
A New Trapdoor for Constructing Multivariate
Signature Schemes: Simple Matrix Signature

Scheme

Changze Yin1,a) Yacheng Wang1,b) Tsuyoshi Takagi1,c)

Abstract: Unbalanced Oil and Vinegar signature scheme (UOV), proposed in 1999, is one of the most famous
multivariate signature schemes that are secure until now. Simple Matrix Scheme is a multivariate encryption
scheme constructed by using matrix multiplication. As a drawback, it has an unneglectable decryption error
rate. In our research, we adopt the trapdoor design of UOV and Simple Matrix and extend their ideas
to create a new family of signature schemes. This new family utilizes polynomial matrix multiplication to
construct a trapdoor, just like in the Simple Matrix. However, unlike conventional multivariate signature
schemes, the central map of our new construction can be easily generalized to more complex maps instead
of quadratic maps. Moreover, our new construction has a great resistance against existing attacks on mul-
tivariate cryptography, and we estimate secure parameters for a simple signature scheme which belongs to
our proposed signature family by considering these attacks.

Keywords: Post-Quantum Cryptography, Multivariate Cryptography, UOV, Simple Matrix, Security

1. Introduction

1.1 Research Background

RSA and ECC are known to be long-lived public key

cryptosystems and have been put into application for many

years. However, Peter Shor[16] proposed efficient algorithms

for integer factorization and computing discrete logarithms

in 1994, which raised great concern about current crypto-

graphical technologies. The Nation Institute of Standards

and Technology (NIST) published a list of candidates[2]

for cryptosystems that are resistant against quantum com-

puters (Post-Quantum Cryptography), which drew a great

deal of attention in the field of cryptography. Therefore,

it is urgent to explore more directions to prevent attacks

on quantum computers. Among many candidates for Post-

Quantum Cryptography, Multivariate Public Key Cryp-

tosystem (MPKC) is considered to be a good candidate and

it has great potential to build cryptosystems for future use.

MPKC uses a set of multivariate quadratic polynomials

as its public key, and its security comes from the hard-

ness of solving the multivariate quadratic (MQ)[19] problem,

which is proved to be NP-complete. Since the first MPKC,

Matsumoto-Imai (MI)[13] scheme was proposed, many re-

searchers have been trying to find more ways for construct-

ing random-like multivariate quadratic polynomials to use

on MPKC. So far, there have been proposed many multi-

1 Department of Mathematical Informatics, University of Tokyo
a) changze yin@mist.i.u-tokyo.ac.jp
b) yacheng wang@mist.i.u-tokyo.ac.jp
c) takagi@mist.i.u-tokyo.ac.jp

variate encryption schemes such as HFE[14], Simple Ma-

trix scheme[18], SRP[20], EFC[17], HFERP[11], and mul-

tivariate signature schemes such as UOV[12], SFLASH[15],

HFEv-[14], Rainbow[6]. However, many of them could not

withstand cryptanalysis such as algebraic attack, lineariza-

tion attack, differential attack, rank attack, etc.

Among those signature schemes, UOV signature

scheme[12] is still proven to be secure under many crypto-

analysis. While UOV requires large public key size to

maintain its security, it has few application scenes for

practical use. On the other hand, Simple Matrix encryption

scheme has an ingenious design of structure of public key,

but the decryption failure limits its practicality. To over-

come the problems in UOV signature scheme, researchers

have brought many thoughts such as a MPKC signature

scheme based on block matrices multiplication.

1.2 Our Contribution

In our research, we extract the essential idea of construc-

tion of trapdoor in UOV and apply it to polynomial matrix

multiplication which is similar to the structure of Simple

Matrix signature scheme. Such improved multivariate sig-

nature scheme is more flexible and shows great resistance of

current attacks. More precisely, we especially compute the

complexity of direct attack[3] and minrank attack[10] algo-

rithms. From experiment results, the computation complex-

ity are respectively O

((
3s2

s2 + 1

)ω)
and O(q4s−2s6) which

will be discussed in Section 5.

Computer Security Symposium 2020
26 - 29 October 2020

© 2020 Information Processing Society of Japan －316－

Meanwhile, this new signature scheme utilizes the struc-

ture of polynomial matrix multiplication without concern of

decryption failure and we call it Simple Matrix signature

scheme. In practical implementation, this Simple Matrix

signature scheme[18] has small public key and signature size.

For example, to achieve128-bit security level, the public key

only costs around 31kB of storage. In fact, even we change

the central map enumerated in Section 3, the public key

size will not change a lot which means this signature scheme

could be applied into different situations.

This paper is organized as follows. In section 2, we will

provide some backgrounds of Multivariate Public Key Cryp-

tography and introduce some typical schemes. In section

3, we will focus on the construction of our new signature

scheme. In section 4, we pick some currently popular at-

tacks and make an analysis of security of this new signature

scheme.

