.

Signature generation: For a message b ∈ Fm, we com-

pute b′ = T−1(b). Next, we can compute an element a′

of F−1({b′}) since F is easily invertible. Consequently,

we obtain a signature a = S−1(a′) ∈ Fn.

Verification: We verify whether P (a) = b holds.

Rainbow is a multivariable signature scheme proposed

by J. Ding and D. Schmidt in 2005 [9]. For positive in-

tegers v, o1 and o2, let x = {x1, . . . , xv},y = {y1, . . . , yo1}
and z = {z1, . . . , zo2} be three variable sets and put

n = v + o1 + o2 and m = o1 + o2. The central map

F = (f1, . . . , fm) ∈ F[x,y, z]m of Rainbow is defined by

the equations (3) where g(j) and l
(j)
i are randomly chosen

quadratic polynomials and linear polynomials, respectively.
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f1 = g(1)(x) +
∑o1

i=1 l
(1)
i (x)yi,

...

fo1 = g(o1)(x) +
∑o1

i=1 l
(o1)
i (x)yi,

fo1+1 = g(o1+1)(x,y) +
∑o2

i=1 l
(o1+1)
i (x,y)zi,

...

fo1+o2 = g(o1+o2)(x,y) +
∑o2

i=1 l
(o1+o2)
i (x,y)zi,

(3)

2.2 Parameters of Rainbow

In this subsection, we briefly explain several attacks against

Rainbow.

The central map of Rainbow with a parameter set

(v, o1, o2) can be regard as a UOV [20] instance with the

parameter set (v + o1, o2). Hence the UOV attack [19] is

available as an attack against Rainbow, and we have to take

the Rainbow parameter set such that

v + o1 ≈ so2 (s = 2, 3, 4, . . . ).

We can also consider attacks using the special structure of

the Rainbow central map (3) above. The HighRank attack

[7] and the MinRank attack [3] are such attacks. Due to

influences of the UOV attack and the HighRank attack, we

set

o1 = o2.

Moreover, for a public key P and a given message b, the

direct attack [2] forges a signature by solving P (x) = b di-

rectly. Complexity estimations for the direct attack and the

RBS attack [11], which also solves a certain quadratic sys-

tem to recovery a secret key (see Subsection 2.3 for detail),

are important in deciding concrete parameters v, o1 and o2.

In this paper, we assume o1 = o2 implicitly and consider a

parameter set with v = oi or v ≲ 2oi (i = 1, 2).

NIST PQC standardization project [23] gives six security

categories (see Table 1). Here, due to the NIST specifica-

tion, the number of gates is given by

♯ gates = ♯ field multiplications · (2 · log2(q)
2 + log2(q)).

Table 1 NIST security categories (Table 10 in [13])

category log2 classical gates log2 quantum gates
I 143 130/106/74
II 146
III 207 193/169/137
IV 210
V 272 258/234/202
VI 274

Table 2 shows the Rainbow parameter sets Ia, IIIc and

Vc [13] proposed in NIST PQC 2nd round and the complex-

ities of the above attacks. Here, the bold numbers in Table

2 mean the best complexity of attacks in each parameter

set. Table 2 shows that the direct attack is the best among

attacks against the parameter sets IIIc and Vc in classical

gates. The parameter sets Ia, IIIc and Vc are designed to

satisfy the NIST security categories I, III/IV and V/VI in

Table 1, respectively [13].

Table 2 Complexities (log2(♯classical gates)) of known at-
tacks against Rainbow parameter sets (q, v, o1, o2) =
Ia: (16, 32, 32, 32), IIIc: (256, 68, 36, 36) and Vc:
(256, 92, 48, 48) (from tables of Section 7.2 in [13])

Type direct MinRank HighRank UOV RBS
Ia 164.5 161.3 150.3 149.2 145.0

IIIc 215.2 585.1 313.9 563.8 217.4
Vc 275.4 778.8 411.2 747.4 278.6

2.3 Rainbow-Band-Separation Attack

In this subsection, we describe the Rainbow-Band-

Separation (RBS) attack [11] and a certain quadratic

system solved in the attack which are subjects of our

research in this paper. For simplicity, we assume that

the characteristic of F is odd in this subsection. We then

use the symmetric matrix representation of a quadratic

homogeneous polynomial.

