F—sNX—2 - VRF L 69 -2
(1989 1. 19)

ZERBERTF— I R— 2R BT HF— ¥ {FENE
Faov b4 F2VFed VAFoAd L e

NMARZETER

AFTCR, BRF— I R—2RBFZ7— s RBOMEZ—BHIEKS 72D, D.E. Denningd OB RIEME 7 — ¥ < —
Z2 (MDB) Ol&2EET 3. R, COEFNVRHAVCEREZRF— -2 $ 57— 7REHEL LCEEL
ZE-0MEAEL, ThoORBROVCRNT 3. F—0OMER, BEEBECHARBELAZERLABEOF— IR
BOMET, BHBIGAROVTSUSDBLERRSD 3K, LV —BULBAROVTORN 2T 2. B_ORMEIR,
5BEMOEERFINBCHOROBRERZEE TS L L L VEMARBLINEEE2TE5HETHY, A
TCRUHTES. FZOMER, 772X 75 2ABBEHOEEAVIERINTVEEE, TORKOEREASC LR
V72225 A2EA5MBECHS. COMERZHEROMDBEFNTERS EF—FR—27 2 R iITHT 5 FHEEAA
FEHBIBEBD, AROEFNV IR E->THIB2Z2EMIT B LRTE 3.

Preventing Inference and Unauthorized Modification of
Protected Data in Multilevel Relational Databases

Somchai CHATVICHIENCHAI = Yahiko KAMBAYASHI

Department of Computer Science and Communication Engineering, Kyushu University

In this paper, we extend the concept of multilevel relational database (MDB) given by Denning’s group in
order to handle problems of protected data of relational databases. We consider 3 security problems which
may arise when we use that concept to protect some data of a universal relation. The first is the problem of
inferring some protected data by using the knowledge of functional and join dependencies that hold in the
universal relation. Although this problem was first discussed by Su and Ozsoyoglu, their solution is not
general enough. We give a more general solution of this problem. The second problem is that of unauthorized
modification of some protected data. This problem arises when some users modify values of the attributes
relevant to the protected data and the result of that modification is equivalent to modifying the protected
data. This problem is first discussed in this paper. The last problem deals with modifying the access classes
of some protected data in the case that access classes of the protected data are defined depending on the
values of other attributes of the same tuple. This is a new probiem which cannot be properly handled by the
model of Denning’s group since their solution will impose too much restriction of access of some data in the
database. The solution proposed by our model gives less restriction than that of Denning’s group.

i
I

1. Introduction

A multilevel relational database system (MDB)
is a relational database system which stores data of
different security classifications and provides these
data to users with different access classes. Research
about multilevel relational database systems was
first initiated in 1982 by the group of Woods Hole
Summer Study on multilevel Database
Management Security. Since, then, the topic has
attracted researchers’ attention, and some
important results have been derived [1], [2] and [3].
In Denning’s paper[1l], basic concepts for a
multilevel-secure relational DB based on views is
introduced. These concepts have since evolved into
a multilevel relational model{2] that consists of
multilevel relations with access classes assigned at
the element level, a set of integrity constraints, and
a method of decomposing all multilevel relations
into single level relations. From the security
managers’ point of view, it is more convenient to
assign access classes to data of a universal relation
than to assign access classes to data of actual
relations. The reason is, the universal relation is
regarded as a conceptual relation representing the
data of an entire database. However, there are
problems that must be considered when access
classes are assigned to data of the universal
relation. The first problem is the inference problem
due to integrity constraints (i.e., constraints that
enforce the correctness of data in the database).

Recently, Su[3] consider FDs and a single
multivalued dependency (MVD) as their basis for
inference in a MDB. Their interesting work
considers first how access classes of an attribute can
be assigned in order to avoid inference via known
FD mappings. For Example, if A functionally
determines B, they assume that this mapping have
already been known by users. Hence if B is
protected with high access class,-then they argue
that access class of A must also defined at least as
high as that of B, otherwise it can be used to permit
to infer B. However this assumption limits their
solution since most FD-mappings are not defined by
an algorithm but rather than by the tuple instances
(actually their projection onto the attributes of the
FD). They also show how an MVD can pose a
danger when access classes are assigned to tuple
level. For Example, if protected tuples share the
same MVD values with other tuples, the access
classes of these other tuples may need to be defined
as high as those of the protected tuples. However,
this solution is not sufficient enough since the
solution is based on access class of tuple level and
MVD which is a special case of join dependency
(JD). Hence, we give more general solution for
inference of protected data due to usage of the

knowledge of FDs and JDs in Sections 3 and 4.

