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Periodic-Review Joint Replenishment Policy using
Multi-Agent Reinforcement Learning
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Abstract: A periodic-review joint replenishment problem is considered. In literature, can-order and modified
periodic-review policies have been proposed, and either of them cannot always outperform the other depending on
the demand characteristics. In addition, whereas there are many types of joint-replenishment cost structures in prac-
tical settings, most studies have assumed the fixed joint-replenishment costs, and, for the periodic-review system, no
study has been conducted to incorporate the practical cost structures into the existing heuristic approach. The pur-
pose of this paper is to propose a multi-agent reinforcement learning-based solution for a joint replenishment problem,
which can be used for problems with several demand settings, and be applied for various cost structures with minor
modification. Our numerical experiments demonstrate that the performance of our proposed agent is equal or greater
than that of the existing heuristic policies, that are can-order, and modified periodic policies.

Keywords: joint replenishment problem, multi-product inventory, multi-agent reinforcement learning, credit assign-
ment, joint action selection

1. Introduction
A joint replenishment problem (JRP) under stochastic demands

in a periodic-review system, where joint-replenishment costs are
shared among products, and replenishment opportunity comes
at a regular time intervals, is considered. Recent increase in e-
commerce have made the smaller companies participate in the in-
ternational transportation using trucks or container ships, where
the practical consideration of JRP under stochastic demands is
needed. It is because the deviation of demand as well as the ratio
of the shared cost over the total supply chain cost are typically
high.

There have been many studies in JRPs, and most studies have
considered the deterministic demands, wheres the studies on
stochastic demands have been limited[2]. With stochastic de-
mands, the Markov decision processes (MDP) have been em-
ployed for the formulation of the problem. When the number
of products is less than four, the MDP can be only solved because
the action spaces grow exponentially with the number of products
because of its combinatorial nature [11], [12].

Thus, several heuristic algorithms have been proposed for a
large number of products. However, there are some studies that
have reported the pros and cons of each class of policy depending
on the demand characteristics, e.g., demand variation or correla-
tion among products. For example, for the well-known coordi-
nated policy, called can-order, or (s, c, S) policy, its performance
would be worse as compared to the optimal solution for two prod-
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uct case, when the demand correlation among products exists [3].
Another policy, called modified periodic (MP) policy, has been
reported to achieve good performance as compared to the can-
order policy. However, some studies [5] pointed out that the MP
policy could not outperform the can-order policy for problems
with high demand variation.

In addition, most studies have assumed the fixed replenishment
cost, whereas there are many types of cost structures in prac-
tice, e.g., capacity constraint or stepwise cost for container or
truck shipment, non-linear cost for warehouse costs, etc. Some
studies [6], [8], [9] incorporated the warehouse or truck capac-
ity constraint into the existing policies. However, to the best
of our knowledge, such attempts have been only limited to the
continuous-review inventory system.

Earlier, a reinforcement learning based agent has been pro-
posed, called the branching deep-Q network with reward alloca-
tion [14]. The earlier approach has the distinguishing feature
of the shared representation of state-action value function fol-
lowed by the product-independent branches with credit assign-
ment mechanism, with the aim of encouraging the cooperative
behavior among agents, while enabling the linear growth of the
total number of network outputs with respect to the number of
products. However, that could not outperform the existing heuris-
tic policy when the number of products became large.

With this in mind, the purpose of this paper is to propose a
multi-agent reinforcement learning-based solution for a JRP that,
unlike existing approach including can-order and modified pe-
riodic policies, does not assume specific class of policies. Our
solution can be used for problems with several demand settings,
in terms of the number of products, demand variation, and the
demand correlation among products, and be applied for various
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cost structures with minor modification, including the capacitated
transportion, stepwise transportation costs, and non-linear hold-
ing costs.