2. Preliminaries

In this section, we will provide some basic concepts and

constructions of multivariate public key cryptography. Be-

sides, as representatives, unbalanced oil and vinegar signa-

ture scheme and simple matrix encryption scheme will be

described in the following.

2.1 Multivariate Public Key Cryptography

(MPKC)

Based on the hardness of solving MQ problem[19], MPKC

includes many splendid schemes using various trapdoors.

The basic structure of a MPKC scheme will be described

in this section.

We start our construction from a finite field with q ele-

ments denoted by Fq. Let n,m be two positive integers and

x = (x1, . . . , xn) ∈ Fn
q be a vector with n variables. The

function of public key in MPKC generally can be written as

the composites of three maps:

P (x) = T ◦ F ◦ S(x).

The maps T : Fm
q → Fm

q and S : Fn
q → Fn

q are invertible

linear functions while the map F : Fn
q → Fm

q is a quadratic

polynomial function. Especially, we name the map T as the

outer affine transformation and the map S as the inner affine

transformation. Moreover, the pre-image of map F usually

can be easily solved out and we call it the central map in

MPKC.

After previous construction, the public key of MPKC con-

sists two parts: the multiplication and addition in finite field

Fq and the quadratic map P . As an user, the secret key

consists three maps: T, F, S. To deliver a message or sign a

document, the encryption scheme and signature scheme of

MPKC are described as follow:

Encryption scheme:

Encrypt: Given a message m ∈ Fn
q , compute c = P (m)

as the corresponding cipher text.

Decrypt: For a cipher text c ∈ Fm
q , compute m′ =

S−1(F−1(T−1(m))) as a decryption result.

Signature scheme:

Sign: To sign a document m, we perform three steps:

· Step 1: Compute y = T−1(m)

· Step 2: Find out a solution x of quadratic equation

F (x) = y

· Step 3: Compute s = S−1(x) as a signature of m

Verify: To verify the signature s whether matches the

message m, check the correctness of equation s = P (m).

2.2 Unbalanced Oil and Vinegar signature

scheme(UOV)[12]

As a representative of MPKC signature scheme, UOV re-

mains secure after many attacks. However, the public key

size of UOV is quite large which is a concern for practical

use. The construction of UOV defines as follows.

Let o, v be positive integers and n = o+v. In UOV signa-

ture scheme, the first v variables are called vinegar variables

and the rest part are called oil variables. The central map

in UOV could be written as

F = (f1, . . . , fo)

where each function fl, l ∈ {1, . . . , o} is a quadratic polyno-

mial with the following construction:

fl =

v∑
i=1

v∑
j=1

alijxixj +

v∑
i=1

o∑
j=1

blijxixj+v + α(x1, . . . , xn).

and α(x1, . . . , xn) is a linear function of (x1, . . . , xn). Ob-

viously each function in fl does not contain quadratic terms

of oil variables which implies the central map is a linear

function of oil variables if vinegar variables are fixed. The

public key of UOV is a composition of central map F and

inner affine transformation S namely

P = F ◦ S.

In this case, adding outer affine transformation or not does

not effect its security level. Therefore, the signature gener-

ation process can be reduced into following two steps:

(1) Randomly choose values of vinegar variables denoted

by (x̃1, . . . , x̃v). For a given message m, solve linear

equation group

m = F (x̃1, . . . , x̃v, xv+1, . . . , xn).

Mark the solution as (x̃v+1, . . . , x̃n).

(2) Compute s = S−1(x̃1, . . . , x̃n) as a signature of mes-

sage m.

2.3 Simple Matrix encryption scheme(ABC)[18]

ABC encryption is a MPKC encryption scheme using

polynomial matrix multiplications. Until now, there are

few attacks could break ABC encryption scheme, but the

decryption failure obstructs practical applications which is

－317－

unneglectable especially using small parameters.

In ABC encryption scheme, we define a positive integer

s and let n = s2,m = 2s2. In order to construct a central

map, there are three matrices needed to be claimed. Let

s× s square matrix A be:

A =


x1 · · · xs
...

. . .
...

xs2−s+1 · · · xs2


in which (x1, . . . xn) ∈ Fn

q is a plaintext vector. Similarly,

matrices B and C are in s× s size:

B =


b1 · · · bs
...

. . .
...

bs2−s+1 · · · bs2



C =


c1 · · · cs
...

. . .
...

cs2−s+1 · · · cs2


Each element in B and C is a linear combination of vari-

ables (x1, . . . , xn) with random coefficients. By multiply-

ing matrix A with B and C respectively, we can obtain two

quadratic polynomial matrices denoted by E1 and E2 which

are

E1 = AB E2 = AC.

Let f(i−1)s+j and fs2+(i−1)s+j be respectively the (i, j)-th

coordinate element in E1 and E2. We rearrange E1 and E2

into sequence form as central map:

F = (f1, . . . , fs2 , fs2+1, . . . , f2s2).

