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Abstract: The RAM encryption encrypts the data on memory to prevent data leakage from an adversary to eavesdrop
the memory space of the target program. In this paper, we discuss the feasibility of software based RAM encryption
and clarify that it is possible to be secure against so-called semi-honest adversaries under some additional and reason-
able constraints. In addition, we tentatively embed our RAM encryption mechanism to SHA-256 hash function. The
performance evaluation results are also reported in this paper.
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1. Introduction

1.1 Background
Most important public services have been built on dedicated

hardware for a long time. For example, the financial service con-
sists of ATM for a user interface, mainframe for a server, and
they are connected by a hot-line. Nowadays the trend of computa-
tion platforms for various services is moving from such dedicated
hardware to more publicly available hardware such as mobile-
phone, public/private cloud system and the Internet. Of course,
this change indicates the increase of security risks: vulnerability
of software, malware infection, theft of terminal devices, and so
on. In particular malware infection is a serious threat. For ex-
ample, McAfee reports that about 10% of smartphones were in-
fected by malware in 2014 and this trend has never improved for
years. This fact induces measures which cannot completely pre-
vent malware infection, but can reduce the damage of the infec-
tion. Mobile payment services and governmental critical services
are important examples which are facing these threats. The sys-
tems are accessible via the Internet and these systems deal with
the personal information of the users. It is also likely that many
criminal organizations are tempted to develop powerful malwares
to seize the important data. Therefore, user authentication is es-
sential technology to protect them and it is quite important to keep
secret the information used for user authentication such as pass-
words, biometric information.

1.2 Known Researches
This paper discusses the technology about the secure execu-

tion of programs in malware infected devices. There are several
approaches to tackle this problem and the basic approach is to
isolate the execution environment of the program to be protected
from those of other programs.
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For example, Android OS generates a virtual machine (VM)
for each program to logically isolate their execution environ-
ments. This is efficient for malwares having non-root privilege
but not for one having root privilege; the latter is freely accessi-
ble to the isolated execution environment of other programs.

Trusted Execution Environment (TEE) takes another approach.
It isolates the TEE from a rich execution environment (REE) and
access from the REE to the TEE is limited. In some implementa-
tions of TEE, special hardware provides the access control mech-
anism, which is independent of one provided by the operation
system (OS). Therefore, it is claimed that codes and data in the
TEE are secure even if there is a vulnerability in the OS of the
REE. These hardware supported solutions are practical and are
welcomed by engineers and some cloud systems have started to
provide services to use the TEE functions.

So far, there are several different TEE implementations.
ARM TrustZone [19] provides a dedicated OS for the TEE and
only the programs which are stored in the TEE by default can
run in the TEE. AMD Secure Memory Encryption (SME) [20]
provides the function to encrypt whole memory space which
is equivalent to a disk encryption function. AMD Secure En-
crypted Virtualization is more sophisticated; each VM is allo-
cated to isolated memory space which is encrypted by the SME.
Intel SGX (Software Guard eXtension) [18] provides process-
level TEE. Contrary to ARM TrustZone with which only device
vendors manage the programs executed in the TEE, any developer
can use the TEE functions provided by Intel SGX.

ARM TrustZone and Intel SGX provide an access control
mechanism independent from that provided by the REE. Though
these hardware supported access control mechanisms sound like
a perfect solution against data leakage by malware infection, they
are not in practice. The known issues include vulnerabilities of
the TEE itself [21], [22], [23], [24], vulnerabilities in the underly-
ing CPU [26], [27], and side channel attack against the program
executed within the TEE [25]. These vulnerabilities tell us that
there is no perfect solution and it is hard to fix if a vulnerability is
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found at hardware level. Therefore, multilevel countermeasures
are an important approach including software level approaches
in the design of a security system. Another point is that some
servicers do not prefer so called vendor lock-in, which prevents
them from moving the platform from one to the other, and soft-
ware level countermeasures may provide them with preferable so-
lutions. This fact encourages researchers to work on the software
level technologies to securely execute the program.