Let (v, o1, o2) be a Rainbow parameter set and put n =

v + o1 + o2 and m = o1 + o2. For a Rainbow public key

P = (p1, . . . , pm), the RBS attack recovers its secret key

(T, F, S) as follows. By the definition (3) of the central map

F = (f1, . . . , fm), each matrix corresponding to fi has the

following form:

Mfi
=



 ∗v×v ∗v×o1 0v×o2

∗o1×v 0o1×o1 0o1×o2

0o2×v 0o2×o1 0o2×o2

 if 1 ≤ i ≤ o1,

 ∗v×v ∗v×o1 ∗v×o2

∗o1×v ∗o1×o1 ∗o1×o2

∗o2×v ∗o2×o1 0o2×o2

 if o1 + 1 ≤ i ≤ o1 + o2.

(4)

Here, ∗k×l mean k-by-l matrices over F. Similarly, the ma-

trices corresponding to S and T can be written as follows:

MS =

 Iv 0v×o1 0v×o2

∗o1×v Io1 0o1×o2

∗o2×v ∗o2×o1 Io2

 ,

MT =

(
Io1 0o1×o2

∗o2×o1 Io2

)
.

(5)

If S and T are taken as random invertible linear maps, then

MS and MT cannot be written as in the form (5). However,

it is known that the security of Rainbow does not decrease,

even if S and T are took as in the form (5). Therefore, S and

T in [11] are set to be in the form (5), which induces a reduc-

tion in the secret key size. The matrices Mp1 , . . . ,Mpm cor-

responding to the public polynomials p1, . . . , pm are given

as

(Mp1 , . . . ,Mpm) = (MSMf1

tMS , . . . ,MSMfm

tMS)MT .

(6)

By the form (5), there exists an n-by-1 vector s =

(λ1, . . . , λv+o1 , 0, . . . , 0, 1) such that s · MS = (0, . . . , 0, 1).

Then, for i = 1, . . . ,m, we have

s ·MSMfi

tMS · ts = (0, . . . , 0, 1) ·Mfi
· t(0, . . . , 0, 1) = 0.

Since each Mpk is a linear combination of MSMf1

tMS ,

. . . ,MSMfm

tMS , we obtain
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s ·Mpk · ts = 0, k = 1, . . . ,m. (7)

By the form (5), there exists an m-by-1 vector t =

(1, 0 . . . , 0, λv+o1+1, . . . , λv+o1+o2) such that MT · tt =
t(1, 0, . . . , 0). Then, multiplying the equation (6) by tt, we

get

Mp1 +

o2∑
i=1

λv+o1+iMpo1+i = MSMf1

tMS .

Moreover, multiplying this equation by s, we have

s·Mp1+

o2∑
i=1

λv+o1+is·Mpo1+i = s·MSMf1

tMS = (0, . . . , 0).

Thus, we have the following equations

s·Mp1 ·
tek+

o2∑
i=1

λv+o1+is·Mpo1+i ·
tek = 0, k = 1, . . . , n−1,

(8)

where ek is the n-by-1 vector (0, . . . , 0,
k
1, 0, . . . , 0). Here,

we remove the case k = n, since the equation (8) for k = n

follows from the equation (7).

Since s = (λ1, . . . , λv+o1 , 0, . . . , 0, 1), it is clear that the

equations (7) and (8) are n+m− 1 quadratic equations in

n variables λ1, . . . , λn, and are constructed from the public

key p1, . . . , pm. Solving these quadratic system, an attacker

can recover a part of the secret key S and T , namely, s

and t. The RBS attack can recovery S and T by repeating

similar discussions as above (see [11] for detail). Since the

complexity of solving the quadratic system dominates one

of the RBS attack, it suffices to treat only the system. We

refer to the quadratic system consisting of the equations (7)

and (8) as the RBS dominant system.

3. Revisiting Previous Complexity Esti-

mation for the RBS Attack

In this section, we explain the previous complexity estima-

tion for the RBS attack. In Subsection 3.1, by using a certain

experimental degree called the solving degree, we explain

the complexity of a Gröbner basis algorithm for solving a

quadratic system. In Subsection 3.2, we recall the degree

of regularity to approximate the solving degree for such a

quadratic system. In Subsection 3.3, we show that RBS

dominant systems have a gap between the solving degree

and the degree of regularity.

3.1 Complexity of Attacks using a Gröbner Basis

Algorithm

In the RBS attack, Gröbner basis algorithms are used for

solving the RBS dominant system.

