F—EN—2 - L RF A5 585
(1987 3 16)

R AR S5 — ¥ N — X W I T D

= OERF BS BE > B o — % g = & W T

% o WE
UM KE IT¥8

R IR —ADOEAANBOLEBORES>ST. N—VayEERNEFTREELRS> TE R
RN—VaYyEo—RNLR2EEAEL2RBA T ILHORUERRAEETURLS. SHEREY
STRDETH 3. UDPU. N—=VayoLivHalkhrraATIILRLLIVEBELOHU
VWHEHENEL S, ABTEHZOPORDESRBMBAICRUTRE T 3.
(DBEOF—FYDTERN—VaysrsTIoEERE
(DR =YV ayryrs7eiT 32— 0FE&EMBERV L2 —LOEEHRERE
EFMERBN—Y a3y /I3 T REVEUVUZEITAEBA

HE BEES2HEORDOBRAOEFABEEIRATVEIN,. BHOF—-YOAIBEE
TE. BEOF—IREBEYITIREET BRI EUHFTALTVLRL. UL, BYOFTEY
RHDOETOLDHDRCOBEBLDETCSHI I3 L HR. N—VaVIySTR2EERETILED D 5.
Fh, TEMARANAN—-YaYyREIRVABAZRZHULTE. HBHRN -V g Y HERYE 2 —
REBLRTIAEROIRVOT. BRF-IN—-—ADEC 2~ UBERIBENDLETS 3
FUT. N=VayoORaPHAMENLEROT. EHNTENE. 5 YITRELHI=X
LOE4YHOBHERLEELRTI AT RS R L.

Update and View Operations for Historical Databases

Hai-yan XU and Yahiko KAMBAYASHI

Department of Computer Science and Communication Engineering

Kyushu University 36, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812, Japan

Due to the increasing importance of database applications to CAD systems, it becomes very important to
handle versions in database systems. In order to handle general cases, we need to use directed acyclic graphs to
represent historical relationships among versions instead of linear sequences or tree structures. By permitting
splitting and merging of versions, we have new problems to be solved. In this paper the following problems are
discussed:

(1) Update of past data as well as update of version history graphs.

(2) View definition problem and view update operations on version history graph.

(3) Concurrency control problems when versions are presented by acyclic directed graphs.

In conventional proposal, past versions are assumed to be not changeable, but we need such operations due to
errors or some design changes. Functions to change version graph structure are also necessary. Since we need
to generate a version graph to be seen by users who cannot use intermediate versions, views of version graphs
are different from relational database views. Due to the existence of splitting and merging operations,
serializability condition used for the correctness of concurrency control mechanisms should be modified.

1. Introduction

Due to the increase of application areas of database
systems, version management is getting very
important. In order to manage various versions,
there are problems such as how to represent and
manage relationships among versions, which are not
encountered in conventional database systems.
Version management approaches proposed so far do
not provide enough functions to handle such
problems. In this paper we discuss the following
important problems of version management:

(1) Updating of past data as well as updating of the
version history graph.

(2) View operations on the version graph.

(3) Concurrency control problem when versions are
presented by directed acyclic graphs.

In order to manage data of different states in general
cases, first historical relationships among them must
be recorded by directed acyclic version graphs.
- Second the following flexible ‘version operations
must be provided: (1) Modify: When

mistakes in & version {past or current), it needs 45 be
modified. Furthermore, since mistakes in a past
version may be propagated to its successors, it is
necessary to modify several versions at a time. (2)

Delete: If a version is not wanted any more, the

there are

delete command is very useful. When a version is

deleted, version graph must be modified, too. (3)

Merge: Since versions record the different states of
objects, in some cases, it is better to combine several
versions into a global one. (4) Split: In some cases it
may be necessary to split a version to several ones,
which is an inverse operation of merge.

