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Abstract—Algorithms for triangle-finding, the smallest non-
trivial instance of the k-clique problem, have been proposed for
quantum computers. Still, those algorithms assume the use of
fixed access time quantum RAM (QRAM). We present a practical
gate-based approach to both the triangle-finding problem and
its NP-hard k-clique generalization. We examine both constant
factors for near-term implementation on a Noisy Intermediate
Scale Quantum computer (NISQ) device, and the scaling of
the problem to evaluate long-term use of quantum computers.
We compare the time complexity and circuit practicality of the
theoretical approach and actual implementation. We propose
and apply two different strategies to the k-clique problem,
examining the circuit size of Qiskit implementations. We analyze
our implementations by simulating triangle finding with various
error models, observing the effect on damping the amplitude
of the correct answer, and compare to execution on six real
IBMQ machines. Finally, we estimate the date when the methods
proposed can run effectively on an actual device based on IBM’s
quantum volume exponential growth forecast and the results of
our error analysis.

Index Terms—Quantum computing, clique, graph, Grover’s
algorithm

I. INTRODUCTION

A clique is defined as a complete subgraph over a subset of
vertices in an undirected graph. Several computational prob-
lems address finding cliques in a given graph. These problems
vary based on what information about the clique needs to be
found. One such is the k-clique problem, which answers the
question, “Given an undirected graph and a positive integer
k, does a clique with size k exist?” The k-clique problem is
NP-Complete for large values of k, as shown by Karp [1] and
Cook [2]. Probably one of the most studied version of the k-
clique problem is the triangle finding problem (the 3-clique
problem), which has been addressed both classically [3], [4]
and quantumly [5], [6]. The best known classical algorithm
has time complexity O(n2.38) while the best known quantum
algorithm has time complexity O(n1.5), where n is the number
of nodes in the graph and N is the sizeof the search space (n2).
Several quantum algorithms have also been proposed for the
k-clique problem with k > 3 [6], [7], [8].

In this paper, we present several implementations based
on Grover’s algorithm [9]. The asymptotic behavior of the
algorithm tells us that quantum computers will offer better
scaling than classical computers for a broad range of problems

in the long run. However, we must also assess the constant
factors, especially when considering near-term implementation
on a NISQ device (section III). We use the algorithm to solve
the k-clique problem using Dicke or W states to limit the
search space, studying the trade-off against circuit size. We
address the theoretical complexity of the above algorithms,
which assume the existence of constant access time QRAMs,
whereas the best proposed approach would be O(logN) ac-
cess time [10]. Moreover, implementation of even logarithmic
access time memory is not yet possible. Instead, gate-based
representations of graphs are necessary, with cost that exceeds
the polynomial gains promised by using Grover for triangle
finding (section IV). Our work aims to decrease the gap
between theory and implementation by presenting a robust
implementation of the k-clique problem in general, regaining
the quantum advantage for larger problems.

We implement our proposed scheme using Python and the
Quantum Science Kit (Qiskit)1 developed by IBM [11]. Then
based on our data, we predict when the smallest instance
of the k-clique problem (triangle finding) can be executed
with minimal error on a real quantum computer (section V).
Finally, we conclude the paper with some discussions and
future directions (section VI).

II. BACKGROUND

In this section, we will lay out some background knowledge
on Grover’s Search algorithm, the k-clique problem, and the
Dicke states.

A. Grover’s Search Algorithm

Grover’s Search Algorithm answers the question “Given
a function f(x), what values of x cause f(x) to evaluate
to True?”. The algorithm presents a framework for tackling
the search problem in an unsorted database with complexity
O(
√
N ). It mainly consists of three sections, state preparation,

the oracle, and the diffusion operator, which can be seen in
Fig. 1.2

The algorithmic steps of Grover’s search are:
1) Prepare the input in a symmetric-superposition state.

1The Qiskit version used in this work is ’0.15.0’
2Circuit illustration is created using Quirk [12]
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Fig. 1. An Overview of Grover’s algorithm’s Steps

2) Apply Grover’s Oracle to the prepared state.
3) Apply the diffusion operator to the oracle’s results.
4) Iterate over step 2 and step 3 until the answer is reached.
The first step of Grover’s algorithm is preparing the initial

state. In the simplest version, the initial state is prepared in
an equal superposition over the entire Hilbert space. That is
done by applying the Hadamard gate to all input qubits. In this
paper, however, we use another approach to create entangled
symmetric states as an input to the oracle (Dicke states) to
decrease the size of the search space.

