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Abstract:

The increasing number of malicious software spread through the Internet has become a serious threat.
Malware authors use obfuscation and deformation techniques to generate new types of malware in order
to evade the detection of traditional detection methods, so that it is widely expected for machine learning
methods that classifies malware and cleanware based on the characteristics of the samples. The current
research trend is to use machine learning technology, especially decision tree technology, to identify new
malicious software quickly and accurately. The purpose of this paper is to investigate malware classifi-
cation accuracy based on latest decision tree based algorithms including ensemble learning. Therefore,
we use the FFRI Dataset 2019 to construct malware detection models from surface analysis logs and PE
header dumps. We have successfully developed a malware detection model that is more accurate than
previous studies. We have obtained impressive classification results using only 27 features.
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1. Introduction

With the feverish development of machine learning and
artificial intelligence, there are many areas where AI has
brought about great advances, such as image recognition
and text sentiment analysis. Many applications have also
arisen in the field of security that use Al for security pro-
tection and attacks.

Malware is software that causes damage to a single com-
puter, server, or computer network. Incidents caused by
one malware and its variants can cause millions of dol-
lars in damage, i.e. WannaCry that exploits remotely ex-
ploitable EternalBlue attack has caused worldwide disas-
ters, such as the shutdown of the Japanese Honda Motor
Company [1]. Furthermore, malware is becoming more
sophisticated and diverse every day to avoid malware de-
tection schemes. Therefore, malware detection scheme is
an important issue in cybersecurity, especially as more
and more people in society become dependent on comput-
ing systems. Malware detection methods can be divided
into static malware detection and dynamic malware detec-
tion [2]. Static methods classify samples as malicious or
benign without executing samples, while dynamic meth-
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ods detect malicious software according to its runtime be-
havior. In theory, dynamic malware detection allows for
direct observation of malware actions that are not eas-
ily obfuscated and make it more difficult to reuse existing
malware [3]. In fact, it is difficult to collect datasets of
malware behavior because malware can identify sandbox
environments and prevent itself from executing malicious
actions. Moreover, dynamic malware detection requires
many sandboxes to treat number of doubtful samples so
that it is dramatically increasing detection cost. In con-
trast, while static malware detection is known to be unde-
cidable in general [4], it is possible to create huge datasets
by aggregating binary files, and identify malware before it
executes.

In this study, we explored static malware detection accu-
racy with the latest gradient boosting decision tree frame-
works and PE file features given by surface analysis result.
Our results show that CatBoost achieved impressive eval-
uation results with only a few features and a short training
time.

2. Related Work

Over the past few years, malware detection has evolved
due to the gradual rise in the threat posed by malware
to large enterprises and government agencies. Since 1995,
various machine learning-based methods for static portable
executable (PE) malware detection have been proposed
[5-9]. Schultz et al. represented PE files by including
features such as import functions, strings, and byte se-
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quences [6]. Kolter et al. used techniques for byte-level
N-grams and natural language processing, including TF-
IDF weighting of strings, to detect and classify malicious
files [7]. Saxe used histograms through the use of byte en-
tropy values as input features and multilayer neural net-
works for classification [8]. Raff et al. showed that fully
connected and recursive networks can be applied to mal-
ware detection problems [10]. They also use raw bytes of
the PE file, and build an end-to-end deep learning net-
works [9]. Okamoto used XGboost for malware detection
in SCIS 2019 [11]. They converted the categorical features
to numerical features, but used a relatively large number
of features in model training.

3. Machine Learning Frameworks based
on Decision Tree

3.1 Decision Tree

In machine learning, a decision tree is a predictive
model. It represents a mapping between an object’s at-
tributes and its values. Each node in the tree represents
an object, each forked path represents a possible attribute
value, and each leaf node corresponds to the value of the
object represented by the path from the root node to the
leaf node.

3.2 Ensemble Learning

Ensemble Learning is a method of combining several dif-
ferent base models into a single ensemble model. It reduces
both the bias and variance [12] of the final model, thereby
improving the score and reducing the risk of overfitting.
3.2.1 Bagging

The idea behind Bagging is that all base models are
treated consistently, with only one vote in each base
model’s hand. A democratic vote is then used to get
the final result. In most cases, bagging results in smaller
variance. Bagging is a hugely popular ensembling method
which is used in algorithms like Random Forest. It gains
accuracy by not only averaging the models but also trying
to create models that are as uncorrelated as possible by
giving them different training sets [13].