Hence, the public key of ABC contains the finite field Fq

and a quadratic map:

P = T ◦ F ◦ S.

the secret key is a 4-tuple (T, S,B,C). To encrypt a message

m ∈ Fn
q , we directly compute c = P (m) as the correspond-

ing cipher text c. Decrypting such cipher text c contains

the following steps:

Step 1: Compute y = T−1(c) and rewrite the vector y

into matrices form:

Ē1 =


ȳ1 · · · ȳs
...

. . .
...

ȳs2−s+1 · · · ȳs2

 ,

Ē2 =


ȳs2+1 · · · ȳs2+s

...
. . .

...

ȳ2s2−s+1 · · · ȳ2s2


Step 2: To find the solution of F (x) = y, we have several

situations:

· Case 1: If Ē1 or Ē2 is invertible, we can find

BĒ−1
1 Ē2 = C or CĒ−1

2 Ē1 = B

from the relation in central map. By solving this linear

system with n variables and n equations, we can find

an unique solution defined as x̄.

· Case 2: If Ē1 and Ē2 are not invertible but A is in-

vertible, we can view A−1 as an unknown matrix noted

as W . Thus the central map yields:

A−1Ē1 = WĒ1 = B

A−1Ē2 = WĒ2 = C

which is a linear system with m variables and m equa-

tions.

· Case 3: If A is a singular matrix, the decryption pro-

cess causes a failure.

Step 3: If we can find a solution denoted by x̄ in step 2,

compute m = S−1(x̄).

2.4 Block Matrix Multiplication signature

scheme[4]

Here’s an another signature scheme needed to be men-

tioned which is proposed by using polynomial matrix mul-

tiplication. Though the idea of designing the trapdoor in

Block Matrix Multiplication signature scheme is novel, the

public key size is large and the signature generation can be

failed with high possibilities.

Before the construction of public key, we introduce the

following lemma:

Lemma 1 Let Fq be a finite field with q elements and

u, v, s = u+ v be positive integers. We define several matri-

ces in the following. A ∈ Fu×u
q and E ∈ Fv×v

q are invertible

constant matrices. Without loss of generality, we set ma-

trix B ∈ Fq[x1, . . . , xn]u×v as a linear polynomial matrix.

C ∈ Fv×u
q is a constant matrix. Suppose

M =

(
A B

C D

)
, D = CA−1B + E.

Then the matrix M is invertible and

M−1 =

(
I −A−1B

O I

)(
A−1 O

O E−1

)(
I O

−CA−1 I

)
the public key of Block Matrix Multiplication signature

scheme is constructed as follows. Let Fq be a finite field

and positive integers u, v, s = u + v. The number of un-

knowns is n and the number of equations is m = s2. Define

a matrix P ∈ Fq[x1, . . . , xn]s×s:

P =


p1p
′
1 · · · psp

′
s

...
. . .

...

ps2−s+1p
′
s2−s+1 · · · ps2p′s2


in which pi, p

′
i ∈ Fq[x1, . . . , xn] are linear functions and thus

P is a quadratic polynomial matrix. The central map is a

permutation of matrix H:

H = MP =


f11 · · · f1s

...
. . .

...

fs1 · · · fss


－318－

where matrix M is defined before. Then we enumerate (fij)

as sequence form (f1, . . . , fm) and the public key can be

written as:

P = T ◦ F ◦ S, F = (f1, . . . , fm)

where T, S are linear transformations.

To generate a signature for given message m ∈ Fm
q , we

have to take the following steps:

Step 1: Compute y = T−1(m) and rewrite y into matrix

form H ′.

Step 2: Let polynomials (p′i) be random values (ai), solve

out the solution of equation group:

p′i(x1, . . . , xn) = ai, i ∈ 1, . . . ,m

and examine the equation M−1H ′ = P whether holds. If

the solution does not exist, then repeat step 2 from begin-

ning.

Step 3: Assume we get a solution from step 2 saying x,

compute s = S−1(x) as a signature.

3. A New Family of Signature Scheme

In this section, we will discuss our new signature scheme

using polynomial matrix multiplication. Different from oth-

ers, our signature scheme is not limited by quadratic poly-

nomials though we use quadratic maps as a representative.

Also, in some degree, this new scheme can be seen as an

extension of UOV.

3.1 Trapdoor Design

As we review the structure of UOV signature scheme, the

trapdoor of its central map is based on the lack of quadratic

terms of oil variables, and then we can solve a linear system

of oil variables by randomly choosing the values of vinegar

variables. In other words, the values of oil variables depend

on the chosen of vinegar variables. Through this relation,

the solution space of equation group F (x) = m is essentially

equivalent to a feasible space of vinegar variables. So we can

expand this idea in common situation. By partitioning the

variable space into two parts, one part is set to be feasible

variables and the other part is set to be bounded variables.

