
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

Building Fine-Grained Configurable ITRON Based RTOS

TetsuoMiyauchi1,a) Kiyofumi Tanaka1,b)

Received: November 21, 2019, Accepted: May 12, 2020

Abstract: As IoT (Internet of Things) is prevailing, the number of devices which have strict resource constraints is in-
creasing. In developing such a system, RTOS (Real Time Operating System) helps to increase productivity. However,
in the view of cost reduction, it is desirable that resources for RTOS be small and the execution time be short. In this
paper, we propose a method to develop an application-specific system with RTOS. Methods of removing unnecessary
code for the application from RTOS kernel are explained. In addition, we implemented a reconfigurable hardware
RTOS on an FPGA and applied the method for removing unnecessary code from the hardware implementation. The
evaluation results show that the proposed methods reduce hardware resources, RTOS kernel execution time, and the
size of the software parts in each application.

Keywords: RTOS, µITRON, configuration, system call, FPGA

1. Introduction

As IoT (Internet of Things) is prevailing, the number of devices
which have strict resource constraints is increasing. Strict re-
source constraints are one of characteristics in developing the cur-
rent embedded systems. As most of application specific systems
involve development of both hardware and software, it is neces-
sary to improve efficiency of the development to reduce the cost.
RTOS (Real Time Operating System) makes it possible to eas-
ily abstract hardware, use synchronization/communication, and
benefit from real-time scheduling as well as task division. Use
of RTOS is effective not only in complicated systems but also in
small systems [3]. However, in a cost reduction point of view, it
is desirable that resources for RTOS be small and the execution
time be short.

RTOS has been commonly used in various appliances for many
years. RTOS system calls which are used in an application pro-
gram are embedded in the executable binary code after the com-
pilation of the application. Usually, an RTOS kernel is provided
as a library format, so that only actually used system calls are
linked with the application. Each RTOS system call, however,
may include unused codes or unnecessary error checking codes
for the application. When an application program is fixed, our
objectives are: (1) removing unused codes in RTOS kernel, while
leaving necessary functions such as checking possible errors, (2)
implementing hardware RTOS to reduce the amount of software
resources and execution time, (3) removing unused codes in hard-
ware RTOS also, and (4) building automatic development envi-
ronment with which we can perform the items above. What un-
necessary codes are and how to remove them are described in
Sections 3.2.1 and 3.2.2 for unnecessary codes caused by fixed

1 Japan Advanced Institute of Science and Technology, Nomi, Ishikawa,
923–1292, Japan

a) t-miyauc@jaist.ac.jp
b) kiyofumi@jaist.ac.jp

attributes and the way of calling, respectively.
In order to achieve the solution, we propose the methods of

automatically generating RTOS system calls which are adapted
to the target application, without imposing manual insertion of
directives into the application source codes on the system devel-
opers, and we implemented RTOS functions as hardware as well
as software to improve the performance and reduce the footprint
of software. We call hardware for executing an RTOS function
“RTOS hardware”, and RTOS which uses RTOS hardware “hard-
ware RTOS”. In contrast, we call RTOS of which all functions
are implemented in software “software-only RTOS” in this re-
search. This hardware RTOS works with a processor core which
we developed based on MIPS instruction-set architecture. We
implemented RTOS functions for error check, queue operations,
getting the highest priority task and accompanying functions as
RTOS hardware, which is explained in Section 3.3. We designed
software-only RTOS and hardware RTOS as a subset of the stan-
dard profile in the µITRON 4.0 specification [25].

The main originality of our method is that fine-grained config-
uration is achieved automatically without additional directives in
application source files or manual selection/deletion of code frag-
ments. Another originality is that, along with the fine-grained
adaptation, only necessary parts in system calls can be auto-
matically built as hardware components. This paper proposes a
method for configuring fine-grained RTOS based on several adap-
tation techniques. Similar adaptation may be done by engineers
with sufficient knowledge for RTOS kernel internal structure and
implementation. However, such manual adaptation would take
long development time and therefore is unrealistic. Comparison
between automatic adaptation, which we propose in this paper,
and manual adaptation is described in Section 3.4. In addition, if
some code is removed inadvertently, it may cause unexpected er-
rors. On the other hand, our approach is available to software en-
gineers who can implement an RTOS application system in C lan-
guage with reading a software specification, which does not im-

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

pose knowledge about the details of RTOS or prolong the devel-
opment period. With our method, we can configure fine-grained
RTOS, which is implemented in hardware as well as software. Es-
pecially in hardware implementation, our hardware RTOS struc-
ture achieves one-cycle processing for queue operations.