Random Forest are a more advanced algorithm based
on decision trees. Like a decision tree, a random forest can
be used for both regression and classification. A forest is
constructed in a random way and this forest is made up of
many unrelated decision trees that are not related to each
other.

3.2.2 Boosting

The fundamental difference between boosting and bag-
ging is that the base model is not uniformly treated, but is
constantly tested and filtered to select the "elite”, and then
the elite are given more votes, while the poor base models
are given less votes, and then the final results are obtained
by combining all the votes.In most cases, the boosting re-
sults are less biased.

Boosting is a sequential process, where each subsequent
model tries to correct the errors of the previous model.

Therefore the succeeding models are dependent on the pre-
vious models and we need to train the models in sequence
instead of parallel.

Adaboost Boosting is an ensemble technique that at-
tempts to create a strong classifier from a number of weak
classifiers. This is done by building models from training
data and then creating a second model to try to correct
errors from the first model. Add models until the training
set is perfectly predicted or add the maximum number of
models. AdaBoost is the first truly successful enhancement
algorithm developed for binary classification.

Gradient Boosting is a method for implementing
Boosting, the main idea of which is that each time a model
is built, it is in the direction of a gradient decrease in the
loss function of the previously built model.

Gradient Boosting Decision Tree is also known as
MART (Multiple Additive Regression Tree). GBDT is an
iterative decision tree algorithm that consists of multiple
decision trees, and the conclusions of all the trees are added
together to make the final answer.

XGboost is a novel sparsity-aware algorithm for sparse
data and weighted quantile sketch for approximate tree
learning. More importantly, it provide insights on cache
access patterns, data compression and sharding to build a
scalable tree boosting system [14].

LightGBM proposes two novel techniques: Gradient-
based One-Side Sampling (GOSS) and Exclusive Feature
Bundling (EFB). With GOSS, it excludes a significant pro-
portion of data instances with small gradients, and only
use the rest to estimate the information gain. With EFB,
it bundles mutually exclusive features (i.e., they rarely take
nonzero values simultaneously), to reduce the number of
features. Light GBM speeds up the training process of con-
ventional GBDT by up to over 20 times while achieving
almost the same accuracy [15].

CatBoost is a GBDT framework with fewer parame-
ters, support for category-type variables, and high accu-
racy based on symmetric decision trees as a base learner
implementation, which addresses the pain point of process-
ing category-type features efficiently and rationally. In ad-
dition, CatBoost solves the Gradient Bias and Prediction
shift problems to reduce overfitting, thereby improving the
accuracy and generalization of the algorithm [16].

3.2.3 Stacking

Stacking is an integrated learning technique that inte-
grates multiple classification models or regression models
through a single meta-classifier or meta-regressor. The
base model uses the entire training set for training, and
the meta-model trains the features of the base model as
features.

Stacking was introduced by Wolpert in 1992 [17]. It is a
method that uses k-fold for training base models which
then make predictions on the left out fold. These so-
called out-of-fold predictions are then used to train an-
other model (the meta model) which can use the informa-
tion produced by the base models to make final predictions.
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All the weak learners in stacking are called level 0 learners,
their output is accepted by a level 1 learner, and the final
result is output. This is actually a hierarchical structure.
3.2.4 Blending

Blending is a word introduced by the Netflix competi-
tion winners [18]. It is very similar to stacking with the
only difference being that instead of creating out-of-fold
predictions using k-fold to create a small holdout dataset
which will then be used to train the meta-model. In addi-
tion, the meta-model results are blended in different ways.
Blending is linear blend, while Stacking is nonlinear blend.

4. Proposed Feature Selection

4.1 Dataset

We use the FFRI Dataset 2019 provided by the MWS
Research Dataset *! [19]. This dataset contains 250,000
malware samples and 250,000 cleanware samples. In to-
tal, it contains 500,000 pieces of data obtained from the
surface analysis. Each sample is a JSON file containing
7 fields: file_size, date, hashes, lief, peid, trid, and
strings fields. Each field contains multiple layers of JSON
data.

4.2 Features in Dataset
In maximum, we can use following number of features
in FFRI Dataset 2019.

— From file_size: We can use 1 numeric feature.

— From hashes: We can use 13 numeric features.

— From lief: We can use 29 numeric features and 3 cat-

egorical features.

— From peid: We can use 10 categorical features.

— From strings: We can use 100 categorical features.
4.2.1 Numerical Feature

Numerical feature, which can be either continuous or
discrete, is generally expressed as a real value. In general,
decision tree type algorithms do not require preprocessing
of numeric features.