After we assign some values to feasible variables, the com-

plex equation group will remains a solvable system. Using

this trick, we can create a new kind of signature scheme.

Let s be a positive integer, n = 2s2 and m = s2. The

message vector denotes by (x1, . . . , xn) ∈ Fn
q and Fq is a

finite field with q elements. Here we define three matrices

as

A =


a11 · · · a1s

...
. . .

...

as1 · · · ass

 ,

B =


b11 · · · b1s
...

. . .
...

bs1 · · · bss

 ,

C =


c11 · · · c1s
...

. . .
...

cs1 · · · css


in which aij , bij , cij are linear combinations of variables

(x1, . . . , xn). One of central map can be defined as

F̄ (x1, . . . , xn) = AB +BC.

Obviously, such function is a s×s matrix of quadratic poly-

nomials. In order to composite with outer transformation,

we stretch matrix F̄ into a sequence form:

F = (f11, . . . , f1s, f21, . . . , f2s, . . . , fss).

In final step, we apply the general MPKC signature struc-

ture to generate the public key:

P = T ◦ F ◦ S.

Naturally, the question is that how we use this structure

to produce a signature with given message m ∈ Fm
q . De-

spite multiplying the reverse of two affine transformation,

we focus on how to figure out the solution of equation sys-

tem F (x1, . . . , xn) = y,y ∈ Fm
q . We first rearrange vector

y into matrix form with lexicographic order marked as Y .

The equation system turns into solving

AB +BC = Y.

We then randomly choose a constant matrix D ∈ Fs×s
q .

After we replace matrix B into D, the rest part will be

transferred into a linear system:

B(x1, . . . , xn) = D

A(x1, . . . , xn)D +DC(x1, . . . , xn) = Y

This linear system consists n variables and n equations. By

choosing a proper constant matrix D, we can easily solve

out a solution and denote by x.

Another interesting thing is that when we choose a special

B(x1, . . . , xn), for example, we choose

B(x1, . . . , xn) = B′(x1, . . . , xm)

which means matrix B is a function of first m variables,

(x1, . . . , xm) can be directly solved out from equation

B(x) = D. In this case, the central map is retreated into

balanced oil and vinegar scheme. To make it ”unbalanced”,

we can just change the size of A,B,C into rectangle matri-

ces.

Actually, in previous discussion, we choose function AB+

BC as one of this new family of signature scheme. There

are still many alternative choices and we provide several ex-

amples in the following:

F̄ (x) = A(x)B(x) + C(x)

F̄ (x) = A(x)B(x) +B(x)C(x) +B(x)D(x)B(x) + E(x)

F̄ (x) = A(x)B(x) + φ(B(x))

－319－

In the first example, we erase the matrix B(x) before ma-

trix C(x), or we add several terms like the structure of ’ideal

generated by matrix B(x)’ in the second one. The key point

is that when we fix the matrix B(x) = D, the rest part of

formula remains a linear system and we can combine equa-

tion B(x) = D to create a solvable linear system. Based on

this thought, we can even add a function not only quadratic

polynomial function but also a much more complicated func-

tion φ(B(x)) such as exponential function.

3.2 Description of Our New Scheme

We conclude our idea and create the following signature

generating process:

Public Key:

· Finite field Fq with addition and multiplication

· A set of quadratic polynomial P with:

P = T ◦ F ◦ S, F (x1, . . . , xn) = AB +BC

Secret Key:

· Affine transformations T, S.

· Coefficients in matrices A,B,C

Signature generation: Given a message m

· Step 1: Compute y = T−1(m) and rearrange it into

matrix form Y

· Step 2: Randomly choose a constant matrix D ∈ Fs×s
q ,

solve the following linear system:

B(x1, . . . , xn) = D

A(x1, . . . , xn)D +DC(x1, . . . , xn) = Y

If the coefficient matrix of unknowns (x1, . . . , xn) is not

full rank, repeat step (2) to find a proper constant ma-

trix D. The solution denotes by x.

· Step 3: Compute s = S−1(x) as the a signature of m.

Verification:

Given a message m and a signature s, substitute m and s

into function P (s) = m, then returns TRUE if this formula

holds or FALSE if not.

4. Security Analysis

In this section, we run several attack algorithms to es-

timate the security level of our new family of signature

scheme. Additionally, we will provide the computation com-

plexity of those attacks onto our new scheme.