This paper is organized as follows. Section 2 shows examples
of configurable RTOS kernels and hardware implementations. In
Section 3, our method for application-specific hardware and soft-
ware of RTOS is presented. In addition, the structure of the RTOS
hardware circuit is described. In Section 4, the evaluation envi-
ronment and result are explained. Finally, in Section 5, we con-
clude this paper.

2. Related Work

The configuration of an RTOS kernel adapted to an applica-
tion system has been studied. In the literature [9], techniques for
automatically reducing the memory footprint of general-purpose
operating systems on embedded platforms are described. In this
literature, hand-written assembly codes in the kernel are analyzed
with a decompilation technique, and unused codes and duplicated
codes are eliminated. However, as the target operating system of
this literature is Linux, the meaning of unused codes is different
from ours. In order to build an application specific RTOS kernel,
OSEK [27], which is an RTOS kernel commonly used in the auto-
motive industry, defines OIL (OSEK Implementation Language)
for description of application specific objects. This description
is used as system configuration information, and a configurator
generates a tailored RTOS which consists only of application spe-
cific objects and actually-used system calls. The literature [4] de-
scribes an example of OSEK-based RTOS, the main objective of
which is to verify a generated RTOS, where configuration infor-
mation and application codes are analyzed and an OS-application
interaction graph is extracted for verification.

In order to mitigate software overhead in terms of resources
and latency when RTOS is used, implementing some of the func-
tions as hardware has been studied. SoCLC (SoC Lock Cache)
hardware mechanism to improve the performance of lock latency
is proposed in the literature [1]. A modular microkernel archi-
tecture in hardware is demonstrated in the literature [19]. In the
literature [10], a configurable hardware scheduler architecture is
presented. This scheduler provides three scheduling disciplines:
priority-based, rate monotonic and earliest deadline first. This
shows the advantage of modularity and the improvement of the
performance. In the literature [24], three scheduler models are
implemented: (i) SoRTS (Software Real-Time Scheduler), (ii)
Co-SoRTS (Co-processor Software Real-Time Scheduler), and
(iii) HaRTS (Hardware Real-Time Scheduler). It is concluded
that Co-SoRTS and HaRTS present the best results for hard real-
time applications, while SoRTS is suitable for soft real-time sys-
tems. A hardware scheduler with a new task-queue architecture
to support various scheduling algorithms such as time sliced pri-
ority scheduling, Earliest Deadline First, and Least Slack Time
is described in the literature [23]. RT-SHADOWS [6], [7] is a
hardware scheduler and APIs to provide hardware multi-thread
support, which is a subset of the task management APIs. All
the hardware implementations mentioned above are only for per-

formance improvement and do not take adaptability to a target
application into account.

There are several studies for implementing a whole RTOS sys-
tem call function in hardware. Silicon TRON [17] provides basic
functionalities of µITRON in hardware as a peripheral chip. A
real-time multithreaded operating system kernel, hthreads, is pre-
sented in the literature [2]. It has a shared memory programming
model similar to POSIX Threads. In the system on CPU/FPGA
chips, hardware threads and software threads can exist and they
are scheduled by a hardware scheduler component, which per-
forms first-in-first-out, round robin and priority based scheduling
algorithms. In the literature [11], general purpose RTOS func-
tions with API interfaces and a dedicated CISC processor are
implemented in an FPGA. ARTESSO [12], [13] is a hardware
RTOS, which provides more than 30 system calls. The specific
feature of the RTOS hardware is a Virtual Queue, which is a
queue structure with a tournament circuit to select an element
in the queue. However, these RTOSes do not have a function to
adapt to an application program automatically.

Simple and Effective hardware based Real-Time Operating
System (SEOS) [20] provides adaptability for hardware RTOS.
SEOS adaptation consists of hardware and software processes.
However, these processes need to be applied manually. In the
literature [5], OSEK-based RTOS hardware, called OSEK-V pro-
cessor, is implemented with an application system after analy-
sis of the application program, but it is not flexible to updates
of the application. In the literature [21], a method of generating
full hardware implementation where tasks as well as RTOS are
implemented in hardware is described. To synthesize tasks for
hardware, there is some restriction to tasks (e.g., no mutual ex-
clusion). In this literature, adaptation of RTOS is not described.
It is described that error checking in act tsk takes 21 cycles while
only 1 cycle is needed with our method and also unused hardware
resources can be deleted in our method.