We employ the reinforcement learning (RL), which does not
require the knowledge on the state transition probability and re-
ward function, with the aim of making our solution applicable for
various cost structures. However, naively formulating as a sin-
gle agent RL would suffer from the large action spaces as stated
above. Thus, we use the multi-agent RL, where each agent con-
sists of each product. The distinguishing requirement for the so-
lution of JRP is cooperation among products, and in order for our
agent to be cooperative, instead of taking an action independently
among agents, we introduce the central joint-action selection unit
that decides the joint-action of all the agents simultaneously, with
each agent learning the state-action value function which is con-
ditioned by the other agents’ actions. In the central joint-action
selection unit, we employ the heuristic joint-action search pro-
cedure which efficiently searches the joint-action for larger total
state-action value among all the agents. Our heuristic procedure
works only when coupled with the proper credit assignment strat-
egy, with which joint costs among products are allocated to each
agent.

By conducting several numerical experiments, we found that
the performance of our proposed agent is equal to the better one
of the benchmark policies irrespective of the demand character-
istics with fixed replenishment cost. In addition, our proposed
agent can easily incorporate the several cost structures and out-
performed the benchmark policies for cases with transportation
capacity constraint or stepwise transportation cost.

2. Method
2.1 Problem setting

We consider a multi-product inventory system between one
supplier and one retailer in a periodic-review system under
stochastic stationary demands. Our objective is to minimize
the total retailer cost, which includes the holding, penalty, and
transportation costs. We have used the following notations:

i : Item number, i = 1, ...,N,
t : Period, t = 1, ....,T ,
LT : Lead time from supplier to retailer, (in weeks),
li : Lot size of item i, (in palette),
di,t : Demand for item i during period t, (in palette),
xi,t : Order quantity for item i made at time t, (in palette),
Outi,t : Shipment of item i from retailer during period t, (in
palette),
Ini,t : Replenishment for item i from supplier during period t, (in
palette),
Ii,t : Inventory of item i at the start of time t, (in palette),
Ip
i,t : Inventory position of item i at the start of time t, (in palette),

ui,t : Unsatisfied demand of item i during period t, (in palette),

We permitted the lost sales. Replenishment at time t can be
used from time t + 1. In this study, we do not take supplier
stock-out or any supply delay into consideration. Thus, the
relationship among inventory, replenishment, shipment, demand,

Table 1 Cost scenario
Cost scenario Transportation cost Inventory cost
1) Base Fixed Linear
2) Capacitated (trans) Fixed (with CAP constraint) Linear
3) Stepwise (trans) Stepwise Linear
4) Non-linear (hold) Fixed Non-linear

and unsatisfied demand can be formulated as follows. Here,
inventory position means the on-hand inventory plus orders that
have been ordered but have yet been received.

Ini,t+LTi = xi,t, (1)

Outi,t = min(di,t, Ii,t), (2)

Ii,t+1 = Ii,t − Outi,t + Ini,t, (3)

Ip
i,t+1 = Ip

i,t − Outi,t + xi,t, (4)

ui,t = di,t − Outi,t. (5)

The order quantity unit size, which we call the lot size, should
be an integer in palette. Demand can be specified in decimals be-
cause a customer’s order to the retailer would be stated in pieces
rather than palettes. Throughout our study, we let LT (which is
the time required from order to delivery) to be three weeks.
2.1.1 Cost structures

Let Ctrans, Chold, Cpel denote transportation, holding, and
penalty cost, respectively, and U trans, Uhold, and U pel are corre-
sponding unit costs. The penalty cost is defined as;

Cpel
i,t = Upel × ui,t. (6)

We defined the several cost structures. One is the normal
cost setting, often assumed in the literature, where fixed joint-
replenishment cost is incurred regardless of the amount of orders,
and holding cost is proportionate to the inventory amount;

Ctrans
t = U trans (if

∑
i

xi,t > 0), (7)

Chold
i,t = Uhold × Ii,t. (8)

The second type is the capacitated replenishment cost, where a
certain capacity of transportation (CAPtrans) is taken into consid-
eration (