4.1 Direct Attack

Considering a quadratic equation system:
f1(x1, . . . , xn) =0

f2(x1, . . . , xn) =0

· · ·

fm(x1, . . . , xn) =0

To solve out this equation group, we have Linearization

method such as XL algorithm[3] and Gröebner Basis method

such as F4[8] or F5[9] algorithms. No matter what algorithm

is, the basic idea of direct attack is to generate several equa-

tions to make the whole system become solvable. In our

experiment, we chose F4 algorithm to test the resistance of

direct attack. The computation complexity of F4 is bounded

by

O

((
n+ dreg − 1

dreg

)ω)
where n is the number of unknowns, dreg is a parameter

called the degree of regularity (dreg) which is the minimum

degree of generating a solvable system, 2 ≤ ω ≤ 3 is a

constant and we pick ω = 2.4 for trivial case. From the

Table 1 Experiment results of using F4 algorithm with different
parameters

(q, s, n,m) dreg Time(s)
(256,2,8,4) 5 0.009
(256,3,18,9) 10 0.240

experiment result, the degree of regularity of applying F4

algorithm to our scheme is s2 + 1. Thus, the total complex-

ity in this case is

O

((
3s2

s2 + 1

)ω)
.

4.2 Minrank Attack[10]

Rank attack is one of basic analysis technique which is

focus on the low rank property in central map. In our anal-

ysis, we select minrank attack to make rank attack. Minrank

attack comes from a problem called minrank problem and

here is the definition:

Definition 1 Let Fq be a finite field with q elements,

r, n,m are positive integers. For given m + 1 matrices

{M0,M1, . . . ,Mm : Mi ∈ Fn×n
q }, minrank problem is to

find a vector (x1, . . . , xm) ∈ Fm
q s.t.

0 < Rank(M0 +

m∑
i=1

xiMi) ≤ r.

There are many algorithms to solve this problem and we

used linear algebra search to perform minrank attack. The

basic idea of this method is to find a solution of set

Sol = {v = (v1, . . . , vn) ∈ Fn
q |

(
m∑
i=1

xiMi +M0)v = 0 has non-trivial solution}

The complexity of minrank attack is bounded by

O(qd
m
n
erm3)

and the parameter r is related to the rank of central map

F . In our new scheme, the central map can be expressed as

F̄ (x) = A(x)B(x) +B(x)C(x).

－320－

More precisely, we write down the matrix form of each com-

ponent: 
f1 · · · fs
...

. . .
...

fs2−s+1 · · · fs2



=


a11 · · · a1s

...
. . .

...

as1 · · · ass



b11 · · · b1s
...

. . .
...

bs1 · · · bss



+


b11 · · · b1s
...

. . .
...

bs1 · · · bss



c11 · · · c1s
...

. . .
...

cs1 · · · css


The (i, j)−th coordinate can be expressed as

f(i−1)s+j =

s∑
l=1

ailblj +

s∑
l=1

bilclj .

The rank of matrix form of multiplication ailblj is 2 and this

formula contains 2s − 1 independent terms, therefore the

rank of each quadratic map fi is 4s−2. Moreover, the com-

plexity of minrank attack to our new scheme is O(q4s−2s6).

4.3 Other Attacks

Despite direct attack and minrank attack, we also tried

some other attacks such as UOV reconciliation attack[7] and

High Order Linearization Equation(HOLE) attack[5]. Since

the structure of our new scheme,

F (x) = AB +BC

the quadratic terms of central map F doesn’t have special

structure like UOV. Even we know the outer affine transfor-

mation T , it’s hard to get matrices A,B,C from F because

for each coordinate (i, j), the quadratic function f(i−1)s+j

consists 2s terms of multiplication of linear functions. More-

over, HOLE attack can’t work so well because from con-

struction of our new scheme, we cannot find a formula only

related to signature and message pairs to get informations

from secret key. Therefore, common attacks against ABC

and UOV can’t work efficiently on our new scheme.

5. Parameters and Implementation

In this section, we focus on the security analysis to for-

mulate parameters for different security levels. Then we will

give a sample of computing the public key size and give out

a table of our experiment results.

5.1 Parameters

We estimated secure parameters and evaluated the effi-

ciency of our signature scheme through real time implemen-

tation. First, we estimate the security parameters by consid-

ering attacks mentioned in Section 4, namely direct attack

and minrank attack. As for 128-bit security level param-

eters, we tried out different values of s and confirmed the

complexity of both attacks exceed 128 bits. When we choose

Table 2 Parameters of different security level

Security (q, s, n,m) Pk size(kB) Sig. size(kB)
2128 (256, 5, 50, 25) 31.12 0.04
2196 (256, 7, 98, 49) 232.12 0.09
2256 (256, 8, 128, 64) 516.00 0.12

Security (q, s, n,m) Sig. time(s) Ver. time(s)
2128 (256, 5, 50, 25) 0.010 0.010
2196 (256, 7, 98, 49) 0.030 0.040
2256 (256, 8, 128, 64) 0.060 0.100

s = 5, q = 256, direct attack requires around 2159 compu-

tation times and minrank attack requires 2157 computation

times. Similarly, we select security parameters for 192-bit

and 256-bit security level. We confirmed s = 7, q = 256 and

s = 8, q = 256 achieve 192-bit and 256-bit security indepen-

dently.