Since a user only can see a part of versions, for each
user the view appropriated to him should be
provided. However, since versions are related to each
other, the problem of how to handle relationships
among them must be considered. In relational
databases, since data are handled independently,
this problem is not encountered. Furthermore, for
view there are view update problems which are very
critical issues. Therefore view update problems of
version graphs must be handled, too.

‘When versions are presented by directed acyclic

graphs, serializability, the correctness of

conventional concurrency control must be modified.
Serializability severs quite well for conventional
data-processing applications that update is taken
place in linear order and the sequence of action is
important. However, in general case serializable
consistency is not a suitable criterion for
concurrency control. For example, transaction Tp
updated version v; of object A to v (of same object)
and then committed. After T1 being committed,
transaction T2 updates vi and vg to a new version v3
(of same object A) by merging v; and vg (Fig.1.1). It is
clear that this execution is non-serializable on the
object level, for vi, v, and v3 are only the different
states of an identical object. This kind of execution
schedule, design

however, is necessary in

environment and other applications.
m. objectA

A1 T Tg

VM
T

2

*

v3

Fig.1.1 A non-serializable execution schedule

2. Versions

In this section, we discuss the version representation
and version operations which treat the following
cases: (1) correction of historical data, (2) merge and
split of versions, (3) modification of several versions
at a time, (4) use of a version of an object to create
other version(s) of different objects.

Generally version concept is introduced to represent
the following situations [CHOU86, BATKS5,
KATL84, KATZ85, KATZ86, KLAH86, KRUS84,
LOCKS851:

(1) Alternative design or parallel design for an
object. For example, in software development, a
module may be coded in several ways using a
language at a time (alternative design) or can be
coded in several languages simultaneously
(parallel design).

(2) Historical data. Generally states of an object
changes over time and they are recorded by
versions.

In this paper, similar to [CHOKS86, KLAHS6,
BATKS85], we use version concept to represent a
state of an object and the object is only the unit
which comprises all versions.

[Version Representation]

(1) Version graph G(V, E): Historical relationships
among versions are represented by directed
acyclic version history graphs (for example,
Fig.2.1(a)). Nodes V represent versions and edges
E show the derivative or historical relationships
among versions (historical relationship (vj, vj) is
created when version vj is derived from version v;
or the results of update of version vj is in version
vj.

(2) Class: Each class corresponds to a required design
method (for example, a required programming
language). By the concept of class, alternative
versions or parallel versions can be known in the
following way:

(a) Parallel versions are those which belong to

different classes.

(b) Alternative versions are those which are valid
at same time and within same class.

[Version Update Operations]

(1) Modification of a version. When a version is
modified, result is recorded in a new version and
updated version only became invalid.
Furthermore if a past version is modified, it is
necessary to add edges. Such cases are explained
by Fig.2.1: If version v3 is modified and its result
is recorded in version vg and vg represents vs,
then doted lines which shown in Fig.2.1(c) are
required. For this purpose, we introduce a new
kind of relationship: a version is a “parent-in-
law” of another one. Formally, suppose version v
of version graph G(V, E) is modified into vj and vj
represents vi, then if vke€V and (vk, vi)€E ((vi,
vi)¢E), then vy is defined as a “parent-in-law” of
v; (vi is defined as a “parent-in-law” of vi). Here
notion (vk, vi)€E represents v is a parent of vj,

rather a “parent-in-law” of v;. For a “parent-in-
law” v4 of vj (vi is a “parent-in-law” of v¢), from
transitive relationships the information that vy is
a “parent-in-law” of result version vj (vj is a
“parent-in-law” of v¢) can be known.

V4 vy

v5

vi Y2 oy v V2 V2 o9y
2: v iz A %"
v : \Fie 2

5 vé vg Vb

(a) (b) (c)

Fig.2.1 An example of modification
of a intermediate version

We point out that the relationship “parent-in-
law” is also very important for the purpose to
provide appropriate view for users. Suppose a
user A only can access versions Vi, V4, V5, Ve for
the case of Fig.2.1(b), then the version graph in
his view should be as {{v1, v4, v5, e}, {(v1, ve), (Ve,
v4), (ve, v5)}}. When the relationship “parent-in-
law” is introduced, as will be described in next
section, this kind of view can be provided.