∑
i xi,t ≤ CAPtrans), assuming the transportation using a

truck or a container ship.
The third type is the stepwise replenishment cost, where trans-

portation cost depends on the number of vehicles required, also
assuming the transportation by a truck or a container ship;

Ctrans
t = U trans × d

∑
i xi,t

CAPtrans
e. (9)

The fourth type is the non-linear inventory cost, where the fixed
inventory cost is incurred when the inventory level is equal or be-
low the certain warehouse capacity (CAPwh), and additional cost
is incurred for the surplus inventory level as a fee for short-term
leasing warehouse;

Chold
t = Uholdf + Uholdv × max(0,

∑
i

Ii,t − CAPwh), (10)

where Uholdf = Uhold × CAPwh and Uholdv > Uhold.
Tab. 1 summarizes the cost setting above.
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Fig. 1 each agent’s state-action value function conditioned by sum of other agent’s order quantities

2.2 Single-agent formulation
First, we formulate our problem as a single agent problem. In

our problem setting, if we consider the inventory level and in-
ventory position at time t as state, transportation, holding, and
penalty costs depend only on the state and orders placed at time
t. At every time step, meaning the beginning of every week,
the agent obtains information about the on-hand inventory and
inventory position, that is, st = [(Ii,t, I

p
i,t)]

N
i=1, makes a decision

at = (a0, a1, ...an) ∈ A based on st, and receives a immediate
reward rt+1, that is, the sum of the transportation, holding, and
penalty costs incurred at time t.

Thus, the single agent Q-learning can be formulated as :

Q (st, at) = (1 − αt) Q (st, at)+αt

(
rt+1 + γmax

a
Q (st+1, a)

)
,(11)

However, the Q-learning above (or function-approximated Q-
learning, e.g., deep Q-Network [10]) cannot converge due to the
increasing action spaces when the number of products becomes
large.

2.3 Multi-agent formulation
In order to handle the exponentially increasing action space

with respect to the number of products, we employed the multi-
agent approach. The simplest way to formulate as a multi-agent
problem is the independent Q-learning (IQL)[15], where each
agent treats other agents’ action as part of the environment, that
is;

Qi
(
si,t, ai,t

)
= (1 − αt) Qi

(
si,t, ai,t

)
+αt

(
ri,t+1 + γmax

ai
Q

(
si,t+1, ai

))
,(12)

where only difference from the eq. 11 is the existence of subscript
i, and the ri,t+1 is the allocated reward for product i according to
a certain credit assignment strategy. However, IQL often fail to
converge as changes in the policy of one agent will affect that of
the others, and vice versa. This problem becomes more serious
when the function approximated Q-learning using neural nets is
used, where experience replay plays a key role [4].

The earlier work [14] was extended version of IQL that has
shared representation with the aim of encouraging the coordi-
nated behavior among agents. Although it could learn the coor-
dinated ordering behavior, the performance was not better when
compared to the existing coordinated heuristic policies like can-
order and periodic review policies. Thus, we started attempting
to incorporate the central control unit that explicitly considers all

the agents’ actions.
Fig. 1 represents our proposed solution. Each agent consists of

one product, and the agent for product i has its own state-action
value function with parameter θi. What differs most from the
earlier work [14] is that we treat the information of other agents’
actions as a part of a state in the state-action value function. Thus,
the state-action value function of each agent is conditioned by the
other agents’ action rather than selecting an action independently.
We also have a central joint-action selection unit, where the joint-
action is decided based on the Q-value function of all the agents.