As an example, in the lief.option_header.dll_characteristics
field, 50.8% of the values are 0, 13.6% are 34112, and
19.3% are 320.

4.2.2 Categorical Feature

Categorical feature indicate a data point belongs to a
certain class or has certain characteristics.

CatBoost automatically handles category features in a
special way. First, it does some statistics on the category
features, calculates the frequency of a category feature,
and then adds hyper-parameters to generate new numer-
ical features. With catboost, you don’t have to handle
category features manually anymore.

As an example, in the peid.Anti-Debug field, 47% of the
values are "no”, 35% are ”yes”, and 19% are "no (yes)”.

4.3 Feature Selection
The FFRI Dataset 2019 provides 9 different fields of

*1 https://www.iwsec.org/mws/2019/about.html

Table 1 Features chosen as best.

features_name features_types

file_size numeric
lief.header.characteristics numeric
lief.header.pointerto_symbol_table numeric
lief.header.time_date_stamp numeric
lief. header.numberof_sections numeric
lief.optional_header.imagebase numeric
lief.optional_header.checksum numeric
lief.optional_header.sizeof_initialized_data numeric
lief.optional_header.minor_linker_version numeric
lief.optional_header.dll_characteristics numeric
lief.entrypoint numeric
lief.virtual_size numeric

lief.sections categorical

lief.data_directories categorical

lief.optional_header.subsystem categorical

peid.PEiD categorical

peid. DLL categorical

peid.Packed categorical

peid.mutex categorical

peid.Anti-Debug categorical

strings_9 categorical

strings_7 categorical

strings_5 categorical

strings_8 categorical

strings_4 categorical

strings_10 categorical

strings_6 categorical

information,from which we selected 5 data fields. We
used the information from fields file_size, lief, peid, and
strings as the features of our dataset and the label field
as the label of the dataset. The file_size field contains only
one numeric data. The lief field is a multilayer structured
JSON file parsed from the PE file using the LIEF library™2.
This field extracts a total of 14 features, including 11 nu-
meric features and 3 categorical features. The peid field
is the information of the PE file parsed by PEiD*3, it is a
two-layer structured JSON file. We extracted 5 categori-
cal features from peid field. The strings field is the string
information contained in the PE file. We extracted the
first 10 strings in the dataset, and the numbers that follow
represent the order of the strings. Out of these 10 strings,
we used 7 features of high importance around the begin-
ning part because strings extracted around beginning part
is not too varied, but vary moderately enough to usable as
features. In the end, we selected a total of 27 features for
the training data. The information used in this study is
shown in Table 1.

We also tried to select 157 and 69 features from the
dataset as the model training set, respectively. Through
experiments, we found that the gap between the evaluation
indicators and the 27 features is not very large, indicating
that a large number of them are not very important. For
example, the hash information in the hashes field is ex-
plicitly not effective as a classification feature because it is
varied between variable malware binaries. Some semantic
hashes are also not particularly effective as classification
features. So in the end, we only selected 27 features that
are significantly useful for improving classification accu-

*2 https://github.com/lief-project /LIEF
*3  https://github.com/K-atc/PEiD
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Table 2 Quantity table of different feature combinations.

156 features 69 features 27 features
file_size 1 1 1
date 0 0 0
hashes 13 0 0
lief 32 14 14
peid 10 7 5
trid 0 0 0
strings 100 47 7

racy. With the dramatic reduction of features, our train-
ing time for classifier generation was also reduced substan-
tially. The quantity table of different feature combinations
is shown in Table 2. The 27 features reduced the model
TPR by approximately 0.002% and increased the FPR by
0.005% compared to the 156 features. However, the com-
putation time 392s decreased to 136s so that we decisded
27 features as a final choise. 67 features gives intermediate
results so that we did not choose it because the difference
is so small.

4.4 Analysis Result of Feature Importance

Feature importance refers to techniques that assign a
score to input features based on how useful they are at
predicting a target variable.

To get the importance of the feature, CatBoost simply
takes the difference in the measure (loss function) between
the model used under normal circumstances (when we in-
clude the feature) and the model without the feature (the
model was built using the original model that removed the
feature from all the trees in the collection). The larger
the difference, the more important the feature. Figure of
CatBoost and LightGBM feature importance ranking is
shown in Fig.1. X-axis denotes features with score order
and Y-axis denotes score (1.0 in maximum). As shown
from figure, CatBoost and Light GBM gives difference im-
portance order to features. Thus, we thought that we can
compensate weak points of both method by stacking two
methods.