While studies for implementing RTOS functions in hardware
mentioned above have been conducted for several years, we have
been studying to reduce runtime and resource overhead by adapt-
ing RTOS kernel functions and processor functions to an applica-
tion program. We confirmed an effect of implementing a prim-
itive RTOS kernel operation as hardware in the literature [15].
After that, we proposed a hardware RTOS implementation in a
system-call level in the literature [16]. However, automatic adap-
tation environment is not shown in the literature. In this paper, we
explain our method for developing an application-specific system
with RTOS in detail.

3. Configuration

This section describes our method to achieve the objectives
listed in Section 1: (1) we show what unnecessary codes are as
well as the method to generate fine-grained RTOS in Section 3.2,
(2) what is implemented in hardware RTOS is described in Sec-
tion 3.3, (3) our method to adapt the hardware to the application
program is described in Section 3.3, and (4) we explain the detail
of the automatic development environment in Section 3.4.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

3.1 RTOS Structure
We have implemented a software-only RTOS kernel and one

which utilizes RTOS hardware. The former does not use RTOS
hardware so that all functions of RTOS work as software on a
processor.

We designed software-only RTOS and hardware RTOS as
a subset of the standard profile in the µITRON 4.0 speci-
fication [25]. Functions we implemented in both software-
only RTOS and hardware RTOS are: Task Management
Functions (act tsk, iact tsk, can act, ext tsk, ter tsk, chg pri),
Task Dependent Synchronization Functions (slp tsk, wup tsk,
iwup tsk, can wup, rel wai, irel wai), Semaphores (sig sem,
isig sem, wai sem, pol sem), Eventflags (set flg, iset flg, clr flg,
wai flg, pol flg), and Data Queues (snd dtq, psnd dtq, ipsnd dtq,
fsnd dtq, ifsnd dtq, rcv dtq, prcv dtq). The other system calls
in the standard profile have not been implemented yet, simply
because the implementation is not in the final stage and we put
priority on the system calls mentioned above. However, we can
evaluate the effectiveness of our adaptation techniques with only
the implemented system calls. The other ones, for example, for
Fixed-Sized Memory Pool Management and Mailboxes, include
similar error checking and multiple attributes, so that the same
adaptation techniques can be applied.

Hardware RTOS consists of an RTOS hardware circuit and
software part. RTOS functions for static error check, task status
check, dynamic error check, queue operations, getting the high-
est priority task and changing task status are implemented in the
RTOS hardware circuit and it returns the task ID of the runnable
highest priority task. Since the source code of the RTOS hard-
ware circuit is written in HDL(Verilog), the adaptation method
described in the following sections can be applied to the RTOS
hardware circuit as well as the software-only RTOS. Hardware
RTOS has a software part as described in Section 3.3.2 and Fig. 6.
A source file of each system call has codes for software-only
RTOS and a software part of hardware RTOS, which can be se-
lectable by a directive. Whether a software-only RTOS kernel
is used or a hardware RTOS kernel is used is decided manually
when the adaptation tool runs.

3.2 Adaptation Method
Since the RTOS kernel is overhead for an application program,

it is desirable that resources for RTOS be small and the execution
time be short. Usually, only actually used system calls are linked
with an application program as an RTOS kernel is provided as a
library format. Nevertheless, these system calls include unneces-
sary codes for the application program. We use the terms “fine-
grained” and “adaptive” RTOS in this paper for an RTOS kernel
in which unnecessary codes are eliminated by removing unnec-
essary codes caused by fixed attributes explained in Section 3.2.1
and by the way of calling explained in Section 3.2.2. Generat-
ing fine-grained RTOS is called “adaptation”. In this subsection,
we describe how the adaptation tool works to configure RTOS by
analyzing an application and selecting functions which are actu-
ally used. To generate an application specific RTOS kernel, static
APIs in the RTOS system configuration file are analyzed. In this
phase, a list of IDs used in creating the specified kernel objects

and the other attributes (e.g., fifo or priority order, conditions for
eventflags, etc.) are extracted. This information is used both in
the standard µITRON configuration process and in the proposed
adaptation procedure. We explain the procedure in detail in the
following sections.
3.2.1 Removing Unnecessary Codes Caused by Fixed At-

tributes
Some functions included in µITRON4.0 system calls are not

used according to the attributes specified through parameters in
a configuration file. In this case, the corresponding unnecessary
code fragments can be removed from the source codes by manip-
ulating macro descriptions.