After the state preparation comes the oracle. The oracle is
a black box function that inverts the answer by flipping its
sign. Following that the diffusion operator will magnify the
amplitude of the correct state while damping the amplitude of
other states.

The diffusion operator is formed by: the inverse of state
preparation, C⊗nZ gate, state preparation. The C⊗nZ gate
cost is 2n− 3 gates, divided into 1 CZ gate and 2n− 4 CCX
gates.

The answer’s amplitude will grow to a maximum and then
decline after the optimal number of iterations opt_iter
cyclically. The optimal number of times steps 2 and 3 are
repeated depends on two factors, the size of the search space
N and the number of answers for our search query m (how
many cliques in the graph) following Eq. 1 [13]. For example,
in Fig. 1, the search space is the entire Hilbert space; in this
case (4 qubits), it is 24 cases 0000, 0001,....., 1111. Hence,
assuming we have a question with only one answer, we will
have opt_iter of 3.

opt iter =

⌊
π

4

√
N

m

⌋
(1)

B. Dicke States

A Dicke state |Dn
k 〉 [14] is a fully symmetric entangled

state over the n-qubit Hilbert space with Hamming
weight k. For example, given a Hilbert space of 4
qubits, the Dicke state |D4

3〉 will be the superposition
of 1

2 (|1110〉+ |1101〉+ |1011〉+ |0111〉) as defined in II.1.

The number of basis states with k Hamming weight in a
Hilbert space of n qubits is

(
n
k

)
.

Definition II.1. Dicke state |Dn
k 〉 is an entangled superposition

of all n-states |s〉 with Hamming weight (hw) k:

|Dn
k 〉 =

(
n
k

)− 1
2 ∑
s∈{0,1}ns.t.hw(s)=k

|s〉. (2)

Dicke states can be implemented in several different ways;
we followed the approach proposed in [18] to prepare our
Dicke states deterministically. The proposed method computes
the Dicke state for any Hamming weight k and n qubits with
O(kn) gates and O(n) depth.

1) W States: W state is a Dicke state with Hamming weight
1, as shown by formula 3. The implementation of the W-state
preparation we used in this work is the algorithm proposed
in [19]. Since the W state is a special case of the Dicke state,
the method we chose to implement the Dicke state can be used
to implement a W state. However, the approach we used to
implement the W state is more efficient in terms of circuit size
and depth than the general Dicke state method, but it can’t be
extended to implement an arbitrary k Hamming weight Dicke
state.

|W 〉 = 1√
n
(|100...0〉+ ...+ |01...0〉+ |00...01〉) (3)

We must mention that using W states as our state prepara-
tion approach works only for clique size k = n−1; otherwise,
W states cannot be used.

C. The k-clique Problem

Given an undirected graph (G), if there exists a subset
of k vertices that are connected to form a complete graph,
then it is said that G contains a k-clique — for example,
Fig. 2 represents a graph of 4 nodes which includes a 3-clique
between nodes 0,1, and 2.

The k-clique problem asks us to determine if the input
graph G contains a k-clique, and if it does, output the vertices
forming the clique [20]. A popular variant of this problem only
asks us to determine if G contains a k-clique [21]. Classically,
several algorithms can find a clique of size k in any graph with
efficient complexity O(nk) [23], [24], [25]. Nevertheless, these
problems become NP-complete when k is large [1], [2], [26].

Clique-finding algorithms have many practical applications.
One of the main fields they can be used in is chemistry, to
find chemicals matching a specific structure [27], to model
molecular docking, and to find the binding sites of chemical
reactions [28]. They can also be applied to find similar
structures within different molecules [29].