The second problem is problem of unauthorized
modification of protected data of MDB. This
problem arise when security managers assign
access classes to data by considering importance of
individual attributes rather than that of attribute
sets used to represent sensitive information. We
discuss this problem in Section 4.

The last problem is problem of modifying access
class of some protected data. Unauthorized users
may be able to decrease access classes of protected
data if the access classes are defined depending on
the values of other data whose access classes are
lower than that of the protected data. We discuss
this problem in Section 5.

2. Basic Definitions

2.1 Access Classes

2.1.1 Access Classes of Denning’s Model

An access class is a composite: (Classification
levels, a set of categories). Fig. 1 shows
classification levels and their order, and a few
Example categories. The set of all possible access
classes is structured as a lattice with partial
ordering relation =, called dominates[4]. An access
class is said to be dominate another if and only if:

- its classification level is greater than or equal
to the other, and

- its category set contains the other.

TOP-SECRET > SECRET > CONFIDENTIAL > UNCLASSIFIED
a) Classification Levels
Manufacturing, Personnel, Engineering, Accounting
b) Example Categories
Fig. 1: Classification Levels and Categories

For simplicity, we will fix category part but vary
classification part of access class. Thus, access class
will be specified simply as TOP-SECRET(TS),
SECRET(S) etc.

In Denning’s model, each datum D is assigned
with an access class (let’s Cp represent the access
class of data D). Each user U is assigned with 2
access classes (Oy: operating access class, and Wy:
the lowest operating access class of other users
whom user U is permitted to release data to; where
Oy 2 Wuy). Authorization control of Denning’s
model is defined as follows:

1) A user U is allowed to read data D if Oy = Cp.
2) A user U is allowed to write data D if Cp = Wy.

A user U is allowed to append only data D whose
Rp = Wy such that he cannot release protected
data to the other users who hold operating access
classes lower than Wy. However, given data D,
Denning’s model lacks the ability to define the
users who can only read data D and the users who

—92=

can both read and modify it. This problem will be
explained in detail in Section 5.
2.1.2 Access Classes of Our Model

In our model, we improve Denning’s model by
assigning each data D with 2 access classes
(readclass Rp - the lowest operating access class of
the user who is permitted to read this data, and
writeclass Wp - the lowest operating access class of
the user who is permitted to update this data;
where Wp Z Rp). Each user is assigned with the
same access classes as defined in Denning’s model.
Authorization control of our model is defined as
follows:-

1) A user U is allowed to read data D if Oy = Rp.

2) A user U is allowed to append data D if Oy =
WpandRp = Wy.

3) A user U is allowed to delete data D if Oy = Wp.
4) A user U is allowed to modify data D; to D3 if Oy
Z Wp,, Oy Z Wp, and Rp, = Wy (combination of
2) and 3)).

In Denning’s model, a user U is allowed to write
data D whose Cp 2 Oy. This authorization is not
suitable because user U cannot examine and adjust
the data D after it has been written into the
database. In our model, we solve this problem by
allowing user U to append the data which he can
modify.

2.2 A Multilevel Relation

In this model, a multilevel relation is enhanced
from a standard relation by adding attributes used
to represent access classes of data elements to the
relation. Let R(Aj, Ay, .., Ap) be a relation, R be a
set of attribute in R. A multilevel relation for
relation R is modeled by a schema ML_R(A;, RCa,,
WCay, .. , An, RCa,, WCa,), where RCay, is
classification attribute representing readclass of
data attribute A;, and WCa4, is classification
attribute representing writeclass of data attribute
A;. Users’ view on ML_R is modeled as a schema
ML_V(Aq, Ag, .., Ap). Fig. 2 illusttrates an instance
of multilevel relation ML_R with three data
attributes A, B and C. The data element whose
readclass is not dominated by user’s operating
access class will appear as “NULL” in the user’s
view. However, if readclasses of all elements of a
tuple are not dominated by user’s operating access
class, that tuple will not appear in the user’s view.
Fig. 3 shows data of ML._R seen by a secret user.