(2) Modification of several versions at one time.

Since mistakes in a past version may be
propagated into its successive versions, it is
necessary to update them together. Suppose
version vi,-, Vn of version graph G(V, E) are
corrected together and results are in v'1,-, v’y
each other, then if (vj, vj)¢E, then v’; is defined as
a “parent-in-law” of v’j; and if v€V and (v, vi)€B
((vj, vk)€E) but v €{v1,-, Vn}, then vi is defined as
a “parent-in-law” of vj (v; is defined as a “parent-
in-law” of vy) (Fig.2.2).

(8) Derivation of a new version from an existing one.

In this case, a new version is created without
‘changing the valid time of old one.

(4) Deletion of an existing version. When a version is

deleted, in principal its successive versions
should be connected to its predecessors directly.
Since algorithm in section 3.1 will solve the

y

- :::
X

z

(a)

(b)

(c)

Fig.2.2 An example of modification
of several versions together

problem of how to distinguish predecessor and
“parent-in-law”, we do not discussed it here.

(5) Merge of versions. In this case, a new version can
be obtained while some merged versions remain
valid and others became invalid (see Example
2.1)

(6) Split of a version. New versions can be obtained
and the split version can remain valid or become
invalid.

(7) Updating of metadata of version. It is necessary
to permit users to change metadata such as
creator, valid time, version name or version
identification number, and class name.

(8) Updating of relationships. Although historical
relationships record the development of versions,
users may want to have rights to change them. In
the version representation of this paper, it is
necessary to change kinds of
relationships: from a “parent-in-law” to a general
predecessor. For example, in the case of Fig.2.2 if
only versions %', y’, and 7' are remained, users
may want that X’ becomes a predecessor of

let users

versions y’ and 2’ directly, rather than a “parent-
in-law”.

Vi v5

v3
V4

Fig.2.3 An example of merging of versions

Example 2.1: Suppose three versions vg, v3, v4 are
derived from version v; and now a user wants to
merge versions vj, Vg, v3 into new version vs.
Furthermore, the user wants to keep vy valid and
make vg, v3 invalid (Fig.2.3). This is the case when a

user wants to get a design by integration of versions
vg, v3 and only a part of vi which is not included in vg
and v3 is used.

Furthermore, derivation or update operation can be
performed not only within the versions of the same
object, but also on the versions of different objects.
Since in the cases of creating of a new object or
merging of existing objects to a new one, existing
object’s version(s) may be used to create the versions
of new object. That is, there may be edges between
versions belonging to different objects.

3. View Functions

In this section, the following two problems are
discussed.: (1) how to provide views, (2) view update
problems.

3.1 Definition of View

For a user, generally only a part of versions can be
accessed. For this purpose, there is the problem of
providing appropriate views to different users. For
this problem, first, users should be allowed to select
relationships of required kinds for a given set of
versions, since a user may only need a part of
historical relationships. For example, a user may not
select: (1) relationships among versions of different
objects, (2) “parent-in-law” relationships.

Second, it is inappropriate to define the relationship
set of view as a subset of base schema. The problem
will be shown in the following example.

Example 3.1: A history version graph of an object is
shown in Fig.3.1 (a). Suppose user A selects only
versions v and vg into his view. Since versions
represent different states of objects, a user may not
be permitted to see some intermediate versions. If
the history version graph Fig.3.1(b) is shown for user
A, then the information that version v3 is a successor
of vy is lost. For this case, history version graph
Fig.3.1(c) is an appropriate one. That is, to calculate
history relationship transitively: if vg is a successor
of v1 and v3 is a successor of vg, then for the user who
only selects versions vi and v3 into his view, vs3 is
regarded as a successor of v1 in that view.