III. IMPLEMENTATION

Efficient execution of Grover is a two-fold problem: re-
ducing the number of iterations , and finding a practical
implementation of each iteration. In this section, we present
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two approaches to implementing the oracle circuit; we will
call them the checking-oracle and the incremental-oracle,
respectively. The remainder of this section will discuss both
implementations in detail. Although either implementation
can be used to find any k-clique in any given undirected
graph, while explaining how both implementations work, we
will consider the simplest case possible, which is a 3-clique
problem. In all explanations, the graph in Fig. 2 will be used.

Fig. 2. 4-node graph containing a triangle (3-clique) on nodes 0, 1 and 2.
This graph is used in Tables I,III

A. State Preparation

State preparation is the first step of the implementation.
Usually, when implementing Grover’s algorithm, the states are
prepared in an equal superposition of the whole Hilbert space
using the Hadamard Gate. Initializing into full superposition
needs only n H gates and time complexity O(1)

However, let’s consider the case represented in Fig. 2. If we
wish to search for a 3-clique, then it makes no sense to look
for a subgraph with one, two, or even four nodes. Instead, we
should consider only subgraphs with k nodes, and then assess
whether the induced subgraph contains

(
k
2

)
edges. Searching

over a limited space should be faster. However, it will cause
a significant increase in the state preparation gate count.

B. Checking-based Oracle

To determine that a triangle exists, we need to confirm that
3 nodes are connected with 3 edges. This counting of nodes
and edges is exactly what the oracle circuit should do. In the
checking-based oracle, each node in the graph is represented
as a qubit, and the edges between them are expressed using
one or more multiple-Toffoli C⊗nX gates connecting specific
qubits. After all edges have been counted, the results are
checked. The sequence of C⊗nX gates forms a simple adder
that adds one every time an edge is encountered. In the case
of a triangle, after the C⊗nX gates, we need to check that
we have precisely three edges (112). To check for 112, we
need two qubits that we will call edges_counter.

In general, we need dlog
(
k
2

)
e qubits to represent

the edges_counter. For example, for 4-clique, the
edges_counter will be a 3-qubit counter than can count
up to 7 (1112), and for a 5-clique which can count up to 15
(11112), the edges_counter will need four qubits and so
on.

Fig. 3. Checking-based Oracle for the graph in Fig. 2.

Finally, to check if the edges_counter contains the
correct value, another C⊗nX gate needs to be applied, the
result of which will be saved in another qubit, edge_flag
(Fig. 3-a). A similar circuit is then applied to count nodes;
a k-clique should have k nodes. The node_counter
needs dlog ke qubits with C⊗nX between them. If the
node_counter contains the correct number of nodes (k),
the qubit node_flag will become 1. Fig. 3-b shows the
node counting section of the oracle. Finally, after checking for
both edges and nodes, a CCX is applied to edge_flag and
node_flag and stored in another qubit clique_exists.
If we have the correct number of both the edges and the nodes,
then a clique of size k exists; otherwise, no clique exists.

C. Incremental -based Oracle

For incremental-based oracle, each node in the graph is
represented with a qubit, and the edges are expressed using
C⊗nX gates. The difference between this and the checking-
based oracle is in the edges_counter and clique_flag.
In this implementation, the edges_counter is replaced
with a one qubit edge_flag, the edge_flag becomes 1
if and only if an edge exists between two nodes. That flag is
then used as a control qubit controlling an increment circuit
that adds one every time it encounters an edge (Fig. 4). In
order for the edge_flag to function correctly, we need to
uncompute it (reset to |0〉 state) after each increment.
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Fig. 4. Incremental-based Oracle for the graph in Fig. 2.

The increment circuit size depends on the clique size; it will
need dlog

(
k
2

)
e qubits. For example, when applying the oracle

for a triangle (k = 3), we will need a 2-qubit increment circuit
to count up to 3 or 112. Fig 5 shows different sizes of the
increment circuit. The circuit for finding the triangle in Fig. 2
needs two qubits for the increment circuit in addition to some
ancillary qubits to implement the control functionality. The 2-
qubit increment circuit, 3-qubit increment circuit, and 4-qubits
increment circuits can be seen in Fig. 4-a. After finishing
all the edges in the graph, the qubit clique_edge_flag
will be 1 only if the number of edges is correct

(
k
2

)
. When

applying this oracle on the entire Hilbert Space, another circuit
to count nodes needs to be added to the oracle 4-b. The size
of the controlled increment circuits in the case of counting
nodes is dlog ke. The number of nodes will be stored in
qubit clique_node_flag. Once both the edge counter
and the node counter sections of the oracle are executed, the
clique_edge_flag and clique_node_flag are used
in a CCX to generate the clique_flag which will indicate
if a clique of size k exists in the graph or not.