2.3. Classification Constraints

A classification constraint S is a rule that
specifies value for classification attributes RCa,
and WCj,. Formally, each rule S is a 4-tuple of the
form: S = (ATTRS, EXP, TYP, CLS),

I
l

ML_R

ARCy WCy |BRCg WCg |C RCc WCc
ap C C by § S c1 S S
a2 8 S5 fby TS TS |3 S S
a3 8§ 8 Ipy s s cg TS TS
4TS TS by TS TS |ec3 TS TS

Fig 2: Multilevel relation ML_R

ML_V
A B C
al b c1
ag NULL c1
ag be NULL

Fig 3: Multilevel view
for secret users

where ATTRS is a list of one or more data
attributes, EXP is an optional expression, TYP is
type of access class (Readclass and/or Writeclass),
and CLS is value of access class. The rule is
interpreted as follows:
if EXP then TYP of ATTRS = CLS.

The expression EXP is a conjugation of one or
more conditions to be satisfied by a collection of
attributes in the database.

2.4 Policy of Assigning Access Class

Access classes are defined at the following three
levels of granularity: attribute, tuple, and element
level. In this paper, we investigate the security
problems which may arise in case access classes are
assigned at attribute, tuple, and element level.

3. Assigning Access Class at Attribute Level
3.1 Assigning readclass at Attribute Level
Attributes when are brought together through
association provide more sensitive information
than that of individual attribute. Sometimes there
is a requirement to protect the information
represented by association among attributes with
readclass higher than that of each attribute in the
association. Then, we divide readclasses assigned at
attribute level into 2 types:
(a) readclasses defined for individual attributes
(b) readclasses defined for associations among
attributes
Example 1: Consider relation EMP(NAME,
POSITION, SALARY) with FD NAME —
POSITION and POSITION — SALARY. If we want

to prevent a secret user from learning “the salaries
of particular employees” from relation EMP while
permit him to know “names and positions of
employees in the company”, then there are two
methods for assigning readclasses to attributes of
EMP.

Method 1: Assign at most SECRET to attributes
NAME and POSITION, and assign TOP-SECRET
to attribute SALARY.

Method 2: Assign at most SECRET to attributes
NAME, POSITION and SALARY, and assign TOP-
SECRET to association between NAME and
SALARY. Then, secret users are prevented from
obtaining values of attributes NAME and SALARY
together under the same query request.

However, the first method gives different result
from the second one. In the first method, secret
users cannot know salary of any employees in the
company. In the second method, secret users are
permitted to know the list of salary values so that
they can calculate salary statistics.

Readclass of an association among attributes
can be defined by using the following classification
constraints:

ASC_S; = (*{ASC_ATR_LST}, , TYP, CLS),
where ASC_ATR_LST is a list of attributes in an
association, and EXP is absent. Note that
readclasses of associations among attributes are the
abstract readclasses which are not store in a
multilevel relation like readclasses of individual
attributes.

In assigning readclass to associations among
attributes, we must consider about inference of
protected data represented by an association among
attributes. The inference of the protected data can
be done by reading authorized data and using the
knowledge of FDs and JDs of the relation. Referring
to Example 1, there would be no inference problem
of protected data if there didn’t exist FD POSITION
— SALARY. Since secret user who know FDs of
relation EMP can find out the data represented by
association between NAME and SALARY by
joining association between NAME and POSITION
and association between POSITION and SALARY
through POSITION. Therefore, it is necessary to
assign TOP-SECRET to association between
NAME and POSITION or association between
POSITION and SALARY such that secret users
cannot know association between NAME and
SALARY by using the knowledge of functional and
join dependencies which hold in relation EMP.

Let us now give formal definitions for an
association among attributes and condition of
inferring values of the protected association.

Let R(A1, A, .., Ap) be a universal relation

scheme, r be any instance of R, and F be a set of FDs
and JDs over R.
Definition 3.1.1: An association among
attributes (ASC_ATR)

Let us represent an association among

attributes to be protected by an attribute set

ASC_ATR, and RC(ASC_ATR) be readclass of
ASC_ATR. ASC_ATR is an attribute set which an
access to IIx(r) where X D ASC_ATR is prohibitted.
Note: RC(ASC_ATR) = RC(ASC_ATR) if and only
if ASC_ATR D ASC_ATR'.