In cryptographic applications, security is the primary require-
ment therefore various adversary models and countermeasures
have been discussed so far. Chow et al. proposed the White-
box cryptography (WBC) setting in Ref. [12], which allows an
adversary to eavesdrop and alter the intermediate values in pro-
cessing regardless of the place where the data are stored. Many
approaches to embed the secret key to the cryptographic imple-
mentation including Chow’s have been proposed so far, but unfor-
tunately all of them have been broken at a practical level [14]. Af-
ter Chow’s WBC, several moderate adversary models were pro-
posed. Bogdanov et al. assumed that the adversary has commu-
nication with malwares in the target device. There is a trivial
attack such that the malware sends the full code book of the tar-
get cryptographic implementation in this situation and Bogdanov
et al. defined the advantage of the adversary, they called it space

hardness, as the communication consumption for the attack [15].
In addition, they proved that it is possible to construct the secure
implementation under this setting [15], [17]. The basic idea is to
use huge tables in which the secret information is embedded. If
the tables are randomly accessed many times in processing, then
some of the accessed points are not known to the adversary. An-
other example of the moderate adversary was proposed by Oishi
et al. in Ref. [28]. They focused on an adversary using a debugger
and pointed out that it is not easy even for a skillful hacker to link
distinct data (and codes) which are used in separate timing. In ad-
dition, they proposed a method to detect alteration of the running
program under this setting. In other words, Oishi et al.’s setting
puts space and time restrictions on the adversary.

1.3 Contribution of This Paper
This paper deals with the protection of data on memory allo-

cated to processes by a RAM encryption function and considers
how to realize it without hardware support. Though the RAM
encryption is a limited function compared to the software protec-
tion functions provided in the TEE, we believe that it is efficient
to RAM scraping malwares which scrape the memory space of
the target process in order to get sensitive data such as a credit
card number.

We also consider the requirements of the underlying system
and the assumptions on abilities of the adversary*1. The security
of Intel SGX is based on CPU as a black-box model, which as-
sumes the adversary cannot access data on registers. As a result
of our consideration, we assume that the adversary is a user-mode
process, has root privilege and is semi-honest. We explain that it
is possible to construct a software-based RAM encryption scheme
to be secure under these assumptions.

*1 This paper updates and reconstructs the contents of Refs. [10], [11].

Our research intends to illuminate the possibilities and limits of
cryptographic countermeasures against malware threats without
hardware support, where the concrete barrier to protect a crypto-
graphic key does not exist. We believe that this kind of discussion
is also useful to clarify the necessity of hardware support.

1.4 Organization
The rest of this paper is organized as follow: At the beginning

the expected system and the ability of the adversary is given in
Section 2. Then we propose a software-based RAM encryption
scheme in Section 3. The implementation results and the security
considerations of the proposed scheme are reported in Section 4
and Section 5 respectively. We conclude this paper in Section 6.

2. Preliminaries

2.1 Expected System
We assume smart phones and other smart mobile devices as the

target devices, which are equipped with cameras, various sensors,
Wi-Fi in addition to a CPU, memory and storage. We also assume
that software (or programs) run on an OS. In other words, the OS
manages and allocates the hardware resources of the device such
as CPU and memory to the programs. In many systems, the CPU
and the OS provide access control mechanisms in various layers,
but we only assume one provided by the UNIX-like OS, espe-
cially Linux throughout this paper. UNIX-like OS separates a
kernel space from a user space. A limited number of pre-defined
programs can run in a kernel space and most of the other pro-
grams are run on a user space. The latter programs (user-mode
programs) are not allowed to direct access to resources in the ker-
nel space and use given APIs such as system calls if necessary.
The root is a special user, usually the administrator of the system,
who is granted root privilege. Other users are granted non-root
privileges. We assume that the target program is run in non-root
privileged mode and the adversary program is run in root privi-
leged mode.