Fig. 5. Different Size Increment Circuits. From right to left, 2-qubit increment,
3-qubit increment and 4-qubit increment circuits.

TABLE I
CIRCUIT SIZE, DEPTH (LENGTH OF CRITICAL PATH) AND NUMBER OF

QUBITS NEEDED FOR ALL APPROACHES OF CHECKING-BASED ORACLE
AND INCREMENTAL-BASED ORACLE FOR THE OPTIMAL NUMBER OF

ITERATIONS FOR THE TRIANGLE FINDING PROBLEM IN FIG. 2

Checking-based Oracle
Full Search Space W state Prep Dicke state Prep

Size 214 97 259
Depth 165 79 237

# of Qubits 13 9 9
Incremental-based Oracle

Full Search Space W state Prep Dicke state Prep
Size 1000 215 281

Depth 837 131 200
# of Qubits 15 10 10

IV. ANALYSIS

In order to test the efficiency of our implementation, we
compared various combinations of the problem variables.
To be consistent, the comparison is based on the smallest
instance of the problem, i.e. the triangle finding problem. The
combinations in the comparison are:
• Grover’s algorithm with checking-based oracle over the

entire Hilbert space.
• Grover’s algorithm with checking-based oracle over lim-

ited search space using W-state preparation (W state
followed by n NOT gates).

• Grover’s algorithm with checking-based over limited
search space using Dicke state preparation.

• Grover’s algorithm with incremental-based oracle over
the entire Hilbert space.

• Grover’s algorithm with incremental-based oracle over
limited search space using W state preparation (W state
followed by n NOT gates).

• Grover’s algorithm with incremental-based over limited
search space using Dicke state preparation.

We will address the analysis from two perspectives, complex-
ity and practicality, comparing the type of gates and depth
of the resultant circuit. In addition, we will also discuss how
different state preparation affects the amplitude of the correct
answer, using both the ideal-case simulation and gate-error
simulation.

A. Gate Count Analysis

First, we will discuss the different circuit sizes for different
implementations of the oracle and various state preparations.
Again, as a base case, we will compare the different ap-
proaches in the case of finding a 3-clique (triangle) in a 4-node
graph. Table I shows the different operation counts from both
checking-based and incremental-based oracle for the optimal
oracle iteration count.

To understand better the numbers in Table I, we need to
consider how many times the oracle is repeated. Since Grover’s
Algorithm is periodic, the optimal number of repetitions of
the oracle and diffusion is calculated based on the number
of input qubits (number of nodes in the graph in our case)
and the number of solutions we want the algorithm to find as
shown in Eq. 1. If we are using the entire search space, then
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N = 2n while m = 1, and so the optimal number of iterations
here will be three iterations. However, if we are using Dicke/
W states to limit our search space, N=

(
n
k

)
, m = 1 giving

an optimal iteration number of one. Although the number of
iterations is smaller with state preparation (Dicke/ W state),
the circuit may increase in size, based on the state preparation
approach followed.Detailed layout of the gates used in every
state preparation is found in Table II.

TABLE II
GATE TYPE AND COUNT FOR EACH STATE PREPARATION APPROACH

State Preparation Method Gate Count Gate Type
Full search space 4 (Hadamard, 4)

W State 17 (U3, 6), (CNOT, 6), (NOT, 5)
Dicke State 39 (CNOT, 18), (U3, 12), (CCNOT, 6), (NOT, 3)

Circuit size by itself is crucial, but it is more important
to check the full list of gates used. More particularly, NOT,
CNOT, CCNOT, C⊗NNOT gate counts play an essential factor
in whether the circuit can be applied to a real hardware device
or not. Table III lists the number of NOT, CNOT, C⊗NNOT
gates in every approach proposed for the optimal number of
iterations for each.