Let ASC_ATRS be a set of ASC_ATRs that have the
same readclass.
Definition 3.1.2: JD-Compromise to ASC_ATRS
under S

There exists JD-Compromise to ASC_ATRS
under S if and only if there exists a JD*[R1, Ra, -,
R} implied by F such that IIX(IIR, (r) * IIR,(r) * -~
* TR, (r)) = Hx(r) where X € ASC_ATRS,R; € S (1
=i=m),RODR1UR2U "~ U Rm 2 X, S be sets of
attributes which users holding operating access
class < RC(ASC_ATR) can access, and * represents
a natural join operator.

We give the following algorithm to detect the
existence of JD-Compromise to ASC_ATRS.

Algorithm for checking the existence of JD-
Compromise to ASC_ATRS
Input: A universal relation scheme R(Aq, .., Ay,
F which is a set of FDs and JDs over R,
ASC_ATRS = {ASC_ATRy, .., ASC_ATRp},
RC(ASC_ATRS) which is the readclass
assigned to ASC_ATRS
Output: A decision whether there exist JD-
Compromise to ASC_ATRS. If exist, return
INFER_ASC which contains ASC_ATRS’s
members whose values can be known by using some
JDs implied by F.
Method:
(1) Find S which is a set of attribute sets that users
holding operating access class < RC(ASC_ATRS)
can access.

S ={X|X € 2R- Uieq,.,pSS(ASC_ATR:)}
SS(ASC_ATR;) = {X | X c R, X D ASC_ATRj}
(2) Eliminate S’s members which are proper subsets

of the other member in S.

(3) Referring to the Chase Algorithm[5], construct a
table with each column corresponding to each
attribute of R and each row corresponding to each
member in S. Apply the Chase Algorithm to
compute inference of dependencies of F.

(4) After the Chase Algorithm finishes
computation, if we discover that some row of the
table contains aj aj .. ap each of which corresponds
to each attribute of some ASC_ATR; (of

ASC_ATRS), then there exists JD-Compromise to
ASC_ATRS. If not, process stop.

(5) In this step, we will find ASC_ATR; that
ITASC_ATR;(r) can be inferred by some JDs implied
by F. Initialize ASC_INFER with {J}. For each
ASC_ATR; in ASC_ATRS, if there is some row of
the table contains aj aj .. am each of which
corresponds to each attribute of ASC_ATR; , then
add ASC_ATR; to ASC_INFER.

Now, we consider the associations among
attributes that must be protected as well as each
ASC_ATR; of ASC_ATRS such that JD-
Compromise to ASC_ATRS does not exist. Let’s call
those associations among attributes, a JD-
Compromise Inhibitor for ASC_ATRS. JD-
Compromise Inhibitor for ASC_ATRS is
represented by a set of attribute sets ASC_IHB
where ASC_IHB = {ASC_IHj, .., ASC_THg}.
Definition 3.1.3: A JD-Compromise Inhibitor
for ASC_IHB
ASC_IHB is a JD-Compromise Inhibitor for
ASC_ATRS if there exists no JD-Compromise to
ASC_ATRS under § where S = 28 - U;¢cq, .. p
SS(ASC-ATRl) - Ui €,.,q SS(ASC_H‘L)

In general, the may be more than one JD-
Compromise Inhibitor for ASC_ATRS. Then, we
give the following algorithm for finding a list of
ASC_THBs.

Algorithm for finding a list of ASC_IHBs

Input: A universal relation scheme R(Aj Ay, ..
F which is a set of FDs and JDs over R,
ASC_ATRS = {ASC_ATR;, .., ASC_ATRy},
S = 28- Ujcq,.,pSS(ASC-ATRy),
ASC_INFER = {ASC_INFy, .., ASC_INFg}

where ASC_INF; is a member of ASC_ATRS, and

its value is infered by some JDs implied by F.

Output: A list of ASC_IHBs

Method:

(1) Initialize JD_INFER = {J}.