Despite the fact that the TEE is of course a part of the research
target of secure software implementation, our research focuses on
countermeasures without hardware support. Therefore, the exis-
tence of the TEE is not expected in this paper.

2.2 Adversary’s Object
In this paper, we assume that the adversary intends to acquire

some information kept secret in the target device. The attack to
take over the device in order to apply Denial of service (DoS) and
Dynamic DoS attacks are beyond our concern.

Figure 1 sketches the target system. There are several pieces of
secret information in the device such as biometric information of
the device holder or the cryptographic key stored in the storage.
This information is transferred to processes via the main memory
and the adversary (malware) intends to capture them.

Contrary to the black-box model, which assumes that the ad-
versary only has the control of data outside of the device, the
malware-infected devices are threatened by eavesdropping inside
the device, e.g., the buffer of sensors and the main memory. In
other words, the data bus and main memory can be identified as a
public communication channel under the assumption.
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Fig. 1 Malware infected threat model and possible countermeasures.

2.3 Expected Malwares
Most malwares nowadays intrude the target device to collect

the personal information of the device holder, or to use the device
as a stepping-stone to apply a denial of service attack to other
systems [29], [30]. To the best of our knowledge, a malware tar-
geting Android OS for example completes its task within its au-
thority rather than attacks other programs beyond the barrier of
the VM. On the other hand, some jail-breaking malwares tend to
acquire root privilege for the next step of the attack. Once ac-
quiring the privilege, it is possible to administrate all user-mode
running processes.

2.4 Adversary Model
In this paper, we assume an adversary which is weaker than

one expected in the TEE and white-box cryptography.
2.4.1 Attack Target

The adversary is assumed to attack only the running process.
The execution file of the program in storage is out of our concern.
Note that there are some known countermeasures against attacks
on execution files such as code encryption and code signing.
2.4.2 Privilege of Adversary

We assume that the adversary is a user-mode process which
has a root privilege. The adversary does not run in kernel-mode
therefore the attack approaches are limited.
2.4.3 Semi-honest Adversary

We assume a semi-honest adversary in this paper. More specif-
ically, it does not actively run the target program, nor abort, termi-
nate, or alter the running target process. As a natural consequence
of these assumptions, the adversary does not run the target pro-
gram on a debugger. A function to detect a debugger may defuse
debugger supported attacks in practice. In addition, we assume
that the adversary does not alter the underlying system including
the OS and the firmware.

The assumption prevents the adversary from having a direct ac-
cess measure to the data on registers (in CPU) which are used by
the target process. That means it is now possible to consider the
analogy of the RAM encryption function provided by Intel SGX.
The details on the security considerations are given in Section 5.

3. Proposal for RAM Encryption without
Hardware Support

Concealing the memory space of designated processes is the
fundamental feature of Intel SGX technology. Let us call this

function RAM encryption throughout this paper. In this section,
we propose a software-based RAM encryption scheme (SBRES)
which does not require any special hardware support.

3.1 Rough Sketch of the SBRES
Figure 2 depicts the functions and the process flow of the

SBRES. All encryption processes including key management are
executed on the registers because the data on registers are not ac-
cessible by the adversary. The encryption (and decryption) key
is basically generated by using entropy sources available on the
CPU such as the CPU timer. Some CPUs provide random number
generation functionality and they are also useful entropy sources.
The generated encryption key is stored on the registers in plain-
text form and the registers are sanitized before the termination of
the process.

The data stored on memory is encrypted. An instruction to load
data is replaced by the SBRES-ldr, which loads the data to regis-
ters, and decrypts it with the key on the registers. An instruction
to store data is replaced by the SBRES-str in the same manner.
After the usual process (on registers), the data is encrypted by the
same key, and then the ciphertext is stored on the memory.