A Gröbner basis algorithm that computes a Gröbner ba-

sis for the ideal generated by a given polynomial system was

discovered by B. Buchberger [5], and improved as faster al-

gorithms, for example, XL [30], F4 [15] and F5 [16]. In this

paper, we use the following complexity of the F4 algorithm

solving a polynomial system in n variables:

(
n+ dslv
dslv

)ω

where 2 < ω ≤ 3 is a linear algebra constant and dslv is the

maximal degree in steps which add a new non-zero polyno-

mial during the Gröbner basis algorithm and is called the

solving degree.

The solving degree is important for obtaining the com-

plexity, but is an experimental value. In order to estimate

the complexity of solving a large scale polynomial system,

we need to find its (theoretical) indicator approximating the

solving degree (see Subsection 3.2).

Using the solving degree dslv , we describe the complexity

of the RBS attack against Rainbow with a parameter set

(v, o1, o2) as follows. Put n = v+ o1 + o2 and m = o1 + o2.

Since the RBS dominant system then has n+m−1 quadratic

equations in n variables (see the equations (7) and (8)), the

complexity of the attack is given by(
n+ dslv
dslv

)ω

.

Furthermore, by using the hybrid approach [2] of brute-force

search and Gröbner basis algorithm which solves the RBS

dominant system in n− k variables after fixing k variables,

the complexity is improved as

min
k

qk ·

(
n− k + dslv

dslv

)ω

. (9)

3.2 Degree of Regularity

In this subsection, we explain the degree of regularity as an

indicator approximating the solving degree.

Denoting by F[x1, . . . , xn]d the vector space generated by

the monomials of the total degree d over F in F[x1, . . . , xn],

we have the following decomposition:

F[x1, . . . , xn] = ⊕d≥F[x1, . . . , xn]d.

We denote by ⟨f1, . . . , fm⟩ the ideal generated by

f1, . . . , fm, and by ⟨f1, . . . , fm⟩d its component of de-

gree d in the decomposition if f1, . . . , fm are homogeneous.

For a polynomial system (f1, . . . , fm), M. Bardet et al.

[1] considered the degree of regularity as the minimal value

of the following set if it exists:{
d | ⟨f top

1 , . . . , f top
m ⟩d = F[x1, . . . , xn]d

}
.

For a polynomial system whose top homogeneous compo-

nent is semi-regular [1], the degree of regularity is equal to

the degree Dreg of the first term whose coefficient is non-

positive in the following power series (see [1] for detail):∏m
i=1(1− tdeg fi)

(1− t)n
. (10)

Note that a quadratic system whose coefficients are ran-

domly chosen is often semi-regular. For this reason, in using

the degree of regularity for a quadratic system, we assume
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that the system is semi-regular, and also callDreg the degree

of regularity.

By using the degree of regularity under the assumption

that an RBS dominant system is semi-regular, the previous

estimation method gives complexities of the RBS attack as

follows. For a Rainbow parameter set (v, o1, o2), the RBS

dominant system has m + n − 1 quadratic polynomials in

n variables where n = v + o1 + o2 and m = o1 + o2 (see

the equations (7) and (8)). Then, by the formula (9), the

complexity in classical gates of the RBS attack is given by

min
k

qk ·

(
n− k +Dreg

Dreg

)ω

(11)

where 2 < ω ≤ 3 is a linear algebra constant, k is the

number of variables fixed by the hybrid approach and Dreg

is given by the degree of the first term whose coefficient is

non-positive in the power series

(1− t2)m+n−1

(1− t)n−k
. (12)

In the next subsection, by our experiments, we show that

an RBS dominant system is non-semi-regular.

3.3 Experiments on the Degree of Regularity

In this subsection, by our experiments on Rainbow parame-

ter sets with v ≲ 2oi, we show that RBS dominant systems

have a gap between the solving degree and the degree of reg-

ularity. The assertions in this paper were verified by using

the Gröbner basis algorithm F4 with respect to the graded

reverse lexicographic monomial order in Magma V2.24-4 [4]

on CPU: 3.2 GHz Intel Core i7. We denote by dmem the

degree of the most memory-consuming step and by dtim the

degree of the most time-consuming step during the Gröbner

basis algorithm.