(2) For each JD*[R1, Rg, .. , Rmn] implied by F, if (a)

’ An)»

eachR €SI =k=m)and ()R UR2 U..URy

D some ASC_INF; (1 = j = s), then add {Rj, Rs, ..,
Rm} as a member of JD_INFER.
Note: For simplicity, we assume that each Ry (1
=k= m) is in Fifth Normal Form.
Suppose that JD_INFER obtained from this step
consists of the following members: JD_INFq,
JD_INFy, .., JD_INFy.)
(8)Eliminate JD_INF; from JD_INFER if there
exist JD_INF; such that JD_INF; D JD_INF;.
(4) An ASC_THB is computed by taking a single
member from each JD_INF; (of JD_INFER) as a
member for ASC_IHB. Therefore, there are several
JD-Compromise Inhibitors for ASC_ATRS.
However, it is better to find an ASC_IHB which has

small number of members, and each member is a
large attribute set in order to enable user access
more attribute sets without inferring data of
ASC_ATRS.

Example 2: Consider R = ABCD with F = {A — B,
B — C,D — B}. Let ASC_ATRS = {BC, CD, ABD}.
There exists JD-Compromise to ASC_ATRS due to
the following JDs: {*{AB, AC], *[AB, AC, BD],
*[AD, AC], *[AD, AC, BD], *[AD, AB]}. JD_INFER
= {*{AB, AC], *[AD, AC], *[AD, AB]}. A list of
ASC_THBs for ASC_ATRS are {AB, AD}, {AB, AC},
{AC, AD}, and {AB, AC, AD}. However, it’s better to
select {AB, AD} or {AB, AC} or {AC, AD} as a JD-
Compromise Inhibitor for ASC_ATRS.

3.2 Assigning Writeclass at Attribute Level

To prevent information from modifying by some
users, we must consider writeclasses for attributes
used to represent the information. However,
information is represented by association among
different attributes, then definition of writeclasses
should be based on the association among attributes
rather than based on individual attributes.
Defining writeclass based on association among
attributes provides the precise scope of relevant
attributes which must be considered better than
defining writeclass based on individual attributes.
Example 3: Consider relation DEPOSIT(ACC#,
NAME, ACC_DATE, BAL). Association between
ACC# and BAL provide information “balances of
customer accounts”. To prevent secret users from
modifying balances of customer accounts, we
usually think that defining writeclass of attribute
BAL to be TOP-SECRET is enough. In fact, it is not
secure at all. Let both readclass and writeclass of
attribute ACC#, NAME, ACC_DATE be S,
readclass and writeclass of attribute BAL be S and
TS respectively. Suppose that t;(01201 KATO
85.12.05 1,500,000) and t2(02514 TANAKA
87.09.15 8,000,000) are tuples of relation DEPOSIT.
Although writeclass of BAL is TOP-SECRET,
secret user can modify balance of account 01201 to
be 8,000,000 by swapping account number of t; with
that of to. In order to make it difficult to be detected,
he may also swap name and account date of t; with
those of tg. To prevent secret users from modifying
balances of customer accounts effectively,
writeclass of association between ACC# and BAL
must be defined to be TOP-SECRET. However, in
case of writeclass, assigning TOP-SECRET to
association between ACC# and BAL is equivalent
to assigning TOP-SECRET to attribute ACC# and
BAL. Then we can apply standard classification
constraints for defining writeclass of association
among attributes. Writeclass of an association

among attributes is defined by the following
classification constraints:

S; = {ASC_ATR _LSR}, , {W}, CLS),
where ASC_ATR_LST is a list of attributes in an
association, EXP is absent.

In general, there may be some attributes
participating in more than one associations, and
some of those associations are assigned with
different writeclasses. Thus, it is necessary to select
the effective writeclass for the attribute (which
participates in those associations) from the
writeclasses assigned to those associations. In this
paper, the effective writeclass of an attribute is
defined to be equal to the least upper bound of
writeclasses assigned to the associations in which
the attribute is participating. After effective
writeclass of each attribute in the relation is
computed, the effective writeclasses of associations
among attributes will be considered. Formal
definitions for the effective writeclasses of an
association is as follows:

Let’s represent an association among attributes
by an attribute set ASC_ATR where ASC_ATR =
{A1, Ag, .., Ax}. Let EF_WC(A;) be the effective
writeclass of attribute A;, EF WC(ASC_ATR) be
the effective writeclass of ASC_ATR.
EF_WC(ASC_ATR) = ®{EF_WC(A1), EF_WC(A9),