3.2 Limitation of the Protection
The SBRES provides only confidentiality of data. And the

SBRES function is embedded in the target program therefore the
input to the target process is encrypted just after the process starts
to run. Therefore, the input (and the output) of the target process
is not encrypted. This is also the case of Intel SGX, therefore
the data confidentiality of the data outside of the process is not
considered in this paper. The data transmitted between processes
may be protected by an inter-process encryption mechanism. The
data on storage may be protected in other technology, e.g., the
data is encrypted by the white-box block cipher, and the protec-
tion mechanism is switched to the SBRES when the data is moved
to the memory.

3.3 Requirements for Underlying Encryption Algorithm
The SBRES encrypts all data on memory which are not se-

quentially accessed in general, therefore a chaining mode of op-
eration such as CBC is not suitable for our use in terms of the
processing speed. We chose ECB (Electric Code Book) as the
mode of operation. If one requires higher security, XTS (XEX-
based tweaked-codebook mode with ciphertext stealing) or other
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Fig. 2 Data processing in CPU with RAM encryption mechanism.

tweakable mode of operations may be better choices. In addition,
it is easy to append a message authentication function to ECB by
filling a part of the input to the encryption function by a constant.

The SBRES encrypts and decrypts data on the CPU and the
encryption key is stored on registers in plaintext form. Therefore,
the SBRES requires registers to store the encryption key and ad-
ditional work areas. The encryption/decryption is processed there
and the target process to be protected can use only the remainder
registers. If the underlying CPU has a special instruction set for
the AES such as Intel AES-NI supported on and after Westmere
architecture, it usually provides dedicated registers for encryp-
tion/decryption. Therefore, the target process can use all general
purpose registers.

Note that expanding round keys in advance of the encryption
process is a common speeding up technique in block cipher im-
plementation such as AES [8], but this is very register consuming.
Therefore, it is not applicable to the SBRES.

4. Implementation on Raspberry Pi3

In this section, we examine the embedding of the SBRES to
ARMv7 processors, which are widely used in smart devices, and
evaluate the penalty of the processing speed.

4.1 Evaluation Environment
We selected Raspberry Pi3 Model B [31] for evaluation. Ta-

ble 1 shows the hardware and the software specification of the
evaluation environment.

Note that the CPU of Raspberry Pi3 is ARMv8 architecture but
the official OS recognizes it as ARMv7 architecture therefore the
registers are of 32-bit length in our evaluation environment.

4.2 The Sample of the Target Program
Unfortunately, “real life applications” are too complex for eval-

uation because the SBRES is manually embedded to the target
program. We chose SHA-256 as a target program. Please refer to
[9] for the specification.

SHA-256 requires at least 25 32-bit variables for processing
while 13 out of 16 general purpose registers are available in
ARMv7 processors. In other words, it is not possible to hold
all the data on registers during the process and a part of the inter-
mediate value of the process must be evacuated to the memory.
In our implementation, 9 variables are allocated to the registers

Table 1 Evaluation environment.

CPU Quad Core 1.2 GHz
Broadcom BCM2837 64-bit CPU

RAM 1 GB
OS Raspbian 4.9.2
Compiler gcc 4.9.2

and the remaining 16 variables are allocated to the memory.
A hash function itself does not take a piece of secret infor-

mation as an input and we assume that the whole input is to be
protected. That means, the whole input on memory is encrypted
and relocated on memory, then the memory space where the input
data was located at the beginning is sanitized. The input and out-
put data themselves are out of the protection target of the SBRES
as mentioned in Section 3.2.

4.3 Block Cipher Suitable for ARMv7 Processor
The block cipher we use in the evaluation is based on

Speck64/96 [2]. The block size of Speck64/96 is 64 bits and the
key length is 96 bits. The round function of Speck64 is given as
follows:

Xr,L = ((Xr−1,L ≫ r1) + Xr−1,R) ⊕ kr,

Xr,R = (Xr−1,R ≪ r2) ⊕ Xr,L,

r1 = 8, r2 = 3,

where each operation is 32-bit-wise therefore it is suitable to
ARMv7 processors.