However, as described above there are two kinds of
edges in version graph: (1) historical or derivative

relationship, (2) a version is set as a “parent-in-law”
of another one. Therefore we need to consider how to
treat this two kinds of edges. (a) If there is a directed
path connecting v; and v; and every edge on this path
is of kind (1), then (vj, vj) can be defined as kind (1)
without any problems. There is, however, a difficult
problem in the following case. (b) If there is an edge
of kind (2) on the path connecting v; and vj and there
is not a path which satisfies condition (a). For this
case we think what is important is to keep the
following thing true: If in version graph G(V’, E’) of
view, a version vi€V’ is shown as a one gotten by
merging of two versions vg and v3, then v or v3 must
not be only an “ancestor-in-law” of v;. Therefore we
define the edge of case (b) as kind (2). In the
following an example and an algorithm are shown.

Vi Vg V3 Vi V3 Vi V3
——re—————>¢ ° . 9
(a) (b) ()

Fig.3.1 View of history version graph

(a) (b)

Fig.3.2 An example of view of version graph

Example 3.2: Suppose the version history graph kept
in the base schema is shown in Fig.3.2(a) and a user
B only selects the versions vy, v4, v5, v into his view,
then version graph in his view is shown in Fig.3.2(b).

[Algorithm] (we distinguish two kinds of edges by
representing of edge (vj, vj) as (v, vj)i(i=1or 2))

V’={Versions that user has right to access}; E'=¢;
S=Vv;
Do while S# ¢
Let s€S; S=8S-{s}; T={(s, x)i(i=1 or 2)ix¢V and
(s,x)icE};
Do while T# ¢

Let (s, t)ieT;
IfteV’then begin E'=E’U(s,t)j;
if ((s, t)1¢E’ and (s, t)2¢E’)
then E'=FE’(s, t)2
T=T-{(s, t)i};
end;
T = T-{(s, x)ii-3A(ye V)X, y)keE};
T={(s, x)k(k = max(,)))3((s, y)icT’) and 3((y,
x)icE};
end;
end;

3.2 View Update Problems

In general, view update problems are very critical
issues and only if a view is a subset of base schema,
view update operations can be implemented.
Although the version set in view is a subset of base
schema, a view defined here is not a subset of base
schema due to the existence of transitive edges.
Addition of such edges will not cause difficult
problems as described below.

(1) The problem that the relationships in view are
calculated transitively from base schema. Since
there is not one-to-one mapping from view and its
base schema, operations on view generally

cannot be mapped into the operations on base
schema. However, this is not a critical problem.
First, generally the information on relationship
between versions v; and vj is as follows: kinds of
relationship, valid time, creator, ID of version vj,
ID of version vj. For historical relationship,
however, valid time and creator are unnecessary,
because valid time and creator of it are as same as
these of version vj. Furthermore, the possible
update operation on a historical relationship is
only to change the kind of it. Moreover, when a
user cannot see some intermediate states, the
method to calculate relationship transitively is
required. That is, when the method to calculate
relationship transitively is used, it means that
the user does not have rights to access some
intermediate versions. Therefore it is natural
that the user cannot update the kinds of
relationships which are calculated transitively.

(2) Updating operations on versions: Since a version
set in view is a subset of its base schema,

operations on the version set in view can be
completely mapped into the operations on the
version set in base schema. Although by such
operations relationships among versions on base
schema may be changed, by the algorithm
described in Section 3.1 relationships on view can
be obtained. Therefore it seems that update
operations on the version set are carried out on
view directly.