For small Rainbow parameter sets (v, o1, o2) with v ≲ 2oi,

Table 3 demonstrates the fundamental assertion that the

degree of regularity Dreg tightly approximates the solving

degree dslv for a semi-regular system of v + 2o1 + 2o2 − 1

quadratic equations in v+o1+o2 variables which of the same

size as the RBS dominant system (see the equations (7) and

(8)). Under the assumption that an RBS dominant system

is semi-regular, the previous estimation method [13], [29] for

the RBS attack uses the degree of regularity Dreg (see Sub-

section 3.2) as the solving degree dslv . Table 3 also shows

that this assumption does not hold for small Rainbow pa-

rameter sets (v, o1, o2) with v ≲ 2oi.

In Table 3, we see that each RBS dominant system is

solved faster than a semi-regular system of the same size

and has a gap between the degree of regularity and the solv-

ing degree. Since the degree of regularity does not tightly

approximate the solving degree of an RBS dominant system,

it is important to find an optimal indicator for estimating

the complexity of the RBS attack. Note that an experiment

on the RBS attack is also carried out in the paper [29], and

Table 2 in the paper shows that an RBS dominant system

is solved faster than a semi-regular system of the same size.

However, the paper [29] does not mention a relation between

the degree of regularity and the solving degree.

Table 3 (Gap Between Dreg and dslv for an RBS Dominant
System) For the parameter relation v ≲ 2oi (i = 1, 2),
the degree of regularity Dreg (see the series (12)) and ex-
perimental values dslv (see Subsection 3.1) and dtim (see
the first paragraph in Subsection 3.3) in the Gröbner
basis algorithm F4 for RBS dominant systems and semi-
regular systems of the same size. Each RBS dominant
system is solved faster than a semi-regular system of the
same size, and has a gap between the degree of regular-
ity Dreg and the solving degree dslv .

q = 256
Dreg

Semi-regular system RBS dominant system
(v, oi) Time (s) dslv dtim Time (s) dslv dtim
(4, 3) 4 0.03 4 4 0.01 4 4
(5, 3) 5 0.09 5 5 0.01 4 4
(6, 3) 5 0.24 5 5 0.03 4 4
(6, 4) 5 1.57 5 5 0.12 4 4
(7, 4) 6 9.86 6 6 0.25 4 4
(8, 4) 6 31.56 6 6 0.58 4 4
(8, 5) 6 213.57 6 6 7.50 5 5
(9, 5) 6 796.80 6 6 35.08 5 5
(10, 5) 7 7818.25 7 7 71.54 5 5
(10, 6) 7 47311.77 7 7 954.82 6 6
(11, 6) 7 ≥ 2 days - - 3265.14 6 6
(12, 6) 7 ≥ 2 days - - 6609.50 6 6

4. New Indicator for the Complexity of

the RBS Attack

In this section, we propose an indicator for estimating the

complexity of the RBS attack. We first explain the bi-graded

polynomial. We then introduce a new indicator for bi-graded

polynomial systems and show that this indicator tightly ap-

proximates the solving degree of an RBS dominant system

than the degree of regularity by experiments using the F4

algorithm.

4.1 Bi-graded Polynomial Systems

In this subsection, we explain the bi-graded polynomial and

show that an RBS dominant system is bi-graded.

Definition. 4.1. A commutative ring R is said to be bi-

graded if the two following conditions holds:

( 1 ) R = ⊕d∈Z2
≥0
Rd

( 2 ) Rd1
Rd2

⊆ Rd1+d2
for all di ∈ Z2

≥0

Moreover, an element in a bi-graded commutative ring R

is said to be bi-graded if it is contained in Rd for some

d ∈ Z2
≥0. Then, for a bi-graded element h ∈ Rd, we define

degZ2
≥0

h as d ∈ Z2
≥0.

Remark. 4.2. In this paper, an element of R whose top

homogeneous component is bi-graded is also said to be bi-

graded.

For a Rainbow parameter set (v, o1, o2), the RBS dom-

inant system consists of m quadratic polynomials (7) in

a variable set {λ1, . . . , λv+o1} and n − 1 bilinear poly-

nomials (8) in two variable sets {λ1, . . . , λv+o1} and

{λv+o1+1, . . . , λn} where n = v + o1 + o2 and m = o1 + o2

(see Subsection 2.3). The polynomial ring F[λ1, . . . , λn] can

be graded by
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degZ2
≥0

λ1 = · · · = degZ2
≥0

λv+o1 = (1, 0) and,

degZ2
≥0

λv+o1+1 = · · · = degZ2
≥0

λn = (0, 1).