Our customization reduces the key length from 96 bits to
64 bits, removes key scheduling function and adopts 1-key Even-
Mansour construction [16] instead. Even-Mansour construction
just xors the key before and after the permutation, namely there
is no key scheduling. The permutation here is the iteration of the
round function of Speck64. In this paper we use 8 and 16 itera-
tions of the round functions. Appendix A.1 explains the design
rationale and the choice of parameters.

4.4 Implementation Results
Table 2 shows the speeds for an execution of compression

function of SHA-256, where “w/ Enc” means the program with
the SBRES and “wo/ Enc” means the program without the
SBRES. SHA-256 is implemented in assembly language in or-
der to embed the SBRES. We omit the key generation function
because it is not essential in the evaluation of processing speed.
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Fig. 3 Rough sketch showing how the data remaining on the registers after software interruption are
sanitized.

Table 2 Implementation results on Raspberry Pi3.

Library cycles/block
w/ Enc (Ours, 16 rounds) 26,530
w/ Enc (Ours, 8 rounds) 15,764
wo/ Enc (Ours) 4,168

As a result, the processing speed of our SHA-256 implemen-
tation with the SBRES is 3.8–6.4 times slower than one without
the SBRES. The restriction of register usage due to embedding
the SBRES affects the flexibility of implementation, but the in-
fluence on the speed is not significant in the case of SHA-256.

Note that the penalty in speed heavily depends on the num-
ber of memory access instructions. For example, if there is no
memory access in the execution of the program, RAM encryp-
tion function is not necessary at all. Therefore, if the number of
available registers increases, the number of memory access in ex-
ecution of the program is expected to decrease. In our implemen-
tation, we only use integer registers. But if an implementer addi-
tionally uses floating point registers, the penalty may be small.

5. Security Consideration of RAM Encryption

In this section we discuss the security issues of the SBRES.
There are the following three attack surfaces under consideration
to protect the data dealt with by the target process.
• Registers (data in processing)
• Memory (data at rest)
• Input and output of the process (data on transmission)
As mentioned, the third surface is out of the SBRES protection

by design, therefore the remaining two cases are discussed. In the
following, the attack process and the target process are denoted
by atk and tgt respectively.

5.1 Information Leakage via Registers
The encryption key for the SBRES and a part of the data in

processing are on the registers. The access to CPU (or a core in
case of multi-core CPU) is exclusive, therefore both tgt and atk
cannot simultaneously run its process on it. If a software inter-
rupt occurs, the process running is interrupted, evacuated then the
other process (re-)starts to run. In this paper we assume that the
adversary has the root privilege but runs as a user-mode process.
If tgt is interrupted, the data on registers are evacuated to the

kernel stack which is not accessible by user-mode processes*2.
Another possibility of the leakage of data on registers is that the

registers may not be sanitized at software interruptions. Namely,
the processing data of tgt on registers is evacuated to the ker-
nel stack and it is not accessible by atk, but the data is still on
registers and atk may be able to read them. We investigated the
source code of Raspbian Linux kernel in order to check this pos-
sible threat and found that most of the registers are eventually
sanitized. Figure 3 sketches how the registers are sanitized when
switching running processes. Assume that tgt is running at a
software interruption. Then the context of tgt including the data
on registers are evacuated to the kernel stack. Then the context
of the next process, whose priority is the highest in the waiting
list, is restored on registers. Namely, secret information of tgt is
overwritten by the context of the next process. We confirmed that
the registers r4-r11, r13, r14 are directly overwritten by the
restored context. The registers r0-r2, r12 are used in the con-
text switching process itself. And the register r15, which is as a
program counter, is updated during any process running. There is
a register r3, for that we could not find the corresponding descrip-
tion in the source code to overwrite it during the context switch.
However, our experimental result indicates that r3 is also sani-
tized somehow.