Removing unnecessary code fragments are explained with
wai sem system call as an example below. One attribute of
wai sem system call is specified by a parameter to the static API,
CRE_SEM described in a system configuration file. This attribute
provides two options for the wait queue, fifo order and priority
order which are specified by TA TFIFO and TA TPRI, respec-
tively.

There are three cases: both the priority order and fifo order are
used, only the priority order is used, and only the fifo order is
used.

Directives for the three cases are inserted in the source codes
of the system call in advance as in Fig. 1.

When both the priority order and the fifo order are used in the
application source codes, which is used has to be determined at
runtime. In this case, the code fragments for both the usages are
located in the corresponding system call. When only the prior-
ity order is used in the application, the code fragment only for
it is validated. Similarly, only the fragment for the fifo order is
selected if it is the only usage in the application. This leads to
reduction of the code size and execution time.
3.2.2 Removing Unnecessary Codes Caused by the Way of

Calling
Each system call in the µITRON4.0 specification includes code

fragments for checking errors. Although the µITRON4.0 specifi-
cation implies that error detection can be omitted for each main
error class, it may fail to notice an error which has to be detected,
leading to unexpected troubles.

In the method we propose, checking codes for errors which
never occur in the application are removed so that only necessary
error checking exists in the object code. This is done by analyzing
the application program.

Fig. 1 Example of the Directives.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 1 System call and Error Cause (wai sem).

System call Error Description What is checked
wai sem E CTX Context error −

E ID Invalid Semaphore ID The range of
semaphore ID

E NOEXS Semaphore ID Non-
existent

Whether ID is created
by CRE SEM

E RLWAI Forced release from
waiting

rel wai is called

The procedure of checking each system call is as follows. First,
C language preprocessor is applied to an application source file
to expand header files and macro definitions. Next, each call for
system calls is checked and its parameters are extracted. From
the parameters, possible errors at runtime are identified and the
corresponding macro definitions are output. Here, since parame-
ters originally expressed as symbolic constants defined in header
files are translated into numeric values, the values are to be di-
rectly considered. On the other hand, if a parameter is given as
a variable, the parameter needs to be checked at runtime, since
the value of the variable is not decided statically. In this case, a
macro definition that indicates the necessity of checking of the
parameter at runtime is output. In addition, the information about
the number of resources which is passed from the system config-
uration analysis is compared to the usage of the resources.

The macro definition file created by the analysis of an applica-
tion, a system configuration file for µITRON4.0 convention, and
RTOS kernel source codes are input to a cross compiler environ-
ment (for software-only RTOS kernel) or a hardware synthesizing
tool (for hardware RTOS kernel).

Each system call in the µITRON4.0 specification has one or
more possible errors and their causes. Table 1 shows the possible
errors for wai sem system call as an example. As for the E ID er-
ror checking, if all semaphore IDs are confirmed to be within the
proper range, omitting semaphore ID checking has no effect on
the behavior of the application program, so that the code of the
error checking is removed from the RTOS kernel and the over-
head can be reduced. For the E NOEXS error checking, the step
of the system configuration file analysis recodes IDs for created
resources (semaphores) in advance of this error checking proce-
dure. The list of these IDs is delivered to this procedure, so that all
the ID values used in the application are checked and, if they are
all found in the list, the code fragment for checking E NOEXS is
omitted. On the other hand, E CTX cannot be checked statically
since the error condition depends on the runtime situation of the
application program, so the symbol “−” is put in the fourth col-
umn of the table. Possibility of E RLWAI can also be statically
checked.

After all errors as well as fixed attributes are checked, a hard-
ware definition file, a file for static resource creation, and a header
file are generated by the adaptation tool as shown in Fig. 8.

3.3 Hardware RTOS
To improve the performance and reduce the footprint of soft-

ware, we implemented static error check, task status check, dy-
namic error check, queue operations, getting the highest priority
task and changing task status as hardware while task switching
is implemented as software. Figure 2 illustrates a source code of

Fig. 2 Hardware implemented part of RTOS system call (act tsk).

Fig. 3 Processor structure with RTOS hardware.

act tsk system call for software-only RTOS as an example. Codes
indicated by blue boxes are implemented in hardware in the hard-
ware RTOS. For the hardware RTOS, the same method as the
software-only RTOS described in Sections 3.2.1 and 3.2.2 can be
applied to the source code of the hardware RTOS written in HDL
(Verilog), so that the hardware resources can be reduced.
3.3.1 Hardware Structure

Figure 3 roughly shows a structure of the processor core and
the RTOS hardware circuit we have implemented. We designed
the soft processor core, of which instruction set architecture is
MIPS32 [26]. RTOS hardware is accessed by memory mapped
I/O.