Top homogeneous components h1, . . . , hm of quadratic poly-

nomials (7) are contained in F[λ1, . . . , λn](2,0), and those

hm+1, . . . , hm+n−1 of quadratic polynomials (8) are in

F[λ1, . . . , λn](1,1). Namely,

degZ2
≥0

h1 = · · · = degZ2
≥0

hm = (2, 0),

degZ2
≥0

hm+1 = · · · = degZ2
≥0

hm+n−1 = (1, 1).
(13)

Hence, the RBS dominant system is a bi-graded polynomial

system.

In the next section, based on the fact that an RBS dom-

inant system is bi-graded, we introduce an indicator for es-

timating the complexity of the RBS attack.

4.2 New Indicator for the Complexity of Solving

a Bi-graded Polynomial System

In this subsection, we introduce a new indicator for bi-

graded polynomial systems and show that this indicator

tightly approximates the solving degree of an RBS domi-

nant system than the degree of regularity.

We introduce the following indicator for the complexity

of a Gröbner basis algorithm with a bi-graded polynomial

system:

Definition. 4.3. For a bi-graded polynomial sys-

tem (h1, . . . , hm) in F[x1, . . . , xn1 , y1, . . . , yn2 ]
m where

degZ2
≥0

hi = (di1, di2), let

∑
(d1,d2)∈Z2

≥0

a(d1,d2)t
d1
1 td2

2 =

∏m
i=1(1− t

di,1

1 t
di,2

2 )

(1− t1)n1(1− t2)n2
, (14)

and we define Dbgd = Dbgd (h1, . . . , hm) as the minimal

value of {d1 + d2 | a(d1,d2) < 0} if it exists.

The two-variable series in (14) is regarded as a bi-graded

version of the Hilbert series (see [21] for example).

Remark. 4.4. For a bi-graded polynomial system, we note

that the one-variable power series (10) deducing Dreg coin-

cides with the two-variable power series (14) when t = t1 =

t2. Hence, if we define D′
bgd as the minimum value of the

set

{d1 + d2 | a(d1,d2) ≤ 0}

where a(d1,d2) is the coefficient of td1
1 td2

2 in the series (14)

and it exists, then D′
bgd ≤ Dreg . D

′
bgd is often smaller than

the solving degree for some Rainbow parameter sets. Thus

we do not use D′
bgd as a suitable indicator. On the other

hand, the term tDreg in the series (10) often has a nega-

tive coefficient which deduces one of td1
1 td2

2 in the series (14)

where d1 + d2 = Dreg . Namely, the relation Dbgd ≤ Dreg

often holds (see Table 4 and Table 5 below).

In the reminder of this subsection, by our experiments,

we show that the introduced indicator Dbgd tightly approx-

imates the solving degree on an RBS dominant system than

the degree of regularity. By Definition 4.3 and the equa-

tion (13), the indicator Dbgd for an RBS dominant system

with a parameter set (v, o1, o2) is given by the minimal to-

tal degree of the terms whose coefficient are negative in the

two-variable power series

(1− t1t2)
v+o1+o2−1(1− t21)

o1+o2

(1− t1)v+o1(1− t2)o2
. (15)

Table 4 compares the indicator Dbgd and the degree of reg-

ularity Dreg for RBS dominant systems with v = oi and

v ≲ 2oi.

Table 4 (Dbgd vs Dreg for an RBS Dominant System) Ex-
perimental degrees dslv (see Subsection 3.1), dmem and
dtim (see the first paragraph in Subsection 3.3) in the F4

algorithm and theoretical degrees Dbgd (from the series
(15)) and Dreg (from the series (12) at k = 0) for an
RBS dominant system with v ≲ 2oi or v = oi (i = 1, 2).
The proposed indicator Dbgd coincides with dslv in the
cases except for (q, v, oi) = (256, 8, 4), (16, 8, 8). The de-
gree of regularity Dreg is always larger than dslv except
for (q, v, oi) = (256, 4, 4).

q = 256 Exper. Theor.
(v, oi) dslv dtim dmem Dbgd Dreg

(4, 3) 4 4 4 4 4
(5, 3) 4 4 4 4 5
(6, 3) 4 4 4 4 5
(6, 4) 4 4 4 4 5
(7, 4) 4 4 4 4 6
(8, 4) 4 4 4 5 6
(8, 5) 5 5 5 5 6
(9, 5) 5 5 5 5 6
(10, 5) 5 5 5 5 7
(10, 6) 6 6 6 6 7
(11, 6) 6 6 6 6 7
(12, 6) 6 6 6 6 7

q = 16 Exper. Theor.
(v, oi) dslv dtim dmem Dbgd Dreg

(3, 3) 3 3 3 3 4
(4, 4) 4 4 4 4 5
(5, 5) 4 4 4 4 5
(6, 6) 5 5 5 5 6
(7, 7) 5 5 5 5 6
(8, 8) 5 6 6 6 7
(9, 9) 6 6 6 6 7

