FeBER—Z - VAT L 54 —5
(1986. 7 21)

K E© ST IZF D ACITAAIERI I O 7=z 3> D
ScBRFA XIS 22— =

mEES (WMEBERNAREERYR) RAHRS (FERRELFBHETERD
BHEEE (YT L —-F—REFERERD

ChETBIREFILRBIBZF—IN—AISI Y2V ayOUTRAEREORDOERAAYY 2-F
—BREXNLFOBEUSHI IR RS TE R, ABETE. ZThE2ZREFVMCEEREVZOENEHEZD
WT #ERB, BRREFLERBRBISYF 27V aviidohUDRAMVBIVIEIRERARITOIF—Y
HHEAESUTBLDEED S, ERAAY V2 —F—CSnMOEEFh DETEIhFHICLETVTERIR
EFNRBISENNTEAYY 2— VDT FIAMRET 3 AV a—eBNT %, AV a—F5—0OHb
EBRAORHT A b k. MCMW MRS UBIEA KRB TRITTE 5. (HREF L TUVRVOTEHKT A ik
—RENPEL,) FUTEEXhRRFOBRBEBEI > THEZREBEL, ¥ oMM BL T, #H
WY BEOEBMBAPTEU THEBRHET . ChREREFLOAY Y 2 =5 RVEBLEBEKT
3. FRLEOLITUHENIBEREFLDOA YV a1 —-F—k0gltdrEhs,

Multiversion Cautious Schedulers for Database
Concurrency Control

Naoki Katoh, Dept. of Management Science, Kobe Univ. of Commerce, Tarumi, Kobe, Japan
Ibaraki Toshihide, Dept. of Applied Mathematics and Physics, Kyoto University, Kyoto, Japan

Tiko Kameda, Dept. of Computing Science, Simon Fraser University, Burnaby, B.C., Canada

This paper deals with multiversion cautious transaction schedulers for database concurrency
control. As assumed in single-version cautious schedulers,. each transaction, on arrival,
predeclares its read and write sets. The multiversion cautious scheduler CSm(MC) reorders incom-
ing requests from transactions in such a way that its output sequence belongs to MC, and it never
resorts to rollbacks. We show that the compietion test, which is the central part of the
scheduler, can be done in polynomial time for MC=MWW and MWRW, while the WRW completion test is
in general NP-complete in the single-version scheduler. 1t is also shown that multiversion
cautious schedulers do not have cancellation anomalies, and that CSm(MWW) does not even have aug-
mentation anomaly. Finally it is shown that in almost all cases, CSm(MC) allows more concurrency
than the corresponding single-version scheduler, if concurrency is measured in terms of its fixed
point set.

(1)

1. Introduction

A transaction scheduler in a database system must decide, for each arriving read/write request, if
it can immediately be granted without violating serializability. In this paper we investigate multi-
version cautious schedulers that never resort to rollbacks for the purpose of concurrency control.

In a single-version schedule, a read operation on a data item X reads the most recent value of X.
In a multiversion schedule, on the other hand, a read operation can read any version of X. We distin-
guish a log (or history), h, which is merely a sequence of read and write operations, from a schedule,
<h, 1>, which is a log plus an interpretation | [Pak84]. An interpretation is a function that assigns
to each read operation a version of the data item to be read. Let C and MC denote classes of logs that
are serializable under the same serialization constraints, using the single-version and multiversion
interpretations, respectively.

The purpose of this paper is to describe the multiversion cautious schedulers and to show several
nice features of these schedulers, compared with the single-version counterparts already proposed in
our recent papers [1KK85a, |KKB5b, KIK86, KK186]. See [1KK86] for the details and proofs of the
results given in this paper.

In Section 2, we describe the database system model used in this paper. In Section 3, we present a
general framework of the multiversion cautious scheduler, CSm(MC), where MC can be any subclass of MSR
defined by serialization constraints. Section 4 discusses the MC-completion test, which is the most
time consuming part of CSm(MC). We show that for MC=MWW and MWRW, MC-completion test can be done in
polynomial time, while for other classes it remains NP-complete. |In Section 5 we show that multiver-
sion cautious schedulers do not exhibit cancellation anomaly that are observed in single-version
cautious schedulers, and that some of these schedulers do not even exhibit augmentation anomaly.
Finally,in Section 8, we propose version assignment rules that give priority to newer versions, and we
show that for most classes, maintaining multiple versions of data items increases concurrency in the
following sense. Namely, an input log h such that some steps of h are delayed by the single version
cautious scheduler may encounter fewer or no delay at all during multiversion cautious scheduling.
Throughout this paper, C denotes a proper inclusion and, T denotes an improper inclusion.