Figure 4 depicts our RTOS hardware structure. The RTOS
hardware consists of two parts, “RTOS Hardware Wrapper” and
“RTOS Hardware Core”. RTOS Hardware Wrapper, which is the
interface between the processor core and RTOS Hardware Core,
works as a state machine. When RTOS Hardware Wrapper re-
ceives an address, which indicates a command to the RTOS hard-
ware, and data, which indicates a system call number or param-
eters, RTOS hardware starts to work, so that an operation such
as a queue operation and input data (if any) are passed to RTOS
Hardware Core.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 4 Structure of RTOS hardware.

Table 2 Addresses for RTOS systemcalls.

Address R/W Operation
0xffff0008 R Read RTOS return code
0xffff0100 W Issue RTOS system call
0xffff0104 W Set RTOS system call 1st parameter
0xffff0108 W Set RTOS system call 2nd parameter
0xffff010c W Set RTOS system call 3rd parameter
0xffff0110 W Set RTOS system call 4th parameter
0xffff0114 W Set RTOS system call 5th parameter
0xffff0120 R Read RTOS return parameter

3.3.2 Interface to RTOS Hardware
The structure of the system call software part is explained in

this section. The software running in the processor core reads
from or writes to the addresses in Table 2. “R” in the column
“R/W” indicates that a value read from the corresponding address
is a return value from the hardware. On the other hand, “W” in-
dicates that a value is written to the address so that the value such
as the system call number and other parameter values is delivered
to the RTOS Hardware Wrapper.

Before the software issues a system call, it writes the parameter
values to the same number of addresses (starting at 0xffff0104) as
arguments defined for the system call. After all the parameters
are set, the software issues the system call.

A system call is issued by writing the system call number to
the corresponding address (0xffff0100). This makes the system
call start by changing the state of the hardware. Then, the soft-
ware reads from the address for a return code (0xffff0008) so that
it checks completion of the processing and receives a task ID of
the highest priority task and a return value from the system call.
That is, the most significant bit of the read value indicates the
completion of the RTOS hardware, and the lower bytes contain a
highest-priority task ID and a return code. This is a busy-waiting
procedure where, after the software writes the system call num-
ber to the address for “Issue RTOS system call” (0xffff0100), it
repeatedly reads from the address for “Read RTOS return code”
(0xffff0008) until it finds the most significant bit of 1. Then, it
recognizes the lower bytes as a return code, and proceeds to the
following processing.

Some system calls return not only a return code but the other
results through call by reference. For example, wai flg returns a
flag pattern through an address which a parameter specifies. In
this case, the result is obtained by reading from the address dedi-
cated to call by reference (0xffff0120).

Figure 5 is the flow of the software part procedure for act tsk.

Fig. 5 System call Software flow.

Fig. 6 Example of system call software part (act tsk).

The software part code corresponding to Fig. 5 is shown in Fig. 6.
Other system call functions follow a similar flow and the software
part code. The software part waits for returning from hardware
RTOS with polling. There is another option of using interrupt
mechanisms for the completion notification. We chose polling,
not interrupt, since interrupt is disabled in the system call func-
tion. In general, interrupt leads to overhead of detecting interrupt
cause and context switch, while polling leads to only reading a
hardware register.
3.3.3 RTOS Hardware Wrapper

RTOS Hardware Wrapper is the interface between a processor
core and RTOS Hardware Core. As it works as a state machine,
the next state is decided by the current state and input data. Ta-
ble 3 shows a state transition in sig sem system call.

The state starts from INIT state after the reset. After internal
registers for the hardware element are initialized in INIT state,
RTOS Hardware Wrapper waits for an issue of a system call in

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 3 State Transition (sig sem).

State Next State Description
INIT WAIT Initialize internal registers
WAIT CHECK Wait for system call issued
CHECK END System call error occurred

SEMHEAD No error
SEMHEAD SEMDEQUEUE Check and release the first task

in semaphore waiting queue
SEMDEQUEUE END If there is no waiting task

RDYENQUEUE If there is a waiting task
RDYENQUEUE HIGHEST Queuing a task in a ready queue
HIGHEST END Get the highest priority task to run
END WAIT Return error code

WAIT state. Software running on the processor core issues a sys-
tem call by writing its parameters and then an issue signal to their
corresponding addresses in Table 2.