Some examples of view update are shown as follows,

(a)

(b)

Fig.3.3 View update operation:
modification of a intermediate version

Example 3.3: In the case of Fig. 3.2 if the user
updates version v; to a new version v7 and vg
represents v, then the update which is carried out
on the base schema is shown in Fig.3.3(a). By
mappings between view and base schema, the user
can get his updated view (Fig.3.3(b)). For the user it
seems that update is carried out on his view directly.

vg ’7
L // veé
______ /
= 7
\ S
\\\ / < V4
~
\\\ ’/’:/
v5
(a) (b)

Fig.3.4 View update operation:
deletion of a version

Example 3.4: If base schema and view are shown in
Fig.3.4 and the user issues delete v; command to his

view, then base schema becomes the one shown as
Fig.3.4(a) and the view changes into the one of
Fig.3.4(b).

4. Concurrency Control

For traditional transaction schema the notion of
correctness for an execution of a set of transactions is
serializability. Serializability requires that an
execution should be equivalent to one that would
have occurred without any concurrency in the
system. In other words, users (transactions) must not
see the effects of concurrent execution. However
serializability is restricted by the following reasons:

(1) In real world, changes of states of an object are
not only in linear order. For example, as
described in Section 2, in design environment,
there may be alternative or concurrent states for
a design object.

(2) In some applications such as design environment,
the primary concern is the correctness of the
design rather than the sequence of steps that led
to the design. In a banking environment that
motivated the traditional schema, consistency
involves not only the final state, but also the
sequence of steps through which the final state
has In a design
consistency only involves final results and

reached. environment,
serializability is not the necessary condition for
consistency.

In order to relax the restriction of serializability for
general cases, various kinds of locks which always
have the following two meanings are required:

(1) The rights of owner of lock
(2) The rights of other transactions (users)

For rights, as described in Section 2, we have to
consider the following five kinds:

retrieval of a version (versions)
update of metadata of a version
change of relationship
derivation of a new version

HQoOw ke

modification of a version

[Property of the above rights]:
A<B<E, A<C<E, A<D<E

It is clear that for any given version the right E
includes the others rights and the right A is the
weaker one. The rights B, C, and D, however, cannot
be compared with each other. In order to make
different transactions (users) use above five kinds of
operations flexibly, the following twenty-five basic
lock modes are required: Ee, Ed, Eb, Ec, Ea, E, De,
------ , Ae, Aa. Here the capital character represents
the right of owner and the small character describes
the right of others. For example, lock Ee represents
both owner and other transactions have the right E.
The compatibility relationships of these locks
imposed by different transactions are shown in
Fig.3.5 (the locks in row are set earlier than the locks
in the columns). For example, the second column of
Fig.3.5 represents that if a user sets Ed lock then the
other users only can do operations of kind D (since
the right D is stronger than A, the other users also
can do operations of kind A).

By using these locks and version level’s
authorization mechanism, various kinds of
concurrent work can be carried out. Here,

serializability is a special case satisfying the

EeEdEbEcEa E DeDdDbDecDaDC

0000000000000 00000000000
Obabibabababd bbb b DDA O O O O O b b b b bd b
OO OO OO O b b b b b b bt b b bk b b bt b b 4
Obbi bbb b bd O O OO O O b b b b b b b b b b
O b4 b b et bt bt bt bt b b b b b b b b b b b b b b b 4
5 et e b b e D b bt b B B e e b B B B B D b B b B4
0000000000000 000000000000
ODdbd Db bbb b ba DDA DA b O O O O O b b b b b 34
OO OO0 OO O b b b b b bk b b bt b b b b b b
O bbb b b b4 O O O O O O b b b b b b e b 1 b e
O b B b b bt et bt B b bt b e B B b b b b b B b

B b D B D D D D b D b b b b b B D A DA A D DA DA X
0000000000000 000000000000
ODAPaBAPAPAbE AN O OO OO MDA MM
OMPHMMMMOOOOOOMMMIMMIM PPN M

following conditions: (1) Only locks of E and Aa can
be used. They correspond to write-lock and read-lock
respectively. (2) Users only have right to access
current versions. (3) Merge, split, and derive
operations cannot be used.