..,EF_WC(Ay)}
where ® denotes the greatest lower bound
operator.
Example 4: Referring relation DEPOSIT of
Example 3, let consider the effective writeclass of
each attribute and the effective writeclasses of
associations among attributes from the following
classification constraints:
S1 = {ACC#, NAME, DATE}, , {W},S)
Se = ({ACC#, NAME, BAL}, , {W}, TS)
The effective writeclasses of ACC#, NAME, DATE
and BAL are TS, TS, S and TS respectively.
EF_WC({ACC#, NAME, DATE}) = ®{TS,S} =S
EF_WC({ACC#, NAME, BAL}) = TS

4. Assigning Access class at Tuple Level

In this case, all data elements associated with a
tuple have the same access class which is
determined by the values of some data elements of
the tuple. However, readclass of a tuple of a relation
must also be defined with regard to JDs that hold in
the relation. Otherwise, those users may be able to
infer some data of protected tuples by reading
tuples authorized to them and utilizing the
knowledge of JDs of the relation.
Example 5: Suppose relation R(ABC) satisfies the
JD*[AB,BC,AC] and an instance of multilevel
relation for R contains the four tuples shown in Fig.
4. ML_r shown in Fig. 5 is a secret user’s view upon

ML_R. Although secret user cannot read tuple (a;
b1 c1), however he can know the existence of this
tuple by joining the projection of AB, BC and AC
over ML_V. Note that tuple (a3 by ¢1) shares values
of AB, BC, and AC with the first tuple, the second
tuple, and the third tuple respectively. In this case,
we say there is inference of protected tuples by
JD*[AB,BC,AC] which applies to R.

Now, we give formal definition for inference of
some protected tuple(s) by JDs that hold in R and a
necessary and sufficient condition to prevent the
inference.

ML_R

A RC4 WCa |B RCg WCg |C RCc WCe
agC s biC S c2C S
ag 8 8 b1S S c1S S
18 § bes S c1S S
a1 TS TS b1 TS TS c1 TS TS

Fig 4: Multilevel relation ML_R
ML_V

A B C

ai b1 c2
ag b1 c1
ay be ¢y

Fig 5: Multilevel view
for secret users

Definition 4.1: Inference of some data of
protected tuple by JD*[R1, Ry, .. ,Bml

LetR(Aj, Ag, .., Ap) be a universal relation, F be
a set of FDs and JDs over R, ML_R(Aj, RCa,,
WCa,, - » An, RCa,, WCa) be a multilevel relation
for R, and ML_r be any instance of ML._R.
Let Tiow = {t It € ML_r, RC(t) = Oy},

Thigh = {t!t € ML_r, RC(t) > Ou},
where RC(t) is readclass assigned to all elements of
tuple t,
Oy is an operating access class of a user.

There exists inference of some data of protected
tuples of ML_r by JD*[R1, R, .. .Rm] implied by F
where R1 UR2 U .. U Rip C Rif and only if
H_]Egl(Tlow) * ng(Tlow) Hoee H HEm(TlOw) =

TR, UR, U .. U Rp(Tlow U TY)
where T' C Thigh

Lemma 4.1: A necessary and sufficient
condition for preventing inference of data of
protected tuples due to JD*[R1, Ra, .. ,.Rml

There exists no inference of some data of
protected tuples of ML _r if and only if
(V1) (VOu) (3t € Tiow) (=3 tx € Thigh):
tk[Ri] = ti[Ril where 1=i=mk#1i.
Proof: Referring to definition of JDs in a manner
similar to the definition of MVD[5], we consider
JD*[R1, Ra, .. ,Rm] that applies to r as follows: If r
contains tuple t1, t2, .. , tm such that t;[R; N Rjl =
t[Ri N R;] for all i and j, then r must contain a tuple
tx such that tx[Ril = t[Ril, 1 = i = m, k # i,
Although a user is not permitted to access tx, but he
can obtain it if he can access all t;’s(1 = i = m).
Then, there is inference of tx by JD*[R1, Ra, .. ,Rm]
ifandonlyifty € T'and allt; (1 = i = m) € Tiow. In
.order that there exists no inference of tx by JD*[Rj,
R, .. ,Rm], tk must not be in Thigh ifall tis(1 = i =
m) are in T}ow.

5. Assigning Access Classes at Element Level

In this case, a data element of a tuple may be
assigned with readclass (and/or writeclass) which
may be different from those of other data elements
of the tuple. Readclass and writeclass of a data
element are defined depending on its value or on
the values of other data elements of the same tuple.