B. Simulation Results Analysis

This subsection discusses how the change in state prepara-
tion affects the amplitude of the correct answer. To observe
this change, we will simulate the circuit twice, once using the
ideal-case simulator (QASM Simulator) and another simula-
tion with added gate error. QASM simulates any given circuit
assuming ideal qubits and gates with no errors. The results
of using the QASM simulation are not realistic for current
hardware, and represent the goal of future advancements
in quantum computers. For more realistic results, Aer also
provides a way to add noise to the gates while assuming
perfect qubits.

1) Thermal-relaxation Error: There are several types of
errors that can be applied to the QASM simulator. Qiskit
Aer offers ten standard error models, including Depolarization
Error, Reset Error, and Thermal Error with an option to create
user-customized error models [11]. In addition, the user can
choose whether to apply the error to all qubits or a specific
set of qubits. In our gate-error simulation, we decided on a
realistic thermal-error model and applied it to all qubits in the

TABLE III
THE NUMBER OF NOT, CNOT AND CCNOT GATES IN CHECKING-BASED

AND INCREMENTAL-BASED APPROACHES FOR THE TRIANGLE FINDING
PROBLEM IN FIG. 2

Checking-based Oracle
Full Search Space W state Prep Dicke state Prep

NOT 25 24 18
CNOT 24 18 90

CCNOT 123 31 37
Incremental-based Oracle

Full Search Space W state Prep Dicke state Prep
NOT 25 24 18

CNOT 312 42 78
CCNOT 99 17 35

TABLE IV
AVERAGE VALUES OF T1 AND T2 IN MICROSECONDS FOR SIX DIFFERENT

IBMQ DEVICES

Device
Name

T1
(in µs)

T2
(in µs)

ibmq melbourne 55 59
imbq poughkeepsie 64 65

ibmq singapore 83 89
ibmq paris 76 67

ibmq cambridge 81 39
ibmq rochester 55 59

algorithm.
Thermal relaxation needs two main parameters defined, T1
and T2, together called decoherence times. T1 is known as the
relaxation time constant; it is defined as the time needed for
the system to go from state |1〉 to |0〉 with probability 1

e . T2 is
defined as the dephasing time constant, expressing how long
the phase of certain qubit stays intact, in other words, it is the
time from state |−〉 to state |+〉 with probability 1

e [39].
Since the value of T1, T2 depends on the specific qubits;

we took the average T1, T2 of the devices when we applied
our different circuits. Table IV shows the average values of
T1, T2, and the names of the six devices used. We should
point out that the error rates are determined by gate execution
times and the qubit T1 and T2 values. The values chosen
for the gate execution times are averages based on actual
devices as follows, U2 gates take 50 nanoseconds, U3 gates
take 100 nanoseconds, CNOT gates take 300 nanoseconds,
and finally, the readout will take 1000 nanoseconds3. Fig. 6
shows the results of all proposed approaches on each of the six
devices. Various observations can be made by looking at the
bar chart. Mainly, it can be seen that the W-state preparation
approach retains the correct answer better than other methods,
followed by the incremental-based Dicke state preparation
approach. It can also be seen that the ibmq_singapore
device has the lowest error among this set of devices, followed
by ibmq_paris, which is due to these devices having the
highest T1, T2 among the devices used. In addition, we
added another simulation where T1, T2 = 200 µs, and 500
µs.Increasing T1, T2 by 60% reduced the error rate and the
damping in the amplitude of the correct answer by nearly 42%.

2) Device-specific Error: The above case incorporates only
memory errors; gates are assumed perfect. Hence, to provide
a more realistic effect of noise models in NISQ devices,
we applied the device-specific noise models to three of
our implementations. The three implementations we chose
to apply device-specific models are Checking-based Oracle
with W-state Preparation, Incremental-based Oracle with W-
state Preparation, Incremental-based Oracle with Dicke state
Preparation. We chose these three approaches because they
have the highest error tolerance among the six strategies. All
three implementations have nine qubits circuits and an ideal
(QASM simulator) amplitude of 1.