Another special case is that only locks of Ee, De, Ce,
Be, Ae can be used. That is, concurrent work can be
done arbitrarily. Between these two special cases,
many kinds of concurrent work can be carried out.

Locks of Ee, De, Ce, Be, Ae are unnecessary, because
they do mnot restrict any
Furthermore, in practice twenty kinds of locks may

concurrent work.

confuse users. In such cases many simpler methods
can be used. For example, only to provide rights A, C,
and E, if a user wants to update metadata of a
version, he must have right to modify that version.

5. Concluding Remarks

In this paper we discussed three basic and important
problems of version management. Since versions
record different states of objects, it is necessary to
permit users to operate them flexibly. To the

CdCcCbCaCBeBdBcBbBaB Ae Aa

(]

>
e
>
o
>
M
>

ONOOOOOOMMDIDI DA b Dd DA DA DA DM X D4
Obdb Db DABA DDA DA DA DA DA DA DA DA DA DA DA DA DA DA DA M
D B b D D D D b b b D b b B e b B b
0000000000000 O0O0000000000
ODEDADADADADADE DA DA DA DA O OO OO MMM MM
OMBMMINMOOOOOOMMMMIMIM MDD
OMOOOOOOMMIPAPDIDA A DD DA DA M4
O b b D b b b b b b b B b D D b A D4 b4
D D b D D D b b b D D D D b DA DA DA A A DA A b
0000000000000 000000000000
O b 5d b b b b b b D D D D D B b A B DA D DA DA DA DA

Fig.3.5 Compatibility relationships of locks

— 7 —

contrary, since huge numbers of versions may
confuse users, it is also necessary to manage

different versions in a uniform way.

REFERENCES

[BATKS85]}

[CHOKS6]

[DALW84]

[GINT86]

[HASKS82]

D.S.Batory and W.Kim, “Modelling
Concepts for VLSI CAD Objects,” ACM
Tran. Database Syst. 10, Setp. 1985,
pp.322-346.

H-T.Chou and W.Kim, “A Unifying
Framework for Version Control in a
CAD Environment,” Proc. of the 12nd
Inter. Conf. on Very Large Data Bases,
Kyoto, Aug. 1986, pp.336-344.

P.Dadam, V.Lum, and H-D.Werner,
“Integration of Time Version into a
Relation Database System,” 10th
International Conference on VLDB,
Aug. 1984, pp. 27-31.

S.Ginsburg and K.Tanaka,
“Computation-Tuple Sequences and
Object Histories,” ACM Tran. Database

Syst. 11, No.2 June 1986 pp.186-212.

R.L.Haskin, “On Extending the
Functions of Relational Database
System,” International Conference on

[KATL84]

[KATZ85]

[KATZ86]

[KLAHS86]

[KRUS84]

Management of Data, June 2-4,

Orlando, Florida, 1982, pp. 207-212.

R.HZXKatz and T.J.Lehman, “Database
Support for Versions and Alternatives
of Large Design Files,” IEEE Tran.
Soft. Eng. Vol.SE-10, No.2, March 1984,
pp.191-200.

R.H Katz, “Information Management
for Engineering Design,” Springer-
Verlag Berlin Heidelberg New York
1985.

R.H.XKatz, E.Chang, and R.Bhateja,
Modeling Concepts
Computer-Aided Design Databases,”
ACM-SIGMOD Inter. Conf. on
Management of Data, 1986, pp.379-386.

“Version for

P.Klahold, G.Schlageter, and
R.Unland, W.Wilkes, “A General Model
for Version Management in
Databases,” Proc. of the 12nd Inter.
Conf. on Very Large Data Bases, Kyoto,
Aug. 1986, pp.319-327.

V.Kruskal, “Managing Multi-Version
Programs with an Editor”, IBM J. Res.
Develop., Vol. 28, No. 1, Jan. 1984,