Furthermore, Table 5 compares the indicator Dbgd and

the degree of regularity Dreg for the hybrid approach on the

RBS attack against Rainbow parameter sets (q, v, o1, o2) =

(256, 10, 5, 5) and (16, 8, 8, 8). Here, k1 and k2 are the

numbers of variables fixed by the hybrid approach in

{λ1, . . . , λv+o1} and {λv+o1+1, . . . , λv+o1+o2}, respectively,
where λ1, . . . , λv+o1+o2 are the variables of an RBS domi-

nant system (see the equations (7) and (8)). Then the indi-

cator Dbgd is given by the minimal total degree of the terms

whose coefficient are negative in the two-variable power se-

ries
(1− t1t2)

v+o1+o2−1(1− t21)
o1+o2

(1− t1)v+o1−k1(1− t2)o2−k2
. (16)

Remark. 4.5. By our experiments using the F4 algorithm

[15] in Section 4, we see that the Gröbner basis of the ideal

generated by an RBS dominant system is computed within

the introduced indicator Dbgd and its solution can be ob-

tained. Although our experiments were performed by using
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Table 5 (Dbgd vs Dreg for the Hybrid Approach on an
RBS Dominant System) Experimental degrees dslv
(see Subsection 3.1), dmem and dtim (see the first para-
graph in Subsection 3.3) in the F4 algorithm and the-
oretical degrees Dbgd (from the series (16)) and Dreg

(from the series (12)) of the hybrid approach on RBS
dominant systems in variables {λ1, . . . , λv+o1+o2

} for
(q, v, o1, o2) = (256, 10, 5, 5) and (16, 8, 8, 8). The
integers k1 and k2 are the number of variables
fixed by the hybrid approach in {λ1, . . . , λv+o1

} and
{λv+o1+1, . . . , λv+o1+o2

}, respectively. The degree of
regularity Dreg is always larger than the solving degree
dslv . The proposed indicator Dbgd tightly approximates
dslv than Dreg and is an upper bound of dslv .

(256, 10, 5, 5) Exper. Theor.
k1 + k2 (k1, k2) dslv dtim dmem Dbgd Dreg

0 (0, 0) 5 5 5 5 7
1 (1, 0) 5 5 5 5 6

(0, 1) 4 4 4 5 6
2 (2, 0) 4 5 5 5 6

(1, 1) 4 4 4 4 6
(0, 2) 4 4 4 4 6

3 (3, 0) 4 4 4 4 6
(2, 1) 4 4 4 4 6
(1, 2) 3 4 4 4 6
(0, 3) 3 3 3 3 6

4 (4, 0) 4 4 4 4 5
(3, 1) 3 4 4 4 5
(2, 2) 3 3 3 3 5
(1, 3) 3 3 3 3 5
(0, 4) 2 2 2 2 5

(16, 8, 8, 8) Exper. Theor.
k1 + k2 (k1, k2) dslv dtim dmem Dbgd Dreg

0 (0, 0) 5 6 6 6 7
1 (1, 0) 5 5 5 5 6

(0, 1) 5 5 5 5 6
2 (2, 0) 5 5 5 5 6

(1, 1) 5 5 5 5 6
(0, 2) 5 5 5 5 6

3 (3, 0) 4 5 5 5 6
(2, 1) 4 5 5 5 6
(1, 2) 4 5 5 5 6
(0, 3) 4 4 4 5 6

4 (4, 0) 4 4 4 4 6
(3, 1) 4 4 4 5 6
(2, 2) 4 4 4 4 6
(1, 3) 4 4 4 4 6
(0, 4) 4 4 4 4 6

the F4 algorithm, this fact is independent of such Gröbner

basis algorithms. In fact, we can confirm the same fact for

an XL algorithm that generates a Gröbner basis.

5. Our Complexity Estimation for the

RBS Attack

In this section, we give a new complexity estimation of the

RBS attack using the F4 algorithm under the assumption

that the indicator Dbgd is an upper bound of the solving de-

gree dslv (see Remark 4.5 in Subsection 4.2). Furthermore,

we explain a complexity estimation for the Wiedemann XL

algorithm without a Gröbner basis.