2. Database System Model)

A database system consists of a set D of data items and a set T = {TO, Tis vees Tf} of transactions.
A transaction consists of a totally ordered set of read and write steps, where a read step{write) step
consists of a set of indivisible read (write) operations. The operations in a single step may be ex-
ecuted in any order. A write operation, W;[X], of transaction T; creates a new version of data item X,
and a read operation, Rj[X], of transaction T; returns the value of a version of X. Each data item is
accessed by at most one.read operation and at most one write operation of each transaction. |If a
transaction T; both reads and writes a data item X, then R;[X] is ordered before ¥;IX] in T;. The set
of data items read (written) by a transaction is called its read (write) set. Ty and Ty(consisting of a
single write step Wy[D] and read step Re[D] respectively) are fictious transactions called the initial
transaction, and the final transaction, respectively. Any log starts with Ty and ends with Te.

Let Steps(T) denote the set of all read and write steps of a set T of transactions. A seguence over
Steps(T) such that, for each i, its projection on Steps({T;}) satisfies the total order for T; is
called a log. Given a log h over a set T of transactions, a schedule over T is a pair s = <h, |>,
where | is a mapping, called an interpretation [Pak84] or version assignmsent, from the set of read
operations into the write operations such that I(Rj[X]) must precede Rj[X]. The standard interpreta-
tion [Paksd] I¥ associated with h is defined by I*(RJEX]) = Lp(R;LXDD, where Lh(Rj[X]) denotes the last
write operation on X that precedes Rj[X] in h. Clearly, any single-version schedule can be interpreted

(2]

as a multiversion schedule with the standard interpretation.

In order to represent a schedule s = <h, > we often use a visual representation, called the linear
representation, in which the steps in h are arranged linearly from teft to right. Each write operation
W;[X] is changed to W;[x;] and each read operation R;[X] is changed to Rj[x;1 if 1(R;IXD) = W;IX].

Let h and h’ be two logs over T. Two schedules s=<h, |> and s’=<h’, I’> are said to be equivalent,
written s=s’, if I1=1’. A log that does not interleave steps from different transactions is called
serial. A serial log with the standard interpretation is called a serial schedule. A multiversion
schedule s is said to be serializable, if thre exists a serial schedule s’ such that s’=s. A log h is
called serializable if there exists an interpretation | such that the schedule <h, I> is serializable,
and such an | is called a serializing interpretation.

The transaction 10 graph or TI10 graph [IKM82, IKM83] for s, denoted by T10(s), is a labeled directed
multigraph with the node set T U T’ and the arc set A, where T’ is given below. If Tj reads X from
Ti, it has a reads-from arc (T;, T;)EA labeled by X (denoted by (T;, T):X). If T; performs W;[V] but
no other transaction reads Y from T;, then W;[V] is said to be a useless write [Set82], and we intro-
duce a dummy node T’; € T° together with a dummy arc (T;, T’;):¥. Note that at most one dummy node is
introduced for each transaction. Dummy nodes will be represented by swall circles without labels.

Let s = <h, I> be a schedule. A total order << on the set of nodes of TI0(s) is a disjoint-interval
topological sort or DITS [1KM82, IKM83], if it satisfies the following two conditions for any Ty, T,
Ths and Ty in T U T

(a) if T; << Tj then there exists no path from Tj to T; in T10(s), and

(b) [Exclusion rule[Set811] for any two arcs labeled by X in TI0(s), (T, T;):X and (Tj, TyD:X, such
that h # j, either T; << Tj or Ty << Ty holds. '

If T; << Tj in a DITS, we say that T; is serialized before T;.

Theorem 2.1 [IKM82]. A schedule s is serializable if and only if T10(s) has a DITS which orders Ty
first and T¢ last. O

Based on serialization constraints, called write-write{ww), write-read(wr), read-write(rw), and
read-read(rr), classes of logs, MWW, MWR, MRW, MRR, etc., have been introduced [1bK831. A log h belongs
1o a certain class MC if there exists an interpretation | for h such that <h, 1> is equivalent to a
serial schedule satisfying the set ¢ (ww, wr, etc.) of imposed constraints. The single-version coun-
terparts of these classes are called, WV, WR, RW, etc [1KM82]. Because of its importance in this
paper, the union of all wr- and rw-constraints will be denoted by an abbreviation wrw. Similarly, we
use MWRW (WRW) to denote the class of multiversion (single-version) log serializable under the wrw-
constraints. In general, for a set of constraints c, let MC (C) stand for the class of muitiversion
(single-version) logs serializable under the constraints in c. Any one of the above typés of con-
straints can be indicated in TIO(s) by constraint arcs called, wy-arcs, wr-arcs, etc. For a given set
¢ of constraints, let TI0.(s) denote the TI0 graph for s augmented by all the constraint arcs cor-
responding to c.