5. Experiment

This section details the specifics of our experiment and
results. Our experiments were conducted on Manjaro
20.0.0 Lysia system (Linux kernel version is 5.6.16-1) with
a AMD Ryzen 7 3700X CPU, 32GB RAM, and a NVIDIA
GeForce RTX 2070 SUPER GPU. In addition, the open
source libraries used in the experiments are Python 3.7.6,
Anaconda 4.8.4, CatBoost 0.23, LightGBM 2.2.3, and
Scikit-learn 0.22.2. The code written for this evaluation

will be opened on GitHub later.**

5.1 Preprocessing

As a preprocessing, firstly, read the fields we need from
the FFRI Dateset 2019 JSON lines file and parse the multi-
layered JSON file structure layer by layer. Secondly, the
parsed results are stored in a CSV file. We extracted a

*4 https://github.com/koul8n/malware-detection-ensemble

Table 3 LightGBM Baseline Parameters.

parameter_name parameter_value
random_seed 2020
boosting_type gbdt
objective binary
metric binary_logloss
n_estimators 38
learning_rate 0.1
num_leaves 123
colsample_bytree 0.8
subsample 0.9
max_depth 15
reg-alpha 0.1
reg_lambda 0.1
min_split_gain 0.01
min_child_weight 2

Table 4 CatBoost Baseline Parameters.

parameter_name parameter_value
random_seed 2020
loss_function Logloss
eval_metric AUC
iterations 3000
od_type Tter
depth 10
early_stopping-rounds 500

total of 27 features and the labels of each sample for our
dataset. Finally, we used 5-fold cross-validation to split
the dataset proportionally and equally into five copies, four
of which were used as training sets and the remaining one
as a test set. Since our experiments use the Light GBM and
CatBoost frameworks, there is no need for complex feature
engineering; numerical features can be used directly, and
categorical features can also be used directly but need to
be declared.

5.2 Models and Parameters

We use three open source libraries Scikit-learn*5, Light-
GBM*®, and CatBoost *7. Use GridSearchCV for auto-
tuning in both CatBoost and Light GBM, respectively, to
get the most optimized parameters.

LightGBM was open-sourced by Microsoft in 2017.
A fast, distributed, high performance gradient boosting
framework based on decision tree algorithms, used for
ranking, classification and many other machine learning
tasks. The parameters of Light GBM in this study is shown
in Table 3.

CatBoost is a depth-wise gradient boosting library de-
veloped by Yandex. It uses oblivious decision trees to grow
a balanced tree. The same features are used to make left
and right splits for each level of the tree. The parameters
of CatBoost in this study is shown in Table 4.

Ensemble (LightGBM+CatBoost) We use Scikit-
learn’s StackingClassifier to combine the CatBoost and
Light GBM models together. Category probability values
generated by the first layer of Light GBM and the CatBoost
base classifier as inputs to the meta-classfier and use logis-
tic regression for the final category predictions. We use

*5  https://scikit-learn.org
*6  https://github.com/microsoft /Light GBM
*7  https://catboost.ai
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Fig. 1 Features Importance Ranking

the category probability values generated by the first layer
of Light GBM and the CatBoost base classifier as inputs to
the meta-classfier and use logistic regression for the final
category predictions.

5.3 Evaluation Metric

True Positive Rate(TPR) Indicates the proportion
of all positive samples that are currently allocated to the
true positive sample.

False Positive Rate(FPR) Indicates the proportion
of true negative samples that are currently misclassified
into the positive sample category out of the total number
of negative samples.

Area Under Curve(AUC) AUC is the area under the
ROC curve, calculated as the calculus value of the ROC
Curve, the meaning is: given a random positive and neg-
ative two samples, the probability of ranking the positive
sample before the negative sample, so the larger the AUC,
indicating that the positive sample is more likely to be
ranked before the negative sample, that is, the better the
classification amount results.

5.4 Experimental Results

The experiment was stratified 5-fold cross-validation
with no shuffling and a fixed random seed of 2020. We
counted the mean TPR, FPR, and AUC values for 5-fold
cross-validation. The results of the three models after 1000
iterations are shown in Table 5. We can see that the com-
bined result of our stacking model is significantly better
The difference between the
three models for AUC values is not very large, and the

than the other two models.