3U2, and U3 are basic single-qubit unitary gates presented by Qiskit [40]
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Fig. 6. The amplitude damping effect of memory decoherence, assuming
perfect gates. The bars are the probability of finding the correct answer after
simulating a perfect machine (leftmost bar in each group), T1 = T2 = 500,
200 (next two bars) as well as T1 and T2 based on the six different IBMQ
devices in table IV (last six bars). The figure is sorted based on average error
rate from lowest to highest.

Fig. 7. Probability of finding the correct answer using the Checking-
based Oracle with W-state Preparation, Incremental-based Oracle with W-state
Preparation, and Incremental-based Oracle with Dicke state Preparation. Data
taken on the six different IBMQ devices in table IV.

Considering Fig. 7, we can observe that when executing the
Checking-based Oracle with W-state Preparation, Incremental-
based Oracle with W-state Preparation, and Incremental-based
Oracle with Dicke state Preparation on real IBMQ devices, the
error rate increases sharply. Even the implementations with
high error tolerance for changes in T1, T2, show a significant
drop in the amplitude of the correct answer, with error rate
ranging from 93% to 96%.

C. Time Complexity Analysis

For our proposed approaches, we can split the time com-
plexity analysis into four main parts: analyzing the number of
iterations in Grover’s algorithm, the initial state preparation
(in case of limited Hilbert space search) complexity, the
different oracles and diffusion operators complexities, and
finally analyzing the total complexity of the algorithm.

1) Number of Iterations in Grover’s Algorithm: The oracle
and the diffusion operator are repeated bπ4

√
N
mc = O(

√
N
m )

times, which depends on the size of the search space and
the expected number of answers. Assuming the simplest case,
where m = 1, such as the case in Fig. 2, the complexity
then becomes O(

√
N). Notice that applies to the case when

the entire Hilbert space is used, however, if we limit the
search space using initial state preparation, the number of
iterations then depends also on the size of clique k and
becomes O(

√(
n
k

)
).

2) State Preparation Complexity: In section III, we
proposed the usage of two different state preparation
techniques to limit the search space. Using either W-state
preparation in case k = n−1 or using Dicke state preparation
otherwise. As mentioned in section II, we followed the
algorithm in [19] to prepare the nodes qubits in a W-state
superposition; the algorithm produces a circuit with depth
O(log n) and complexity of O(n). Here n represents the
number of qubits involved in the W-state preparation, which
is, in our case, the number of nodes |V |. Hence the cost of
preparing W-states becomes O(|V |). On the other hand, when
using the Dicke state preparation proposed in [18], we get a
circuit with complexity O(kn) and depth O(n), where k is
the clique size, and n is the number of qubits. Therefore, the
cost of preparing the Dicke state becomes O(k|V |).

3) Oracle and Diffusion Operator Complexities: First, we
will discuss the complexity of the diffusion operator. The dif-
fusion operator consists of the adjoint of the state preparation,
a C⊗nZ gate, and a state preparation, respectively. Hence,
we can generalize the complexity of the diffusion operator as
O(state prep)+O(C⊗nZ)+O(state prep). The cost of the
state preparation depends on which approach is used; hence,
it will be O(|V |) in case of W-state preparation or O(k|V |) in
case of Dicke state preparation. However, the complexity of
the C⊗nZ gate depends on the number of nodes |V |, therefore
the complexity of the gate will be O(|V |). Consequently,
the total complexity of the diffusion operator will become
O(state prep) +O(|V |).
The complexity of the oracle, however, depends on whether
an initial state preparation is used. Regardless of the oracle
implementation (checking-based or incremental-based), the
primary function of the oracle counts the number of edges and
nodes needed to compose a clique of size k, in addition to k
itself. So, the complexity of the oracle for the entire Hilbert
space is O(k+ |V |+ |E|). If we use state preparation, we are
eliminating the need to count nodes; that is because we only
allow states with the specific k nodes activated at any time to
be included in the search space, thus eliminating the need to
count the nodes in the clique. Hence, the complexity of the
oracle when using initial state preparation to limit the search
space is O(k + |E|).

4) Algorithm Total Complexity: The total complexity of
Grover’s algorithm can be expressed as the number of itera-
tions times the cost of one iteration. The number of iterations,
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as discussed in previous subsections can be presented as

O(

√
(nk)
m ). Each iteration’s cost can be divided into two

parts, the oracle’s cost, and the diffusion operator’s cost.