For simplicity, we explain only a complexity estimation in

classical gates for the RBS attack against a Rainbow param-

eter set (q, v, o1, o2). Put n = v+ o1 + o2 and m = o1 + o2.

Let k1 and k2 be the numbers of variables fixed by the hy-

brid approach in {λ1, . . . , λv+o1} and {λv+o1+1, . . . , λn},
respectively, where λ1, . . . , λn are the variables of the RBS

dominant system (see the equations (7) and (8)). When

k1 < v + o1 and k2 < o2, the complexity is given by

qk1+k2 ·

(
n− k1 − k2 +Dbgd

Dbgd

)ω

where 2 < ω ≤ 3 is a linear algebra constant and Dbgd is

given by the minimal total degree in terms whose coefficient

is negative in the two-variable power series (16) in Subsec-

tion 4.2, i.e.

(1− t1t2)
v+o1+o2−1(1− t21)

o1+o2

(1− t1)v+o1−k1(1− t2)o2−k2
.

When k1 = v + o1 and k2 < o2, we obtain a system of

v+o1+o2−1 linear equations in o2−k2 variables from the

RBS dominant system fixed k1 variables. Then, the com-

plexity is given by qk1+k2 · (2(o2 + 1)(v + o1)(o2 − k2) +

(o2 − k2)
ω). Similarly, when k1 < v + o1 and k2 = o2,

we obtain a system consisting of o1 + o2 quadratic equa-

tions and v + o1 + o2 − 1 linear equations in v + o1 − k1

variables. Then, since it suffices to solve a system of linear

equations in v+o1−k1 variables, the complexity is given by

qk1+k2 ·(2(v+o1+1)(v+o1−k1)o2+(v+o1−k1)
ω). When

k1 = v + o1 and k2 = o2, the complexity of a brute-force

search is given by qk1+k2 .

In NIST PQC 2nd round, the designer of Rainbow uses

the Wiedemann XL algorithm for solving an RBS dominant

system and estimates the complexity of the RBS attack [13].

Then the used complexity estimation [31] is better than the

formula (9) of F4 and is probably the best for solving a poly-

nomial system. By applying our indicator Dbgd to this com-

plexity estimation, we can show that the complexities for the

parameter sets Ia, IIIc and Vc are improved as 2142.9, 2206.4

and 2267.4, respectively, and do not satisfy the security lev-

els I, III/IV and V/VI, respectively. In fact, the paper [25]

also proposes a similar indicator to our work and suggests

the small parameter changes, and the designer of Rainbow

plans to change the parameters in NIST PQC 3rd round

[27]. However, the following paragraph shows that the ac-

tual complexity of the Wiedemann XL algorithm may be

worse than the estimation [31] for the RBS attack.

The eXtended Linearization (XL) method extends a given

polynomial system by multiplying all monomials up to

a target degree and generates its corresponding extended

Macaulay matrix. By using this matrix, an XL algorithm

solves the given system through a technique such as generat-

ing a Gröbner basis. The Wiedemann XL algorithm solves

a given system through finding a specific kernel vector of an

extended Macaulay matrix and, if the matrix is full-rank, its

unique kernel vector derives a solution of this system. Thus,

if an extended Macaulay matrix up to our indicator Dbgd

from an RBS dominant system is full-rank, by applying the

value Dbgd to the complexity estimation [31], we can show

that the complexities of the RBS attack against the param-

eter sets Ia, IIIc and Vc do not satisfy the security levels I,

III/IV and V/VI, respectively. However, in our experiment

on scaled-down parameters, the extended Macaulay matrix

actually has a big kernel space and the XL algorithm requires

iterations of the Wiedemann algorithm. Hence, although the
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complexity estimation [31] ignoring such iterations is avail-

able for estimating the minimum required complexity of the

RBS attack, we further need to estimate the number of iter-

ations to a more precise estimation for the Wiedemann XL

algorithm with an RBS dominant system.

6. Conclusion

In this paper, we introduced the indicator Dbgd for esti-

mating the complexity of Gröbner basis algorithms with

bi-graded polynomial systems. Since the Rainbow-Band-

Separation (RBS) attack recovers a secret key of Rainbow

by solving a certain bi-graded polynomial system, we are

able to utilize Dbgd to estimate the complexity of this at-

tack.