Theorem 2.2 [1KM82, IKM83]. A schedule s is serializable under a set c of constraints if and only
if TI0,(s) has a DITS which orders Ty first and Ty last. O

3. Cautious Scheduler

Let <P, 1> be a partial schedule, where P is the output log that has so far been generated and | is
its interpretation, and let q denote the current request, i.e., the step of operations being examined
for granting or delaying. Ve introduce a list DEL of delayed steps, and 4 set PEND = U Steps(T;) -
{the steps in Pq} of pending steps, where the union is over all T; €T such that the first step of T;
has already arrived. Ve note that PEND consists of two kinds of steps: those which are delayed and
those which have predeclared but have not arrived yet. |t is assumed that each transaction issues its

(3]

next request only if it has no delayed request.)

Given <P, 1>, q, and PEND, the multiversion cautious scheduler CSm(MC) must perform the MC-
completion test, i.e., it must determine if it is possible to complete the partial schedule <P, |> by
appending to it a sequence qQR¢[D] and an interpretation I’ such that (i) Q is a sequence over PEND,
(ii) the order of steps in Q is consistent with that among the steps of each transaction, and (iii) the
resulting log PgQR¢[D] belongs to the given class MC, with a serializing interpretation 11’ for
PaQR¢[D], where 11’ is the union of interpretations | and |’.

In response to each new request g, CSm(MC) performs the MC-completion test. If the test fails, then
it delays q and appends it to DEL. If the completion test succeeds, on the other hand, step q is
granted, and the steps in DEL are reexamined one after another in order to see if they can be granted.
The following is the precise description of the scheduling algorithm.

Procedure CSm(MC)
CS0: [Initialization] Let P := WolD1, g := the first request (issed by the first arriving transaction
Tyd, | := the empty function (P has no read operation yet), DEL := A (the null queue), and PEND
= Steps(Ty) - {q}.
CS1: [Test the current request q] Apply the MC-completion test to the partial schedule <P, I> and q.
If it fails, then go to CS2. Otherwise, grant q and go to C€S3.
€S2: [q was delayed] Do one of the following, depending on the current request g.
(a) g € DEL and all the other steps, if any, in DEL are marked: Erase all marks from the steps in
DEL and go to CS5.
€s3: [q was granted] Let P:= Pq, and if q is a read step, define 1(p) fro each read operation in q as
given by the MC-completion test of Step CSI. Unmark all the marked steps, if any, in DEL, and if
q € DEL, delete q from DEL.
CS4: [Pick the next g in DEL] If DEL # A, then let q be the first step in DEL. Return to CS1.
CS5: [Wait for the next arriving request] Let g be the next arriving request. If g is the first step
of a new‘transaction T;s then let PEND := PEND U Steps(Tj) - {a}. Return to CS1. OO

Theorem 3.1. [1KK85a] For MC = MSR, MWW, MWR, MRV, MRR, and MWRW, and given an input sequence h’
of steps generated by a set T of transactions, CSm(MC) always produces a log h € MC over T such that
the order among the steps of each T; € T is preserved in h. 0O

4. Completion Test
Though the MC-completion test can in general be quite time-consuming, Theorem 4.3 below will show
that it can be done in polynomial time for MC = MWy and MWRV.

Definition 4.1 The active TIO graph (or ATIO graph, for short), denoted by ATIO(<P, 1>; q; PEND),
has a node set that consists of the transactions whose steps are in Pq and/or PEND, the final transac-
tion T¢, and some dummy nodes, which are the terminal nodes of the dummy arcs below. Iis arc set con-
sists of two disjoint subsets, A and A’. Subset A contains those reads-from arcs and dummy arcs repre-
senting <P, |>. Each write operation W;[X] of a step in {q} UPEND is represented by a dummy arc (Tis
T*;):X, called a pending write arc. O

In what follows we draw the arcs in A thick and those in A’ thin. In addition, if g is a write
step, the corresponding dummy arcs will be drawn thick. Thus we are pretending as if it had been
granted. The dummy nodes are indicated by small circles. Also, as a reminder, we indicate a not-yet-
granted read operation on X by a transaction T; as a dangling arc to node T; tabeled by X.