5.2 Information Leakage via Memory
The memory space allocated to tgt holds secret information

and data in processing. atk, which has root privilege, and can
access the memory space of tgt. The SBRES encrypts the data
to be transferred to the memory space of tgt and there is no en-
cryption key on memory, therefore it is not easy for atk to get
meaningful information by reading the memory space of tgt.

5.3 The Security Not Assured by the SBRES
The adversary considered in Section 2.4 is passive and does

not have access to the data on registers during the time that the
target process uses it. On the other hand, if one of the conditions
is not satisfied, the SBRES cannot be secure. Here we mention
some cases which are out of the protection offered by the SBRES.
The adversaries mentioned in Sections 5.3.1 and 5.3.2 violate the

*2 There is a compile option generating /dev/kmem, which enables user-
mode process to access kernel stack, but it is usually invalidated.
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first requirement and one mentioned in Section 5.3.3 violates the
second requirement.
5.3.1 Active Adversary

Different from the RAM encryption with hardware support, the
SBRES implementation is just snippets of code embedded in the
target program. Therefore, an active adversary can remove the
snippets and insert a new code which reveals the secret on regis-
ters to memory before encryption. Therefore, the SBRES cannot
be a countermeasure against this kind of adversary. In order to
prevent these kinds of attacks, countermeasures to detect unex-
pected code modifications are necessary. The examples are code
signing and control flow integrity [1]. Code obfuscation is an op-
tional countermeasure. To obfuscate the SBRES code in the exe-
cution file of tgt may increase the cost of attacks.
5.3.2 Side Channel Attacks

The SBRES prevents the adversary from reading the secret in-
formation on the memory by encrypting the data. However, some
side channel attacks do not directly read the memory but investi-
gate the memory access pattern of the target process. This kind of
adversary does not directly modify the program but is still active;
It flushes the cache memory for example in order to control the
behavior of the program. The SBRES does not provide protec-
tion against this kind of attacks. Another countermeasure such as
Oblivious RAM [6], which randomizes the memory access pat-
tern in processing, should be considered.
5.3.3 Kernel Mode Adversary

If the CPU or the kernel of the OS has a critical vulnerability,
the adversary may be able to run in kernel-mode. In this case, the
ability of the adversary is far beyond our assumption. atk is able
to access to the kernel stack of tgt and to get the secret informa-
tion on registers including the encryption key of the SBRES.

6. Concluding Remarks

In this paper, we discussed whether the RAM encryption func-
tion is feasible without hardware support. We first clarified the
adversary model, then proposed a software-based RAM encryp-
tion scheme. The assumed adversary is semi-honest and cannot
use debugging functions. As a result, it cannot access the data
on registers. In other words, the data processing within the CPU
is secure against this kind of adversary, therefore the proposed
SBRES is secure under this setting. In addition, we proposed an
encryption algorithm suitable for SBRES on ARMv7 processor
and embedded it to SHA-256. The execution time for hashing
becomes 3.8–6.4 times slower than one without SBRES. The op-
timization of the implementation and the automation of embed-
ding SBRES are future works of this research.
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Appendix

A.1 Parameter choices of the encryption algo-
rithm

In this section we explain the reason for the parameter choices
of the block cipher specification given in Section 4.3.

A.1.1 Block Size and Key Length
The proposed SBRES assumes that the data on registers are not

encrypted and the encryption/decryption is done when the data
is transferred from the registers to the memory and vice versa.
Therefore, to reduce the data transfer between them obviously im-
proves the processing speed. The example target program (SHA-
256) has eight working variables a, b, c, d, e, f , g, h (The labels
refer to [9]) which are more frequently accessed than other vari-
ables. Therefore, our implementation allocates eight registers to
them and an additional register to a variable which holds inter-
mediate values in calculations. On the other hand, the SBRES at
least requires registers to hold an encryption key and the interme-
diate value of the processing.