When the inventory cost is proportionate to the inventory quan-
tity (in the cost scenario 1, 2, and 3), a state of each agent i
aside from the other agent’s action is only an inventory and in-
ventory position of product i. Thus, we can define the state by
si,t = (s−i,t,

∑
j,i x j,t), where s−i,t = (Ii,t, I

p
i,t) and x j,t = l ja j,t is the or-

der quantity of the agent j when selecting an action a j. In case of
non-linear inventory cost (in the cost scenario 4), other products
inventory level should be taken into consideration. In this case,
the sum of the inventory of all the products

∑
i Ii,t is added to the

aforementioned state.
At every time step, each agent in state si,t takes an action ai,t

(that is decided by the central joint-action selection unit), receives
the immediate allocated reward ri,t+1 (through credit assignment),
and moves to the next state si,t+1. The explanation of the joint-
action selection, credit assignment, and the ε-greedy exploration
strategy are provided from the following section. Since an infinite
action space is not practical, and taking a large number of orders
as compared with the demand is unrealistic from a supply chain
point of view, we limited the possible order quantity for product
i to Xi = {liai | ai ∈ Ai = {0, 1, 2, 3, 4, 5}} where Ai denotes
the action space for product i. In this setting, joint-action space
of all the products would be 6n. Each agent’s state-action value
with function approximation is updated according to the follow-
ing loss:

Li = E(si ,ai ,ri ,s′i)∼Di

[
Lδ (yi,Qi (si, ai))

]
, (13)

where

yi = ri + γQ−i (s′i , argmaxai Qi(s′i , ai)), (14)

Lδ is the Huber loss function, and Q− is the target network.
2.3.1 Credit assignment

Since there are several agents in an environment, a credit as-
signment should be decided that satisfies

∑
i ri,t equals the nega-
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tive sum of the transportation, holding, and penalty cost at time
t. As for the transportation cost, we employed the global reward
allocation, where transportation cost Ctrans

t is equally allocated to
each product, and holding cost can be calculated independently
per product (Eq. 8) for the linear inventory cost scenario (cost
scenario 1, 2, and 3), that is;

ri,t+1 = −(Ctrans
t /N + Chold

i,t + Cpel
i,t ). (15)

This credit assignment strategy is tightly coupled with the joint-
action heuristics which we explain later.

When the inventory cost is also a joint-cost among products in
cost scenario 4 (Eq. 9), we employed the local and global reward
allocation for the variable and the fixed part of the holding cost,
respectively. Thus, allocated reward for each agent is defined as
follows;

ri,t+1 = −(Ctrans
t /N + Uholdf /N + Choldf

t ×
Ii,t∑
i Ii,t

+ Cpel
i,t ), (16)

where Choldf
t = Chold

t − Uholdf .
2.3.2 Joint ε-greedy exploration strategy

We employed the ε-greedy exploration strategy where all the
agents jointly select an action at random with probability ε with
the aim to explore the joint replenishment opportunities. Also,
each agent takes a random action independently with the proba-
bility ε/N.
2.3.3 Joint-action selection

Since our goal is to derive the policy that achieves the maxi-
mum total expected discounted reward, we need to take the fol-
lowing joint-action;

a = (a0, a1, ...an) = argmaxa∈A

∑
i

Qi((s−i ,
∑
j,i

l ja j), ai).(17)

We, however, still face a combinatorial action selection prob-
lem. In the learning process, we need to solve this optimization
problem per each step. Thus, the efficient heuristics for the Eq. 17
is needed.
2.3.4 Joint-action selection heuristics

With the availability of the state-action value function of each
agent, each agent decision can be modified treating the other
agents’ actions as fixed. By incrementally modifying joint-
action tuple, we can efficiently search the action space that would
achieve higher expected discounted reward. The illustration of
the procedure is provided in Fig. 2.

Here, we utilize the characteristics of the learnt behavior de-
pending on the credit assignment. As reported in the study [14],
the agent with global reward allocation failed to learn the coordi-
nated canceling behavior. However, if we start our search from
the joint-action, where any product does not put an order, that is,
a = (0, 0, · · · , 0), coordinated canceling opportunity is examined
every time.