5.2 Key Sizes

By using those parameters, we can calculate the public

key size and signature size immediately. For instance, we

use s = 5, q = 256 as our 128-bit secure parameter, the

public key size in this case can be computed as

m× (
n(n− 1)

2
+ n+ 1)× log2 q =

25× 1276× log2 256 = 255, 200 bits

which is around 31kB of storage. We can do similar oper-

ations to get public key size of 196-bit and 256-bit security

level which are listing in table 2 in the following.

We made experiments using Intel(R) Xeon(R) Gold 6130

CPU 2.10GHz system and MAGMA V2.24-8. From table

2, our signature scheme reveals advantages that the public

key size and signature length are small compared to UOV

which public key size is above 1.1mB[12]. Also, based on the

special structure in our new scheme, the computation speed

is faster than UOV and ABC.

6. Conclusion and Future Work

In this paper, we proposed a new family of signature

scheme inspired from UOV signature scheme using similar

structure of Simple Matrix encryption scheme. We gave out

the idea of designing trapdoor and analyzed the security

against some attacks. As we see in section 4 and 5, the ad-

vantage of this new signature scheme is that the public key

size is small and signature generation speed is fast. Also,

this new signature scheme can be modified into different ap-

plications by changing the central map. At the end of the

article, we put forward some practical parameters for imple-

mentation.

However, we know that there are many splendid signature

schemes in MPKC such as HFEv-[14] which has very short

public key size. To compress the public key size, many works

are needed to do. A current idea is applying the compression

method in LUOV[1] to our new scheme.

－321－

References

[1] Ward Beullens, Bart Preneel, Alan Szepieniec, and Fred-
erik Vercauteren. LUOV, signature scheme proposal for NIST
PQC project. NIST PQC Submission, imec-COSIC KU Leu-
ven, 2017.

[2] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene
Peralta, Ray Perlner, and Daniel Smith-Tone. Report on
post-quantum cryptography. NIST Interagency Report 8105,
National Institute of Standards and Technology, 2016.

[3] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and
Adi Shamir. Efficient algorithms for solving overdefined sys-
tems of multivariate polynomial equations. In Advances in
Cryptology – EUROCRYPT 2000, volume 1807 of LNCS,
pages 392–407. Springer, 2000.

[4] Adama Diene and Yahya Yusuf. A multivariate signature
based on block matrix multiplication. 04 2020.

[5] Jintai Ding, Lei Hu, Xuyun Nie, Jianyu Li, and John Wagner.
High order linearization equation (hole) attack on multivari-
ate public key cryptosystems. In Tatsuaki Okamoto and Xi-
aoyun Wang, editors, Public Key Cryptography – PKC 2007,
pages 233–248, Berlin, Heidelberg, 2007. Springer Berlin Hei-
delberg.

[6] Jintai Ding and Dieter Schmidt. Rainbow, a new multivari-
ate polynomial signature scheme. In Applied Cryptography
and Network Security – ACNS 2005, volume 3531 of LNCS,
pages 164–175. Springer, 2005.

[7] Jintai Ding, Bo-Yin Yang, CHia-Hsin Owen Chen, Ming-
Shing Chen, and Chen-Mou Cheng. New differential-
algebraic attacks and reparametrization of rainbow. In Ap-
plied Cryptography and Network Security – ACNS 2008, vol-
ume 5037 of LNCS, pages 242–257. Springer, 2008.

[8] Jean-Charles Faugère. A new efficient algorithm for comput-
ing Gröbner bases (F4). Journal of Pure and Applied Alge-
bra, 139(1):61 – 88, 1999.

[9] Jean Charles Faugère. A new efficient algorithm for comput-
ing Gröbner Bases without reduction to zero (F5). In ISSAC
2002, pages 75–83. ACM, 2002.

[10] Jean-Charles Faugère, Françoise Levy-dit Vehel, and Lu-
dovic” Perret. Cryptanalysis of minrank. In David Wagner,
editor, Advances in Cryptology – CRYPTO 2008, pages 280–
296, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[11] Yasuhiko Ikematsu, Ray Perlner, Daniel Smith-Tone,
Tsuyoshi Takagi, and Jeremy Vates. HFERP - a new multi-
variate encryption scheme. In Post-Quantum Cryptography
– PQCrypto 2018, volume 10786 of LNCS, pages 396–416.
Springer, 2018.

[12] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbal-
anced oil and vinegar signature schemes. In Advances in
Cryptology – EUROCRYPT ’99, volume 1592 of LNCS,
pages 206–222. Springer, 1999.

[13] Tsutomu Matsumoto and Hideki Imai. Public quadratic
polynomial-tuples for efficient signature-verification and
message-encryption. In Advances in Cryptology – EURO-
CRYPT ’88, volume 330 of LNCS, pages 419–453. Springer,
1988.