Let us consider the AES-128 as the encryption algorithm for
the SBRES for example. Both the block size and the key length
of AES-128 are 128-bit so that at least 8 registers are allocated
to hold the state of the AES-128. Remind that 13 general pur-
pose registers are available in ARMv7 processor therefore we
have only five free registers. That means, we cannot hold all the
eight working variables on registers. As a result, the processing
speed of SHA-256 with SBRES-AES-128 is expected to be much
slower than that shown in Section 4.4*3.

From the viewpoint of the security, larger block size and longer
key length are desirable so that the use of 64-bit block size and
64-bit key length should be restricted. In addition, the security of
Even-Mansour construction is upper-bounded by a meet-in-the-
middle attack and the attack requires about 2n/2 known plaintexts
to recover the secret key, where n is the block size of the under-
lying block cipher. Therefore, the security of the proposed block
cipher in Section 4.3 is upper-bounded to 232 block encryptions.
In this paper, we assume that the adversary has limited compu-
tation power and this limitation is not critical. If the program is
expected to run for a long time beyond the above limitation, the
encryption key for SBRES should be updated.

*3 The parameter selection here is valid only for ARMv7. For example,
ARMv8 processors have more general purpose registers. In addition,
they have the AES instruction therefore the use of AES-128 may be a
better choice

A.1.2 Related Plaintext Differential Attack
In this paper, the adversary is assumed to be able to access

only the encrypted data on memory. The data on memory is de-
crypted on registers with an encryption key, processed by some
instructions, encrypted again with the same key, and re-written to
memory. Let us assume that the target process F is decomposed
to sub-processes F = Fm ◦Fm−1 ◦ · · · ◦F1. Each sub-process Fi is
further decomposed to Writei◦F̃i◦Readi, where Readi and Writei

are memory accesses and F̃i does not have memory access. Then
the ciphertexts accessible by the adversary is depicted as follows:

Pi = Dec(Ci,K),

Pi+1 = F̃i(Pi)

Ci+1 = Enc(Pi+1,K).

A naive attack assumes Enc ◦ F̃i ◦ Dec as the target function.
Another possible attack is a related plaintext attack. Let us con-
sider the simplest example of the sub-process F̃i xoring, i.e., Fi

just xors a constant Δ to Pi. In this case, the adversary does not
knows the plaintext Pi but knows the input differential Δ, and gets
the ciphertexts Ci and Ci+1 corresponding to the plaintexts Pi and
Pi ⊕ Δ respectively. Therefore, this setting is considered as a dif-
ferential attack under the assumption that the adversary does not
know plaintexts. The advantage of this attack compared to the
naive attack is to reduce the complexity of the target function; the
target function is not the composition of the functions but only an
encryption function.

A.1.3 Number of Rounds
Biryukov et al. evaluated the differential probability of Speck

in Ref. [3]. They reported that the maximum characteristic dif-
ferential probability of Speck64 is smaller than 2−31 at 9 rounds.
Another result of theirs via truncated evaluation expected that the
differential probability is around 2−60 at 14 rounds. The security
evaluation of the proposed block cipher is not our main concern in
this paper, we choose 16 rounds which is expected to be sufficient
for preventing differential attack and 8 rounds, its half rounds.

Note that Even-Mansour construction limits the number of en-
cryption block by 232. The research of Biryukov indicates that
around 10 iterations of a round function is moderate even if the
related plaintext attack is applied. On the other hand, the appro-
priate number of rounds for our use is still unclear. The com-
plexity of the related plaintext differential attack heavily depends
on the complexity of the processing after decryption. If all of F̃i

are not so simple, then we may be able to reduce the number of
rounds.