5.1 Inference of some protected data
elements by JDs

As we have explained in Section 4, there may be
inference of protected data by using the knowledge
of JDs, if readclasses of tuples are defined with
regardless to the JDs that hold in the relation.
However this problem becomes complex in case
access class are assigned at data element level.
Let’s now describe the definition of inference of
protected data elements by using the JDs which
hold in a universal relation.

Definition 5.1: The least upper bound of access
classes of the elements of data attribute set X in
tuple ty of relation ML _r

Let ML_R, ML_r be defined as Deﬁnltlon 4.1,
and let X = {Ayx,, Ayx,, .. , Ay} be a subset of
attributes in R, and tp[RCUx] be the least upper
bound of access classes of the elements of data
attribute set X in tuple tp of relation ML_r.
tp[RCUx] = @ {tp[RCA,], tplRCAL,) ., tp[RCA,, T}

where @ denote the least upper bound operator,
andx;=1,..,n
Definition 5.2: Inference of some protected
data elements by JD*[R1, R, .. ,Rm]

Let R, F, ML_R, and ML_r be defined as
Definition 4.1. Consider JD*[R;, Ry, .. ,Rm] implied
by F where R' = Ri UR2 U..URn CR.

Let T[Ri] = IIg,(ML_r),
Tiow[Ri] = {t |t € T[R;], RCUR, = Oy},
Thigh{Ri] = {t 1t € T[Ri], RCUR; > Ou},
T[R] = IIr(ML_r),

TiowlR'] = {t It € T[R'], RCUg = Oy},
ThighlR'] = {t1t € ,T[RTRCUg > Oy}

There exists inference of some protected data
elements of ML_r by JD*[R1, Ry, .. ,Rm] implied by
FwhereR' = R1 URg U .. URy C Rif and only if
TiowlR1] * Tiow[Ra] * - * Tiow[Rm] = TiowlRTU T'

where T' C Thign[R']
Lemma 5.1: A necessary and sufficient
condition for preventing inference of protected
data elements due to JD*[Rj1, Ra, .. ,Rm]

There exists no inference of some data of
protected data elements of ML_r if and only if

(Vi) (VOu) (3 ti[R;i] € TiowlRil)

(=3 tfRi] € ThighlRil): tk[Ri] = ti[Ri]
where 1= i=mk #i.
Proof: Similar to the proof of Lemma 4.1.

Besides inference of protected data elements by
some JDs, there may also be inference of some
protected data elements if readclasses of data
elements are defined with regardless to FDs the
hold in a relation. We call this type of inference,
“inference of some protected data elements by FDs”.
Definition 5.3: Inference of some protected
data elements by FD X — A;

Let F be a set of FDs on a relation R. Consider a
FD X — Aj implied by F where A; € X. There exists
inference of some protected data elements by FD X
— Aj; implied by F if and only if

(Ftp€ ML_r) (3 tq € ML_r) (2 Op) s.t.

tp[X] = t4[X] and
tp[RCUX] = Oy and t,[RCx;] = Oy and
t[RCUX] = Oy and t4[RCa,;] > Oy, where

RCa,, RCAJ. are attributes denoting readclass of

Aj, and Aj repectively,

Oy is operating access class of user U, and

i=12,..,n
Lemma 5.2: A Sufficient condition for
preventing inference of protected data
elements due to FD X — A;

There exists no inference to protected data by
FD X — Ajimplied by F where A; ¢ X, if
(Vtq € ML_r) (V Oy) (3 Ag € X): tg[Ra,] = tq[Ra]]
Proof: Since Ax € X and RCa, = RCjy,, then
t[RCUxX] = to[RCa,] = t4[RCa]. This constraint
does not satisfy the condition of Definition 5.3
which defines the existence of a tuple tq having
tq[RCA;] > Oy = t4[RCUX]. Therefore, there exists
no inference of protecetd data element by FD X —
Aj;implied by F.

5.2, Preventing Modification of Access
Classes of Some Protected Data

In a multilevel relation, access classes of a data
element may be defined depending on its value or
on the values of other data elements of the same

tuple. However, there may be problems of
disclosure and modification of protected data if
access classes of the protected data are defined
depending on the values of data whose writeclasses
are lower than those of the protected data. Then,
some users may be able to disclose or modify the
protected data by modifying values of the data used
to determine access classes of the protected data.
Example 6: Let’s consider readclasses and
writeclasses defined for attributes of relation
EMP(NAME, POSITION, SALARY) through the
following classification constraints:
S1 = (NAME, POSITION, SALARY}, , {R, W}, S).
Sz = ({SALARY}, POSITION = “Manager”, {R, W},
TS).