According to our experiments using F4 on scaled down

Rainbow parameter sets in NIST PQC 2nd round, the indi-

cator Dbgd tightly approximates its solving degree than the

degree of regularity Dreg , which has been used previously.

Then the relation Dbgd ≤ Dreg holds always. Furthermore,

the RBS attack can reduce the bi-graded polynomial sys-

tem to a linear system by using the hybrid approach with

a special setting. Consequently, we can obtain a new com-

plexity estimation of the RBS attack. Although the RBS

attack is not enough to threaten the security of Rainbow,

we were able to understand the security of Rainbow against

the RBS attack using F4. However, it is not clear whether

an algorithm for finding a solution of the RBS dominant sys-

tem, such as the Wiedemann XL algorithm, can terminate

within our indicator Dbgd , future investigation is needed.

The two-variable power series used for deducing the in-

dicator Dbgd is available widely and can be extended more

generally. Therefore, as future works, we need to investigate

its influence on the security of several other schemes.
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Gröbner Bases without reduction to zero (F5). In: Bose, P.,
Morin, P. (eds.) ISSAC 2002, pp. 75–83. (2002).

[17] Gall, F. L.: Algebraic complexity theory and matrix multi-
plication. In: Nabeshima, K. (ed.) ISSAC 2014, Kobe, Japan,
July 23-25, 2014.

[18] Garey, M.R., Johnson, D.S.: Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman
& Co., New York (1979)

[19] Kipnis, A., Shamir, A.: Cryptanalysis of the Oil and Vine-
gar signature scheme. In: Krawczyk H. (ed.) CRYPTO 1998,
LNCS, vol. 1462, pp. 257–266. Springer (1998).

[20] Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and
Vinegar schemes. In: Stern, J. (ed.) EUROCRYPT 1999,
LNCS, vol. 1592, pp. 206–222. Springer (1999).

[21] Kreuzer, M., Robbiano, L.: Computational Commutative Al-
gebra 2. Springer, Heidelberg (2005)

[22] Lang, S.: Algebra, Graduate Texts in Mathematics. vol. 211
(Revised third ed.), Springer-Verlag, New York (2002)

[23] NIST: Submission Requirements and Evaluation Cri-
teria for the Post-Quantum Cryptography Standard-
ization Process (2016). https://csrc.nist.gov/CSRC/
media/Projects/Post-Quantum-Cryptography/documents/
call-for-proposals-final-dec-2016.pdf

[24] Nakamura, Shuhei, Ikematsu, Y., Wang, Y., Ding, J. and
Takagi, T.: New Complexity Estimation on the Rainbow-
Band-Separation Attack, IACR Cryptology ePrint Archive,
Report 2020/703 (2020). https://eprint.iacr.org/2020/
703.pdf

[25] Perlner, R. and Smith-Tone, D.: Rainbow Band Separation
is Better than we Thought, Cryptology ePrint Archive, Report
2020/702 (2020) https://eprint.iacr.org/2020/702

[26] Petzoldt, A., Bulygin, S. and Buchmann, J.: Selecting Pa-
rameters for the Rainbow Signature Scheme. In: Sendrier, N.
(ed.) PQCrypto 2010, LNSC, vol. 6061, pp. 218–240. Springer
(2010).

[27] Rainbow Team, Modified Parameters of Rainbow in Re-
sponse to a Refined Analysis of the Rainbow Band Separa-
tion Attack by the NIST Team and the Recent New Min-
Rank attacks, June 22, 2020. http://precision.moscito.
org/by-publ/recent/rainbow-pars.pdf

[28] Shor, P.: Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM Jour-
nal on Computing, 26(5), 1484–1509 (1997)

[29] Thomae, E.: A Generalization of the Rainbow Band Sepa-
ration Attack and its Applications to Multivariate Schemes,
IACR Cryptology ePrint Archive (2012). https://eprint.
iacr.org/2012/223

[30] Yang, B.-Y. and Chen, J.-M.: All in the XL family: Theory
and practice. In: Park, C., Chee, S. (eds.) ICISC 2004, LNCS,
vol. 3506, pp. 67–86. Springer, Heidelberg (2007).

[31] Yang B.-Y., Chen O.C.-H., Bernstein D.J., Chen J.-M.:
Analysis of QUAD. In: Biryukov A. (eds) Fast Software En-
cryption. FSE 2007. LNCS, vol 4593. Springer (2007)

－1179－