A.1.4 Optimization for Register Consumption
To remove the key scheduling of Speck and to adopt 1-key

Even-Mansour construction instead in the block cipher in Sec-
tion 4.3 reduces the register consumption. It requires only two
registers to hold the encryption key and two registers to hold the
intermediate value of the processing. Our implementation en-
crypts only a 32-bit variable at a block encryption and the re-
mainder 32-bit of the input is a fixed constant. The register which
holds the data to be encrypted is used during the encryption to
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hold the intermediate value. As a result, three additional regis-
ters in total are necessary in order to embed the SBRES with the
proposed block cipher.

Tsutomu Matsumoto is a professor of
the Faculty of Environment and Informa-
tion Sciences, Yokohama National Uni-
versity, and directs the Research Unit for
Information and Physical Security at the
Institute of Advanced Sciences. He also
serves as the Director of the Cyber Physi-
cal Security Research Center (CPSEC) at

the National Institute of Advanced Industrial Science and Tech-
nology (AIST). Starting from Cryptography in the early ’80s, he
has opened up the field of security measuring for logical and
physical security mechanisms. He received a Doctor of Engineer-
ing degree from the University of Tokyo in 1986. Currently, he is
interested in research and education of Embedded Security Sys-
tems such as IoT Devices, Cryptographic Hardware, In-vehicle
Networks, Instrumentation and Control Security, Tamper Resis-
tance, Biometrics, Artifact-metrics, and Countermeasure against
Cyber-Physical Attacks. He serves as the chair of the Japanese
National Body for ISO/TC68 (Financial Services) and the Cryp-
tography Research and Evaluation Committees (CRYPTREC)
and as an associate member of the Science Council of Japan
(SCJ). He was a director of the International Association for
Cryptologic Research (IACR) and the chair of the IEICE Techni-
cal Committees on Information Security, Biometrics, and Hard-
ware Security. He received the IEICE Achievement Award, the
DoCoMo Mobile Science Award, the Culture of Information Se-
curity Award, the MEXT Prize for Science and Technology, and
the Fuji Sankei Business Eye Award.

Ryo Miyachi received his Bachelor of
Engineering and Master of Information
Science from Yokohama National Uni-
versity, Kanagawa, Japan, in 2017 and
2019, respectively. His research interests
include post-quantum cryptography and
tamper-resistant implementation for cryp-
tographic modules.

Junichi Sakamoto received his M.I.S
and Doctor of Informatics degrees from
Yokohama National University, Japan,
in 2017, and 2020, respectively. He
is currently working as a postdoctoral
researcher at Yokohama National Univer-
sity. He has engaged in various researches
regarding information security, including

the methodology of secure implementation of the cryptographic
algorithms, side-channel attacks to pairing computation, and
laser-based fault attacks.

Manami Suzuki received her B.E. de-
gree in information engineering and her
M.S. degree in information sciences from
Tohoku University, Sendai, Japan, in 2016
and 2018, respectively. She is currently
with the Yokohama Research Laboratory,
Hitachi Ltd. Her research interests in-
clude hardware security and physically

unclonable functions.

Dai Watanabe received his B.S. and
M.S. degrees from Tohoku Univeristy,
Sendai, Japan, in 1994 and 1996 re-
spectively, and received his Doctor de-
gree from Tokyo University of Science
in 2007. He has been engaged in re-
search on information security, cryptog-
raphy and cryptographic protocol at R&D

Group, Hitachi, Ltd. since 1999. He is a member of the Infor-
mation Processing Society of Japan (IPSJ) and The Institute of
Electronics, Information and Communication Engineers (IEICE).

Naoki Yoshida is a Specially Appointed
Assistant Professor in the Institute of Ad-
vanced Sciences at Yokohama National
University. He received his M.S.
and Ph.D. of Informatics degree from
Yokohama National University in 2014,
2017. His research interests include em-
bedded system security, artifact metrics

and instrumentation security.

c© 2020 Information Processing Society of Japan