When the RTOS Hardware Wrapper detects write access to the
designated address, the state machine transits to CHECK state. In
CHECK state, system call parameters are checked. When a pa-
rameter error is found, a proper error code is set in the hardware
register for the return code, and the RTOS hardware transits to
the END state. Software can obtain the error code by reading the
register for a return parameter through the corresponding address.

When there is no error in the parameter error checking, the
state transits to SEMHEAD state. In SEMHEAD state, whether
there is a task queued in the semaphore waiting queue is checked
and the mode transits to SEMDEQUEUE state. If there is no task
queued in the semaphore waiting queue, the semaphore count is
increased as long as the semaphore count does not exceed the
limit, and the state transits to END state. If the semaphore count
is already the maximum value of the semaphore count, E QOVR
is set to the error code and the state transits to END state. On
the other hand, if there is a task queued in the semaphore waiting
queue, the waiting task is released from the semaphore waiting
queue and the state transits to RDYENQUEUE state.

In RDYENQUEUE state, the released task is queued to the
ready queue in RTOS Hardware Core in the way described in
the following subsection. As we explain later, enqueuing (i.e.
registration of a TCB) is finished in one clock cycle so that it
achieves large performance improvement compared to software
implementation. This characteristic contributes to bounding the
execution time of a system call.

After that, the state transits to HIGHEST state, in which the
task ID of the highest priority in the ready queue is acquired from
RTOS Hardware Core and then is written to a part of a register
for return code.

Finally, the state transits to END state. When a system call
returns without an error, E OK and a task ID of the highest pri-
ority task are passed to the processor as an output from RTOS
Hardware Wrapper.
3.3.4 RTOS Hardware Core

The HDL code of RTOS Hardware Core is generated by the
adaptation tool according to the RTOS system configuration file.
RTOS Hardware Core has TCBs and queue headers for RTOS re-
sources such as a ready queue, semaphore waiting queues, event-
flag waiting queues and data queues. RTOS Hardware Core per-
forms operations which are requested by RTOS Hardware Wrap-
per. Operations are summarized by Table 4.

Table 4 Operations for RTOS Hardware Core.

Operation Description
READYENQUEUE Enqueue a TCB to a ready queue
READYDEQUEUE Dequeue a TCB from a ready queue
PRIHIGHEST Return a task ID of the highest priority
PRICHG Change priority of a task
TASKSTATUS Return a task status
SEMHEAD Return a task ID of the top of a semaphore

waiting queue.
SEMENQUEUE Enqueue a TCB to a semaphore waiting queue
SEMDEQUEUE Dequeue a TCB from a semaphore waiting queue
FLGHEAD Return a task ID of the top of an eventflag

waiting queue
FLGENQUEUE Enqueue a TCB to an eventflag waiting queue
FLGDEQUEUE Dequeue a TCB from an eventflag waiting queue
DTQHEAD Return a task ID of the top of a data queue
DTQENQUEUE Enqueue a TCB to a data queue
DTQDEQUEUE Dequeue a TCB from a data queue

Fig. 7 TCB Structure.

Figure 7 shows a TCB structure (clock signal and reset signal
are omitted). Each TCB has OPERATION IN, WE IN, ID IN,
PRI IN, NEXT ID IN, and NEXT PRI IN as input data, and
NEXT ID OUT and NEXT PRI OUT as output data. OPERA-
TION IN indicates an operation such as queuing to a priority/fifo
queue or dequeuing from a queue described in Table 4. WE IN
is a write enable signal for TCB registers. ID IN indicates a task
identifier for an operation. PRI IN shows a task priority for an
operation. NEXT ID IN is input data for the next id register.
NEXT PRI IN is input data for the pri register.

TCB consists of id, pri, state, next id, and next pri registers.
id stores task ID of this TCB. pri stores a priority of this TCB.
The lower value is a higher priority in the µITRON specification.
state stores a state of this TCB. next id has a task ID of the next
task in a queue. next pri indicates a task priority of the next task
in a queue.

NEXT ID OUT and NEXT PRI OUT are output data indicat-
ing the task ID and the task priority, respectively, which are used
to update next id and next pri in a relevant TCB when a queue
operation is performed. Only a TCB which becomes prior to the
inserted TCB or a TCB which is being deleted generates valid
values for these outputs, while the other TCBs output zeros. OR
gates select the valid values and transmit them to all the TCBs
through NEXT ID IN and NEXT PRI IN inputs. How a queue
operation is performed with using these signals is described be-
low.