Hence the total complexity becomes O(

√
(nk)
m )×(O(oracle)+

O(diffusion operator)). This complexity, however, assumes
the initial state preparation of states in the entire Hilbert
space. That would not be correct if we used W-state or
Dicke-state as initial state preparation. In that case, the com-

plexity becomes O(state prep) + O(

√
(nk)
m ) × (O(oracle) +

O(diffusion operator)).

V. DISCUSSION

To estimate the time when our proposed schemes of
Grover’s algorithm to solve the clique finding problem can
be implemented on a real device with minimal error, we need
to address two factors, the quantum volume, and the device
performance.

A. Quantum Volume

IBM has proposed a single number indicator to describe the
quantum processing capabilities of any NISQ device. IBM not
only introduced the concept of Quantum Volume (QV) [41];
they also laid out a prediction for the future of their quantum
devices, Fig. 8. Their proposed roadmap for the advancement
of quantum processor power aims to double the performance
every year in order to achieve Quantum Advantage in the near
future [42].

Fig. 8. IBM’s Quantum Volume Growth Chart with a highlight on 2024,
when QV 512 is hoped to be achieved.

QV represents the ability to run a circuit on an IBM
quantum device with at least 2/3 probability of measuring an
answer that passes some statistical test [41].

In order to run the smallest instance of our proposed
scheme, which is the checking-based oracle with W-state
preparation, on a real device with a reasonable probability
of success, we need QV of at least 512. QV is calculated as
described in Eq. 4 introduced in [41], where d represents the
depth of the circuit and n is the number of qubits.

QuantumV olume(QV ) ≈ 2min(d,n) (4)

QV of 29 is needed to execute that circuit correctly. Hence,
based on that and the growth chart proposed by IBM for future
growth, it is expected to reach QV of 512 in early 2024.

B. Device Performance

Even among machines with similar QV, their performance
depends on more than just the number of qubits in the machine
or the depth of the circuit that can be implemented on it. It also
depends on the coupling map. Each machine has a different
amount of these errors per qubit, which makes it challenging
to estimate the ability to implement any algorithm on a real
device based solely on its QV. We analyzed the performance of
our top three error-resistant approaches (Checking-based Or-
acle with W-state Preparation, Incremental-based Oracle with
W-state Preparation, Incremental-based Oracle with Dicke
state Preparation) on the two machines with the overall best
performance ibmq_singapore and ibmq_paris. We ob-
tained the error model of both these devices and modified it
in three ways in order to understand which factor affects the
overall error most. We changed the thermal relaxation error by
modifying T1, T2 while keeping all other errors untouched, we
then did the same but with gate error, and finally, we edited
both the thermal relaxation error and the gate error together.

The difference in error rate due to modifications (changing
T1, T2, and gate error) can increase the device error up to
7.5% and decrease down to 20.5%. It can also be seen that the
incremental-based approach with W-state preparation has the
most decrease in error rate, especially when modifying both
T1, T2, and the gate error. Finally, we can see that changing
T1, T2, only leads to better results than modifying the gate
error only. The reason for modifying the execution parameters
caused the error rate to increase in some cases is the fact that
the values of T1, T2, or those of gate errors are not constant.
They depend on many factors, such as machine maintenance,
and the date on which experiments had been conducted.4

VI. CONCLUSION

In this paper, we proposed two approaches to utilizing
Grover’s Algorithm to solve the k-clique problem on a NISQ
device, with theoretical asymptotic performance for long-term
use. We analyzed the performance of the proposed approaches
from different perspectives, such as gate count, gate type,
and time complexity, we also analyzed the performance of
our method via simulation of six different IBMQ devices. In
addition, we showed how theory and implementation could
be far apart when it comes to quantum algorithm complexity,
due to assumptions about hardware capabilities. Finally, we
estimated the closest time our proposed application can be
executable with minimal error on a real NISQ device based
on the growth chart of quantum processing power introduced
by IBM and the current performance of NISQ devices.

4Experiments on the real machines to extract these results were conducted
from April 15 to April 25, 2020.
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