(4]

Example 4.1 Consider the following pariial schedule and pending steps.
<P, I> = wo[XO, y0]R1[X°]R2[y0], q= Uz[X], PEND = {W1[X]}.

The active T10 graph, ATIO(<P, I>;q; PEND) is shown in Fig. 4.1(a). O

DITS for ATIO graphs plays a central role in our MC-completion test. To take serialization con-
straints into account, we add constraint arcs to ATIO(<P, 1>;q; PEND). Let A and B be two steps in Pg
U PEND. Ve write A < B if either A precedes B in Pg, or A €EPq and B EPEND. For a given set ¢ of
constraints, if a step A of T; and a step B of T give rise to a c-constraint and A < B, then a con-
straint arc (Tl, TJ), called a c-arc, is lntroduced For a set ¢ of constraints, let ATIO, (<P, 1>;q;
PEND) stand for the active TIO graph augmented by the c-arcs. In example 4.1, ATIO, . (<P, [>}q; PEND),
shown in Fig. 4.1(b), has an rw-arc (Ty, T9), since Ry[X] precedes Wo[X] in Pg. As shown below in
Theorem 4.1, testing whether a given TI0 or ATIO graph has a DITS can sometimes be facilitated by the

Pexclusion closure” defined as follows [1KM82, IKM83]. Lef (Tps Tj):X and (Tj, T) X be two arcs in
T10.(s) or ATIO (s;q; PEND), where h # j. if there is a path in the graph from Ty to Ty, we introduce
an unlabeled exclusion arc (T, T;) Their exclusion closures, denoted by TI0, *(s) and AT10. ¥(s5a;
PEND) are obtained from T10,(s) or ATI0.(s;a; PEND), respectively, by adding arcs (Tgs Tj) and (Ty, Tp)
for all T; # Tg, T¢, and all exclusion arcs. |t can be shown that the exclusion closure is unique and
does not depend on the order of adding the exclusion arcs.

sIw
jﬁ\ro_@
v 2/ X X,
(@) (b)

Fig. 4.1. Active TI0 graphs for Example 4.1. (a) ATIO(<P, 1>;q; PEND); (b) ATiO,..(<P, I>;a; PEND).

Theorem 4.1. [IKM82, 1KM83]
() TI0,,(s) (ATI0,,,(s;q;PEND)) has a DITS if and only if Tloww*(s) (ATIOVN*(s,q,PEND)) is acyclic.
(b) TI0, . (s) (ATIO, . (s;0;PEND)) has a DITS if and only if TIO,., ¥(s) (ATIO ¥(s;q;PEND)) is acyclic.

The MC-completion test is performed based on G’=ATIO.(<P, 1>;q; PEND) with a partial schedule <P,
|>, the current request q issued by Tj, and a set of pending steps PEND. Note that even if G’ has a
DITS, the DITS may assign the version to be written by a pending write operation to the current read
request. For MC=MWRW, however, this does not happen, since rw-arc from each read operation Rj[X] ing
to all pending write operation on X forces Tj to be ordered before any transaction with a pending write
on X. For MC=MWW, this is prevented by introducing an rw-arc from Tj to each T, with a pending write
operation on X €S for q=Rj[S]. In the subsequent discussion, therefore, we always assume that these
ru-arcs are included in ATI0, (<P, I>}q; PEND). Combining this with Theorem 4.1, we immediately obtain
the following theorenm. ‘

Theorem 4.2. The MC-completion test for class MC=MWW or MWRW can be done in polynomial time. O
On the other hand, for the other classes, the MC-completion test is NP-complete, as shown below.
Theorem 4.3. [IKK86]1 For MC = MSR, MRW, or MWR, the MC-completion test is NP-complete. O

in view of Theorem 4.3, multiversion cautious schedulers CSm(MC) that has practical importance ap-
pear to be limited to CSm(WW) and CSm(WRW). In the rest of this paper, we investigaie various aspects
of multiversion Qautious schedulers, placing particular emphasis on these two schedulers.

(5)

5. Cancellation and Augmentation Anomalies

As stated earlier, in our model, each transaction upon arrival predeclares its read set and write
set. In real situation, however, it will be more convenient if transactions can cancel some of their
predeclared operations. Some of the single-version cautious schedulers may biock when predeclared
operations are canceled, namely, they exhibit cancellation anomaly [I1KK85a,b]. The following theorem
shows that multiversion cautious schedulers CSm(MC) do not share such undesirable feature.