We will show the case when tasks of id = 1, 2 and 4 are queued
in a priority queue, and a task of id = 3 is designated to be en-
queued in the queue. Before queuing operation, each register and
signal in the TCBs are as Table 5. The task of id = 1 is the top
of the queue, and the task of id = 2 is the next of the task of id

= 1 since the task of id = 1 has next id = 2. As the task of id

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 5 TCB Registers and I/O (Before).

TCB 1 2 3 4
Registers id 1 2 3 4

pri 1 3 2 5
state priQ priQ Not in Q priQ
next id 2 4 0 -1
next pri 3 5 0 31

Input ID IN X X X X
PRI IN X X X X
NEXT ID IN X X X X
NEXT PRI IN X X X X

Output NEXT ID OUT 0 0 0 0
NEXT PRI OUT 0 0 0 0

Table 6 TCB Registers and I/O (On Queuing).

TCB 1 2 3 4
Registers id 1 2 3 4

pri 1 3 2 5
state priQ priQ Not in Q→ priQ priQ
next id 2→ 3 4 0→ 2 -1
next pri 3→ 2 5 0→ 3 31

Input ID IN 3 3 3 3
PRI IN 2 2 2 2
NEXT ID IN 2 2 2 2
NEXT PRI IN 3 3 3 3

Output NEXT ID OUT 2 0 0 0
NEXT PRI OUT 3 0 0 0

= 4 is the last task in the queue, next id = -1 and next pri = 31,
the maximum priority value in this configuration. In state row,
priQ means this TCB is queued in a priority queue, and Not in Q
means this TCB is not queued in any queue. X depicts this signal
does not matter.

When the input signal of OPERATION IN is READYEN-
QUEUE, each TCB behaves as follows.
• When the input signal of PRI IN is greater than or equal to

pri and PRI IN is less than next pri, next id and next pri reg-
isters are set to the values of the input signals of ID IN and
PRI IN, respectively. NEXT ID OUT and NEXT PRI OUT
output the old values of next id and next pri.

• When the input signal of ID IN is the same as id in the TCB,
next id and next pri registers are set to the values of the
input signals of NEXT ID IN and NEXT PRI IN, respec-
tively, and state is changed to priQ.

Table 6 shows the register values, input and output signals dur-
ing the enqueuing operation. next id and next pri in TCB of a
task of id = 1 are set to 3 and 2, respectively, since PRI IN = 2 is
greater than pri in TCB of a task of id = 1 and lower than next pri.
As ID IN = 3 and PRI IN = 2 are input, according to the afore-
mentioned behavior, next id and next pri in TCB of a task of id =

3 are set to 2 and 3, respectively.

3.4 Development Environment
Figure 8 shows our development environment for generating

adaptive hardware and software of an RTOS. We developed an
environment, of which inputs are an RTOS system configura-
tion file and an application program. The format of the config-
uration file follows µITRON V4.0 specification [25], which is a
collection of static system call APIs. The adaptation tool ana-
lyzes the configuration file and the application program so that
an RTOS hardware core HDL (Verilog) code and hardware defi-
nitions which are used for creating adaptive RTOS hardware are

Fig. 8 Development environment.

Table 7 Comparison between automatic and manual adaptation.

Program Automatic (sec) Manual (sec)
semflgdtq 2.150 6,900
sem02 1.796 4,740
Cooker 1.953 4,800

generated. In addition, C language source codes for static re-
source creation and a header file to generate an adaptive RTOS
software are created. The adaptation tool invokes a C compiler
to generate a software program object from the software part of
RTOS kernel source code, the header file and the static resource
creation file. Finally, the hardware synthesis and implementation
tool generates a bitmap for an FPGA from the software program
object and the hardware HDL codes including processor core de-
scription and RTOS kernel hardware wrapper.

In order to show the performance of the automatic adapta-
tion environment, we compared manual adaptation and automatic
adaptation to three application programs, semflgdtq, sem02, and
Cooker, of which the details are presented in Section 4.2. Ta-
ble 7 shows the result of our experiment. The time of Manual
is the duration of manual adaptation, which was performed by
a person who saw this RTOS source code at the first time and
had experience of the µITRON4.0 specification so that the per-
son can read and understand the RTOS source code. The time of
Automatic is the executing time from the beginning of the adap-
tation process to the output of the tool, which works with Core
i5-3230M 2.60 GHz CPU on Ubuntu OS. The unit of time is sec-
onds. This result reveals that the time for adaptation takes from
4,740 seconds to 6,900 seconds with manual adaptation. In con-
trast, it takes from 1.796 seconds to 2.150 seconds with automatic
adaptation.