According to classification constraint Sg,
readclasses and writeclasses of the salaries of
managers are defined to be TOP-SECRET,
However, secret users can read and modify the
salary of a manager by modifying position of the
manager to other position. To solve this problem,
the writeclass of position of a manager must be
assigned to be TOP-SECRET.

This problem concerns with the reason why our
model improves the access class of Denning’s model
by the readclass and writeclass. In Denning’s
model, a data element is associated with a single
access class. If we solve the above problem with the
solution based on the access class of Denning’s
model, then we must assign access class of salary of
the manager to TOP-SECRET. However, this
solution incurs an undesirable effect. That is, secret
users cannot read positions of the employee who is a
manager. Compare with the solution of our model
which is based on readclass and writeclass, secret
users can still read position of the employee who is
a manager, but they cannot modify it. Therefore,
our new type of access classes (readclass and
writeclass) is better than the access class of
Denning’s model.

To prevent modification of access class of
protected data as shown in the above example,
writeclasses of all the data elements whose values
are used to determine access class of an protected
element must be defined to be at least as high as
that of the protected element. However, an data
element may be used to determine access classes of
several protected elements. Futhermore, there may
exist classification constraints defining different
writeclasses for that data element. So, we need to
define rules that determine which writeclass to be
assigned to a data element. The rules are defined as
follows:-

Let ML_R, ML_r be defined as Definition 4.1,
ts be a tuple of a multilevel relation,

ts[A;] be value of attribute A; on tuple tg,

ts[RCa,), ts[WCa,] be readclass and writeclass
of ts[A;] respectively,
San = {81,892, .. ,Sm} be a set of all classification
constraints, and
LOGIC(EXP) be logical value of EXP. If EXP is
absent or condition of EXP is satisfied,
LOGIC(EXP) = TRUE, otherwise LOGIC(EXP) =
FALSE.
t[WCA,] = ® {L1, Ly, .., Lg, ts[RCA,IV}, where
L; is an access class defined by constraint S where
(2) Sk € Sa11s.t. A; € ATTRSy, writeclass € TYPy,
and LOGIC(EXPyk) = TRUE;
or (3) Sk € Sal s.t. there exists A; in EXPy, and
LOGIC(EXPy) = TRUE;
(wherej= 1,2,..,q;k = 1,2, .. ,m).
Writeclass of a data element of attribute A; is
equal to the least upper bound of (1) readclass of
that data element (ts[RCA,]), (2) access classes of the
constraints which effectively define writeclasses for
that data element, and (3) access classes of the
constraints which effectively define readclasses or
writeclasses of other data elements depending
partially or solely on the value of that data element.

6. Conclusion and Future Works

In this paper, we have shown that FDs and JDs
play important roles in defining readclasses for the
data stored in the universal relation. To prevent
unauthorized modification of protected data
effectively, definition of writeclass for data must be
based on associations among attributes. In case
access classes of protected data are defined
depending on values of some elements, writeclasses
of those elements must be defined to be at least as
high as access classes of those protected data.

The concept of this paper will be used to
develope an algorithm for checking whether the
classification constraints given by a security
manager define suitable access classes for data of
the universal relation in such a way that there is no
problem of inference of protected data.

References

[1] D.E. Denning et.al., “Views for multilevel database
security”, IEEE Trans on S/W Eng., SE-13(2): 129-140,
Feb 1987

[2] D.E. Denning et.al., “A Multilevel Relational Data
Model”, Proc. of 1987 Symp. on Security and Privacy,
IEEE Computer Society, 1987, pp. 220-233

[3] T. Su, G. Ozsoyoglu., “Data Dependencies and Inference
Control in Multilevel Relation Database Systems”, Proc.
of the 1987 Symp. on Security and Privacy, IEEE
Computer Society, 1987, pp. 202-211

[4] D.E. Denning, Cryptography and Data Security,
Addision-Wesley, Reading, Mass., 1982

[5] D. Maier, The Theory of Relational Databases, Computer
Science Press, 1983)