Theorem 5.1. [IKK86] CSm(MC) does not exhibit cancellation anomaly for any class MC introduced in
Section 2. [

Next, we consider the opposite situation, in which transactions want to expand their predeclared
read and/or write set. It is easy to see, however, that for any CSm(MC) of interest, the addition of a
new write step may cause scheduler blocking. Therefore, we consider only the addition of new read
steps, and say that a scheduler exhibits augmentation anomaly, if the addition of some read steps, not
predeclared, can cause scheduler blocking. All single-version cautious schedulers studied in previous
papers [1KK85a, KIK85, KKI86] exhibit augmentation anomaly as easily checked. Surprisingly, however,
some multiversion cautious schedulers do not exhibit augmentation anomaly.

Theorem 5.2.[IKK86] (i) For classes MC=MSR, MWW, MRW, CSm(MC) does not exhibit augmentation anomaly.
(ii) For other classes MC, however, CSm(MC) exhibits augmentation anomaly. CI

We give here an example of augmentation anomaly for MC=MWR.

Example 5.1. Consider <P, I>=Wo[DIR;[xgIWj[x; IRyLx; JWglyel, a=RgLV1, PEND={wW;[Z1, Ws[YI}.
ATI0, (<P, I>3q; PEND) is shown in Fig. 5.1(a). It is easy to see that this graph has a DITS. If T
declares a new read step RiLY], a new pending read arc and a wr-arc are added and the graph shown in
Fig. 5.1(b) is obtained, in which a cycle is detected. Since the cycle is due to three already granted
operations W [x;1,Ry[xq] and Wolygl, it does not vanishes even if the current request 9=R3[Y] is

delayed. Thus CSm(WR) blocks. [
v,z A = Y Y
(1of—{1 (T 0 —(19) —(Tp)
X X Y Y X,Y,Z Y X,Y,Z

@) (b)

Fig. 5.1. Augmentation anomaly. (a) ATIO (<P, 1>;a; PEND); (b) Addition of Ry[V1.

From these results, it is seen that CSm(MWW) is particularly important in practice, because it runs
in polynomial time and has no cancellation or augmentation anomaly. The absence of augmentation
anomaly in CSm(MWW) implies that it is required for a transaction to predeclare only its write set.

6. Version Assignment Rules and Fixed Point Sets of Cautious Schedulers
In this section, we investigate the version assignment rules in the completion test. Intuitively,
we feel that most recent version that is feasible should be assigned. Therefore, we shall adopt the

following rule.

Rule 0: Assign the most recent version to each read operation in g, if it results in a serializing

(6]

interpretation.

This rule does not specify what should be done if it fails. Thus; we will introduce two more rules
to deal specifically with CSm(MWW) and CSm(MWRW). According to Theorems 4.1 and 4.2, the completion
test for these schedulers can be done by the acyclicity test of G¥=ATIO ¥(<P, 1>;a; PEND) with c=ww or
wrw, which can be accomplished by successive elimination of source nodes as follows, starting with k.
(1) Halt if G¥ has no source node; the original ATIO graph is not acyclic.

(2) Choose a source node and eliminate it from ¢t together with the arcs incident to it. Rename the
resulting graph as G¥. Halt if 6¥ has no node; the original ATIO graph is not acyclic. Otherwise
return to (1). O

Theorefore, the method of version assignment depends on the order of source node elimination. The

second rule is stated in this context.

Rule 1: Suppose that q = Rj[S] and Tj has become a source node. |f thre are source nodes other
than Tj, eliminate all other source nodes first before eliminating Tj.

In order to state the rule for the MWRW-completion test, we assume that the data items in D are to-
tally ordered. We use the term ”smaller” to represent this total order.

Rule 2: Suppose that q = Rj[S] and Tj has a source node. If there are source nodes other than Tj,
eliminate all other source nodes in the following order before eliminating Tj: for transactions T; and
T with write operations W;[Y] and W, [2], respectively, eliminate T; before Ty if Y is "smaller” than
Z, and break ties, by eliminating older version first.

Theorem 6.1. [IKK88] (i) Both Rules 1 and 2 are compatible with Rule 0, and will generate the standard
interpretation if it is possible.