If we employed the local reward allocation, where a joint-
transportation cost is allocated in proportion to the order quan-
tities, incremental process should not work because for an agent
given

∑
x j,i = 0, all the joint-transportation cost would be allo-

cated to this specific product, and this cost allocation is too ex-
pensive for an agent to put an order, which is the reason why the

0 0 0 0 0 0 0 0 0

0 0 2 0 0 1 0 1 0

1 0 1 1 0 1 0 1 0

Initial joint-action

After first iteration

a! ← 𝑎𝑟𝑔𝑚𝑎𝑥	𝑄!((𝒔𝒊#, 0), 𝑎!)

a! ← 𝑎𝑟𝑔𝑚𝑎𝑥	𝑄!((𝒔𝒊#, 4), 𝑎!)

…

a! ← 𝑎𝑟𝑔𝑚𝑎𝑥	𝑄!((𝒔𝒊#, 5), 𝑎!)

Fig. 2 image of our heuristic search procedure

agent with local credit assignment failed to learn the coordinated
ordering in the earlier work [14].

On the other hand, with global reward allocation, even if given
that the other agents do not put an order at all, allocated cost for
a specific agent is 1/N. Thus, an agent whose inventory level is
low would put an order according to the state-action value func-
tion. Once more than one agent decides to put an order in our
heuristic algorithm, for agents whose inventory level is not so low,
given the updated other agents actions, they may place an order
because joint-transportation cost would be allocated regardless of
their own actions, and coordinated ordering behavior can emerge.

For capacitated cost scenario, where there is transportation ca-
pacity constraint, only the joint-actions whose sum of replen-
ishment quantity is equal or below the transportation capacity
CAPtrans is allowed in our search procedure.

3. Experiments
3.1 Experimental setting

We conducted several numerical experiments to answer the
following questions:
1) Can the proposed agent achieve the performance equal to
or greater than the existing heuristic policies under the various
demand characteristics in the normal cost setting?
2) Can the proposed agent achieve the performance equal to or
greater than the existing heuristic policies in a situation where
there is non-fixed joint costs?

In order to validate these questions, we conducted experiments
by varying 1) the number of products, 2) the cost scenario, and
3) the demand characteristics (demand variation and correlation
among products). In literature, most frequent examined number
of products in JRP are ranging from 2 to 12. Thus, we examined
three settings; 2, 5, and 10. As for the demand characteristics,
we altered two parameters; cv and ρ, which defines the deviation
of demand and correlation of demand among products, respec-
tively. Demands are generated following the multi-variate normal
distribution (dt = [di,t]N

i=1 ∼ N(µ,Σ)). The variance for product
i is defined as cv × µi and the covariance matrix is defined as
Σi, j = σi ×σ j × ρ

|i− j|. Per-step average demand µ, lot size of each
product, and transportation and warehouse capacity settings are
presented in Table. 2. Note that for scenario 3, where stepwise
transportation is assumed, we set larger demands so that per-step
total demands is larger than the transportation capacity CAPtrans.

To summarize, our experiments consist of the following fac-
tors;
1) number of products ∈ (2, 5, 10),
2) cost scenario ∈ (1, 2, 3, 4),
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3) demand characteristics: cv ∈ (0.4, 0.6), ρ ∈ (−0.5, 0, 0.5)

3.2 Benchmark methodology
As a benchmark policy, we selected a can-order and MP pol-

icy, as they are well-known joint-replenishment policy under
periodic-review inventory system. We derived the parameters of
each policy using the genetic algorithm. The detail settings are
provided in section 3.4.

A can-order policy has three parameters for each product; s,
c, and S represent the must-order, can-order, and reorder level,
respectively, whereas a MP policy has one global parameter to
represent the frequency of ordering timing, and each products has
two parameters; s and S represent must-order and reorder level,
respectively.