[14] Jacques Patarin. Hidden fields equations (HFE) and isomor-
phisms of polynomials (IP): Two new families of asymmetric
algorithms. In Advances in Cryptology – EUROCRYPT ’96,
volume 1070 of LNCS, pages 33–48. Springer, 1996.

[15] Jacques Patarin, Nicolas Courtois, and Louis Goubin.
FLASH, a fast multivariate signature algorithm. In Topics
in Cryptology – CT-RSA 2001, volume 2020 of LNCS, pages
298–307. Springer, 2001.

[16] P. Shor. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM Jour-
nal on Computing, 26(5):1484–1509, 1997.

[17] Alan Szepieniec, Jintai Ding, and Bart Preneel. Extension
field cancellation: A new central trapdoor for multivari-
ate quadratic systems. In Post-Quantum Cryptography 2016,
volume 9606 of LNCS, pages 182–196. Springer, 2016.

[18] Chengdong Tao, Adama Diene, Shaohua Tang, and Jin-
tai Ding. Simple matrix scheme for encryption. In Post-
Quantum Cryptography 2013, volume 7932 of LNCS, pages
231–242. Springer, 2013.

[19] Takanori Yasuda, Xavier Dahan, Yun-Ju Huang, Tsuyoshi
Takagi, and Kouichi Sakurai. MQ challenge: Hardness eval-
uation of solving multivariate quadratic problems. In Cryp-
tology ePrint Archive: Report 2015/275, 2015.

[20] Takanori Yasuda and Kouichi Sakurai. A multivariate en-
cryption scheme with Rainbow. In Information and Com-
munications Security–ICICS 2015, LNCS, pages 236–251.

Springer, 2016.

Appendix

A.1 Toy Example for Simple Matrix Sig-

nature Scheme

In this section, we provide a toy example for our new

signature scheme. In this case, we let s = 2, q = 7 and nat-

urally n = 8,m = 4. The matrices A,B,C are randomly

selected as:

A =

(
1 2

6 6

)
+

(
6 4

0 3

)
x1 +

(
6 2

5 1

)
x2+(

6 3

5 3

)
x3 +

(
5 0

2 6

)
x4+(

3 1

1 0

)
x5 +

(
0 3

6 2

)
x6+(

0 3

1 1

)
x7 +

(
0 6

3 5

)
x8

B =

(
2 6

2 1

)
+

(
6 2

1 3

)
x1 +

(
6 3

6 2

)
x2+(

5 0

4 6

)
x3 +

(
1 3

5 3

)
x4+(

0 5

5 1

)
x5 +

(
5 2

5 0

)
x6+(

2 6

3 5

)
x7 +

(
2 6

6 6

)
x8

C =

(
2 4

4 3

)
+

(
4 4

1 6

)
x1 +

(
4 4

5 4

)
x2+(

4 5

0 3

)
x3 +

(
4 2

3 6

)
x4+(

3 5

2 3

)
x5 +

(
4 3

5 3

)
x6+(

2 2

4 5

)
x7 +

(
6 1

0 5

)
x8.

The affine transformations T and S are selected as

S(x) =



2 4 6 6 4 3 4 5

2 4 3 0 1 3 1 3

2 1 1 4 0 5 2 2

0 4 4 3 6 2 0 1

4 0 6 0 3 4 6 3

0 5 5 4 4 1 6 3

1 1 2 1 0 3 1 3

2 0 5 6 0 5 2 2


x

T (y) =


2 5 1 1

0 5 6 4

2 4 1 4

2 5 6 6

 y.

By choosing the secret key, we compute the public key using

－322－

the structure in Section 3 and the result is:

p1 =XT



5 1 3 4 2 2 6 1 1

1 6 3 0 6 5 6 6 2

3 3 0 2 3 2 0 5 3

4 0 2 6 3 5 1 2 6

2 6 3 3 4 5 4 5 5

2 5 2 5 5 5 5 3 2

6 6 0 1 4 5 0 0 2

1 6 5 2 5 3 0 4 5

1 2 3 6 5 2 2 5 1


X

p2 =XT



0 0 2 2 3 3 3 1 3

0 2 4 5 2 4 3 1 2

2 4 4 6 4 0 5 5 2

2 5 6 0 3 2 5 6 1

3 2 4 3 0 5 5 0 6

3 4 0 2 5 5 4 0 0

3 3 5 5 5 4 3 3 6

1 1 5 6 0 0 3 3 3

3 2 2 1 6 0 6 3 0


X

p3 =XT



5 6 4 2 6 1 3 4 2

6 1 4 4 0 0 1 6 1

4 4 2 1 2 6 4 5 2

2 4 1 6 2 4 5 0 1

6 0 2 2 4 3 3 4 0

1 0 6 4 3 1 0 6 2

3 1 4 5 3 0 5 3 4

4 6 5 0 4 6 3 1 0

2 1 2 1 0 2 4 0 0


X

p4 =XT



3 2 6 2 2 3 6 3 3

2 3 2 3 6 3 4 6 2

6 2 4 1 0 1 3 5 1

2 3 1 5 1 2 0 5 5

2 6 0 1 4 1 5 0 4

3 3 1 2 1 3 2 5 0

6 4 3 0 5 2 1 0 2

3 6 5 5 0 5 0 2 0

3 2 1 5 4 0 2 0 6


X

where X = (x1, . . . , x8, 1)T and symbol T represents trans-

pose operation. To generate signatures, we randomly choose

a message:

m = (2, 2, 5, 4)T .