(ii) If Rule 1 is used in the MWW-completion test, then for each X €S the version of X that is as-
signed to RJ[X] is the most recent possible. O

Let h be a log over a set T of transactions. Let MC* denote the fixed point set [KuP79, Pap821,
i.e., the set of logs h granted without delays, that is to say, no step of h is ever put in DEL by
CSm(MC). The fixed point set gives a measure of concurrency allowed by a scheduler. The set mc¥
clearly depends on the interpretation specified by CSm(MC) during the MC-comletion test. We adopt the
version assignment Rule 0, and where applicable, Rule 1 (in CSm(MWW)) and Rule 2 (in CSM(MURU)). Ve
’ have the following characterizations of mck.

Theorem 6.2. [1KK86] (i) For any set ¢ of constraints introduced in Section 2, we have C C Mc¥ C
MC, where C is the class of logs that are serializable under constraints ¢ in a single-version system.

(ii) For any constraint set c, not containing both ww- and wr-constraints, we have C C Mc* ¢ me.

(iii) For a constraint set ¢ that contains both ww- and wr-constraints, we have C = Me¥ = mMC.

(iv) For two-step transactions, we have WW = M C MWW, O

Fig. 6.1 shows the inclusion relationships among MC and MC*, where MC=MWW and MWRW.

References
[BeG83] P. A. Bernstein and N. Goodman, Multiversion concurrency control-theory and algorithms, ACM
Trans. Database Systems 8, 4(1983), 465-483.

(7]

Dept. of CS, Simon Fraser Univ., Dec. 1982.

[1bK83] T. Ibaraki and T. Kameda, Multiversion vs. single-version serializability, LCCR TR83-1, Lab.
for Computer and Commnunications Res., Simon Fraser Univ., 1983.

[1KkM83] T. tbaraki, T. Kameda and T. Minoura, Disjoint-interval topological sort: a useful concept in
serializability theory, Proc. 9th Int. Conf. on VLDB, Oct/Nov. 1983, 89-9i. .

[1KK85a1 T. Ibaraki, T. Kameda and N. Katoh, Cautious transaction schedulers for database concurrency
control, LCCR Tech. Rep. 85-6, Lab. for Computer § Communications Res., Simon Fraser Univ.,
1985. :

CIKK85b] SRAME, MEIEE, WEER, Cautious Scheduler CERBI AN Y 2 —5—) 2 & 3 BIFAESE,
A BEES T - IR —AV AT ARAELER, 198654 7H.

[IKK86] T. Ibaraki, T. Kameda and N. Katoh, Multiversion cautious schedulers for database concurrency
centrol, LCCR Tech. Rep. 86-2, Lab. for Computer § Communications Res., Simon Fraser Univ.,
19886.

[KIK85] N. Katoh, T. !baraki and T. Kameda, Cautious transaction schedulers with admission control,
ACM Trans. Database Systems 10, 2 (1985), 205-229.

[KK186] N. Katoh, T. Kameda and T. Ibaraki, A cautious scheduler for multi-step transactions, To
appear in Algorithmica 1 (1986).

[KuP79] H. T. Kung and C. H. Papadimitriou, An optimality theory of concurrency control for databases,
Proc. ACM-SIGMOD Int. Conf. on Management of Data, Boston, May 1979, 116-126.

[Lau81] G. Lausen, Serializability problems of interleaved transactions in Lecture Notes in Computer
Science 123; Trends in Information Processing, Springer Verlag, Berlin, 1981.

[Pap82] C. H. Papadimitriou, A theorem in database concurrency control, J. ACM 29, 4 (1982). 998-1006.

[PaK841 C. H. Papadimitriou and P. C. Kannelakis, On concurrency control by multiple versions, ACM
Trans. Database Systems 8, 1 (1984), 89-99.

[Set81]1 R. Sethi, A model of concurrent database transactions, Proc. 22nd |EEE Symp. Foundation of
Comp. Sci., Oct. 1981, 175-184.

[Set82] R. Sethi, Useless actions make a difference: Strict serializability of database updates, J.
ACM 23, 2 (1982), 394-403.

MW
_________________ 3

erw* | MWRW

| _ L] L

! Fom———— - - Fr--- 1

| I i MWRK* |
[U O !

} V| 17 .

!

I [A T | : :

! i | =M(WW+HR) | : |

} N I TP P I ,

| ! ' |

| 1 | ! |

! K o |

| Ll l I fewru

i 1 1 | [

L bl i [N

Iy Dl v 1.4 :

: R R '
] 1
L D |

Fig. 6.1 Inclusion relationships among MC and Mc¥ with MC=MWW and MWRW.

(8]