In order to make the comparison fair, we implemented addi-
tional logic for cost scenario 2 and 3 to incorporate the trans-
portation capacity and loading ratio. Similar to the study [1],
we implemented a procedure that accounts for the availability
of “free” remaining capacity of transportation vehicles that have
been partially filled with other items, or remove the products
if the sum of order quantities exceed its capacity or loading
ratio of the vehicle is low, where loading ratio is defined by∑

i xi,t/(d
∑

i xi,t

CAPtrans
e × CAPtrans). Either of can-order and MP pol-

icy has the parameter S i which represents the reorder level for
product i, and our algorithm chooses the product for adjustment
whose adjusted inventory position Ip

i + x̂i is the nearest to the
reorder level, where x̂i represents the adjusted order quantity for
product i. Whether to decrease or increase is decided based on the
loading-ratio. We confirmed that by adding this procedures, the
performance of the benchmark policies increased for both sce-
nario 2 and 3.

3.3 Experiment results
Table. 3 shows the experiment results. Since the demand corre-

lation among products did not make significant effect on the per-
formance gap throughout our study, only the results with ρ = 0 is
shown.

In terms of the comparison between the can-order and MP pol-
icy, when the number of products is small, we see that the perfor-
mance of the MP policy is worse, particularly for problems with
high demand deviation, which is consistent with literature. How-
ever, for problems with 10 products, the performance of the MP
policy is equal or better than that of the can-order policy for all
the cost scenarios.

As for the performance of our proposed agent, we evaluated
our performance by comparing with the better one of the can-
order and MP policies. For the base cost scenario with fixed joint
replenishment cost, the performance of our proposed agent was
equal to the better one of the benchmark policies irrespective of
the demand deviation and number of products. For the scenarios
of capacitated and stepwise transportation, our proposed agent
performed better, and the difference in performance has widened
as the number of products increased. For the non-linear holding
cost scenario, the performance of ours was slightly lower than
the better one of the benchmark policies, but the gap was not
significant when taking the standard deviation over six runs into

consideration.

3.4 Experiment detail
3.4.1 Cost parameter setting

We let the cost parameters Uhold, Upel, and U trans be 0.02, 1.0,
and 1, respectively. These are set on the basis of the typical
logistic condition. As for the non-linear holding cost scenario,
fixed holding cost is set to Uholdf = 0.7 × Uholdv × CAPwh, where
Uholdv = Uhold.
3.4.2 Multi-agent reinforcement learning setting

The network that represents state-action value function had
three hidden layers with 64, 32, and 32 units. We used the Adam
optimizer. A mini-batch size was 32 and a discount factor was
0.995. We used ReLu for all hidden layers and linear activa-
tion on the output layers. A target network was updated every
10 episodes.

One of the biggest challenges in multi-agent reinforcement
learning is the non-stationary environment caused by the con-
current learning. In order to stabilize the learning process, we
employed the hysteretic learning [7][13], where different learn-
ing rate is applied depending on whether the calculated loss is
positive or negative. In our experiments, we used the 0.4x. learn-
ing rate for the negative loss. Third, the replay memory size with
memory capacity was set to 10,000 so that the obsolete memory
would not be used for learning.
3.4.3 Genetic algorithm setting

In our parameter estimation for benchmark policies, following
parameters were used in genetic algorithm; The number of pop-
ulation, cross over probability, mutation probability, and number
of generation are 50 × N, 0.5, 0.2, and 100, respectively.

4. Conclusion
As we see in the experiments, our numerical experiments

demonstrate that the performance of our proposed agent is equal
to the better one of the benchmark policies irrespective of the
demand characteristics for base cost scenario. In addition, our
proposed agent outperformed the benchmark policies for cases
with transportation capacity constraint or stepwise transportation
cost. Since our approach does not rely on the knowledge on the
state transition probability and reward functions, incorporating
the new cost structure can be done just by modifying the cost set-
ting in our simulator. There are many variants of cost settings in
practice, and existing researches have not covered all the condi-
tions. We hope our solution can be of help in the complicated
practical conditions.

One of the limitations of our study is the versatility of cost
structures. For future study, incorporating the other supply chain
conditions, such as volume discount offered by a supplier, and the
combination of several cost settings including those examined in
our study, would be an interesting topic. Since our solution uses
the heuristic search procedure, the validity of the heuristic proce-
dure with different cost structure is worth investigating.
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