In first step, we compute the formula y = T−1(m):

y = (3, 5, 1, 5)T .

To find out a solution of F (y) = x, we randomly pick a

constant matrix D:

D =

(
5 3

2 1

)

and then solve the linear system:

B(x1, . . . , xn) = D

A(x1, . . . , xn)D +DC(x1, . . . , xn) = Y

Easily, we obtain the solution

x = (6, 3, 6, 3, 2, 6, 2, 4)T .

In final step, we compute s = S−1(x) as a signature:

s = (4, 1, 2, 6, 5, 4, 2, 5)T

To verify the correctness of this signature, obviously we just

need to check the equation

P (s) = (p1, p2, p3, p4)(s) = m

whether holds.

A.2 Experiment Codes Using Magma

1 //====== Parameters ======

2 s:=8;

3 n:=2*s^2;

4 m:=s^2;

5 q:=256;

6 F<a>:=GF(q);

7 P<[x]>:= PolynomialRing(F,n," grevlex ");

8

9 //====== Private Key Generation ======

10 L1:= Random(GL(n,F));

11 L2:= Random(GL(m,F)); // affine transformations

12 A:=[Random(GL(s,F)):i in [1..n+1]];

13 B:=[Random(GL(s,F)):i in [1..n+1]];

14 C:=[Random(GL(s,F)):i in [1..n+1]];

15 // secret key generation

16

17 X:= Transpose(Matrix(Vector(x)));

18 Y:=(RMatrixSpace(P,n,n)!L1)*X;

19 AY :=(&+[(RMatrixSpace(P,s,s)!A[i])*Y[i][1]:i in

[1..n]])+(RMatrixSpace(P,s,s)!A[n+1]);

20 BY :=(&+[(RMatrixSpace(P,s,s)!B[i])*Y[i][1]:i in

[1..n]])+(RMatrixSpace(P,s,s)!B[n+1]);

21 CY :=(&+[(RMatrixSpace(P,s,s)!C[i])*Y[i][1]:i in

[1..n]])+(RMatrixSpace(P,s,s)!C[n+1]);

22 Z:= Transpose(Matrix(Vector(Eltseq(AY*BY+BY*CY)))

);

23 pb_key := RMatrixSpace(P,m,m)!L2*Z; // public key

24

25 Ax :=(&+[(RMatrixSpace(P,s,s)!A[i])*x[i]:i in

[1..n]])+(RMatrixSpace(P,s,s)!A[n+1]);

26 Bx :=(&+[(RMatrixSpace(P,s,s)!B[i])*x[i]:i in

[1..n]])+(RMatrixSpace(P,s,s)!B[n+1]);

27 Cx :=(&+[(RMatrixSpace(P,s,s)!C[i])*x[i]:i in

[1..n]])+(RMatrixSpace(P,s,s)!C[n+1]);

28 Bc:= Matrix(m,n,[[MonomialCoefficient(Eltseq(Bx)[

i],x[j]):j in [1..n]]:i in [1..m]]);

29

30 //====== Signing and Verifying ======

31 t1:= Cputime (); // Starting time

32 M:= Random(VectorSpace(F,m)); // message

33 M1:=L2^-1* Transpose(Matrix(M));

34 repeat

35 D:= Matrix(s,s,Random(VectorSpace(F,m)));

36 LHS :=[A[i]*D+D*C[i]:i in [1..n+1]];

37 LHSx :=&+[RMatrixSpace(P,s,s)!LHS[i]*x[i

]:i in [1..n]];

38 LHSx_c := Matrix(m,n,[[MonomialCoefficient

(Eltseq(LHSx)[i],x[j]):j in [1..n]]:

i in [1..m]]);

39 linear_c := VerticalJoin(Bc,LHSx_c);

40 until Rank(linear_c) eq n;

41 const:= Eltseq(D-B[n+1]) cat [M1[i][1]- Eltseq(LHS

[n+1])[i]:i in [1..m]];;

42 S1:= linear_c ^-1* Transpose(Matrix(Vector(const)))

;

43 S:= Eltseq(L1^-1*S1); t2:= Cputime ();

44 Evaluate(pb_key ,S); t3:= Cputime ();

45 Sign_time :=t2-t1; // Signature generation time

46 Ver_time :=t3-t2; // Verification time

－323－