Table 5 Experimental Results.

model_name TPR FPR AUC
CatBoost 99.8680% 0.1104% 99.99935%
(-0.0276%) (+19.48%)
Light GBM 99.6452% 0.2748% 99.99432%
(-0.2506%)  (+197.40%)
Stacking 99.8956% 0.0924% 99.99929%

model with the best TPR and FPR values is our stack-
ing model. The TPR values for our stacking model were
0.0276% higher than CatBoost and 0.2506% higher than
LightGBM. The FPR values were 19.48% and 197.40%
lower than CatBoost and Light GBM, respectively.

100.000% A

99.998% A

99.996%

AUC

99.994% /

99.992% A 4

99.990% T T
600 1000
Iterations

200 400

Fig. 2 Figure of AUC with iterations.

The AUC with iterations of our stacking model in com-
parison with the CatBoost and the LightGBM baseline
models in shown in Fig. 2. X-axis denotes number of iter-
ations and Y-axis denotes AUC. We examined iterations
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until 3000 but there is almost no difference after 1000 iter-
ations so that the graph is terminated with 1000 iterations.
We found that the TPR and FPR values using our
stacking model were significantly better than CatBoost
and LightGBM regardless of the number of iterations per-
formed. As the iteration increased, the results stabilized
at 1000 iterations, where the TPR was 99.8956% and the
FPR was 0.0924%. Relationship figure between TPR, FPR
and iterations of three models is shown in Fig. 3. X-axis
denotes number of iterations and Y-axis denotes both TPR
and FPR. Note that the threshold value that separate mal-
ware/cleanware decision is differing from Fig. 2 so that en-
semble shows explicit improvement from CatBoost.

—— CatBoost

100.00% 1 — LightGBM
—— Stacking
99.90% -
« 99.80% A
=
99.70% -
99.60% -
99.50%
0.50%-1"
0.40% -
« 0.30% A
o
o
0.20% A
0.10% 4
0.00% T T T T T
200 400 600 800 1000

Iterations

Fig. 3 Figure of TPR and FPR with iterations.

The Receiver Operating Characteristic curves (ROCs) of
our stacking model and CatBoost models almost overlap,
while the ROC of the Light GBM is at the bottom. The
mean ROGs of our stacking model in comparison with the
baseline models in shown in Fig.4. X-axis denotes FPR
with log scale and Y-axis denotes TPR.

100.00% -

ss.00m _?gf'/
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92.00% A —— CatBoost

—— LightGBM

—— Stacking
90.00% T T T T 1

0.00% 0.01% 0.10% 1.00% 10.00% 100.00%

False Positive Rate

Fig. 4 Mean ROC curves with logarithmic X-axis scale.

We used 5-fold cross-validation, and the ROC curves for
each fold are shown in Fig. 6. X-axis and Y-axis is identi-
cal to Fig.4. The ROC curves for our stacking model and
CatBoost has a relationship of win or lose in each valida-
tion. On the other hand, the ROC curves for Light GBM

are consistently on the lower side.
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Fig. 5 Figure of training time with iterations.

The training of our stacking model is quite time-
consuming, because it is a logistic regression model, which
needs either be trained on the predicted class labels or
probabilities from the ensemble. The difference between
the Catboost model and the Light GBM model is not that
big. CatBoost is trained with GPU, Light GBM cannot be
accelerated with GPU, because the Bin size of Light GBM
is too big due to the long categorical feature. Stacking
also only can use CPU. The training time with iterations
of our stacking model in comparison with baseline models
in shown in Fig.5. X-axis denotes iterations and Y-axis
denotes training time with second. The training time is
the aggregate time of the 5-fold croos validation.

6. Conclusions

In this study, we show the GDBT algorithm for mal-
ware classification. The performance of the LightGBM
algorithm is relatively poor, and CastBoost has the best
overall performance, but does not reduce the FPR value
further.

We also apply a static PE malware detection method
using the ensemble two GBDT algorithm. On the FFRI
Dataset 2019, our proposed ensemble model has a better
FPR than CatBoost and uses fewer feature vector dimen-
sions than in previous studies, which reduces the training
time and improves the model performance. In addition,
the validation results also show that the GDBT algorithm
can be used to solve the malware classification problem.

7. Future Work

We have used machine learning GDBT method for mal-
ware classification study, and FPR value is crucial for mal-
ware detection model, so we plan to reduce FPR value
further. A follow-up study is planned to use deep learning
methods for malware classification.
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