4. Evaluation

This section presents the effect of our method that execution

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 8 FPGA Resources (1).

Name semflgdtq semflg sem02 [28] flg02 [28] dtq Cooker [22] Pot [22]
w/o error w/o error

Adaptive No Yes Yes Yes Yes Yes Yes Yes
of Task 5 5 5 5 5 5 4 3
of Semaphore 4 4 4 4 0 0 0 0
of Eventflag 3 3 3 0 3 0 1 2
of Data Queue 3 3 0 0 0 3 1 1
Register 2,973 (16%) 2,468 (13%) 1,685 (9%) 1,430 (7%) 1,960 (10%) 2,097 (11%) 2,248 (12%) 2,117 (11%)
LUT 6,241 (68%) 4,894 (53%) 3,458 (37%) 3,179 (34%) 3,925 (43%) 4,200 (46%) 4,306 (47%) 4,322 (47%)
Slice 1,827 (80%) 1,473 (64%) 1,112 (48%) 1,024 (44%) 1,267 (55%) 1,345 (59%) 1,374 (60%) 1,377 (60%)
Minimum period 19.904 ns 19.965 ns 19.838 ns 18.264 ns 19.562 ns 18.389 ns 19.876 ns 19.956 ns
Maximum frequency 50.241 MHz 50.088 MHz 50.408 MHz 54.753 MHz 51.12 MHz 54.38 MHz 50.312 MHz 50.11 MHz

time is improved and software resources and hardware resources
are reduced against software-only RTOS without adaptation.

4.1 Environment
The processor core and RTOS hardware described in the pre-

vious sections are implemented in an FPGA, Xilinx Spartan-
6 (XC6SLX16CSG324C) on the evaluation board of Digilent
NEXYS3, with the Xilinx development tool, PlanAhead 14.7.
The processor core runs at 50 MHz and executes MIPS32 instruc-
tion set [26]. GCC 4.3.3 is used for the compiler.

We implemented an RTOS kernel, which is configured to be
either a software-only kernel described in Section 3.1 or a ker-
nel with RTOS hardware in Section 3.3. Which RTOS kernel is
used is selectable when the system is configured. We evaluated
the effects of application adaptation described in Section 3.2 and
RTOS hardware implementation comparing with the software-
only RTOS kernel without application adaptation.

4.2 FPGA Resources
Table 8 and Table 9 illustrate the number of FPGA resources

occupied by the processor core and RTOS hardware, and mini-
mum period/maximum clock frequency for each implementation.
Percentages in the parentheses indicate the rates to the whole re-
sources. In the row of Adaptive, “Yes” shows this implementation
is adapted to the application while “No” shows it is not adapted
to the application.

We evaluated nine programs: “sem02” (for semaphore test)
and “flg02” (for eventflag test) are from the µITRON4.0 TOP-
PERS kernel test suites [28], “dtq” (for dataqueue test) is our
original program, “semflgdtq” and “semflg” are a combination
of sem02, flg02, and dtq, and two programs, “Cooker” and “Pot”,
are from the literature [22] which are RTOS application programs
for a rice cooker and an electric pot, respectively. In addition,
“String search” and “Bit count” are benchmark programs from
the literature [18], which are originally from MiBench suite [8].
(Since the two test suites programs include all error cases, in-
tentional error checking codes are removed from the programs
to evaluate the effect of adaptation). The column of w/o RTOS
Hardware in Table 9 is the resource usage of only a processor.
Effects of fine-grained configuration for RTOS kernel can be con-
firmed even with simple programs such as the ones mentioned
above.

Comparing adaptive and no adaptive configurations in sem-
flgdtq, the adaptation achieves a reduction in Register, LUT and
Slice by 17%, 22% and 19%, respectively. Since semflg does

Table 9 FPGA Resources (2).

Name String Bit count [18] w/o RTOS
search [18] Hardware

Adaptive Yes Yes −
of Task 4 4 −
of Semaphore 0 0 −
of Eventflag 1 0 −
of Data Queue 1 2 −
Register 1,697 (9%) 1,834 (10%) 843 (4%)
LUT 3,787 (42%) 4,454 (48%) 1,619 (17%)
Slice 1,288 (57%) 1,443 (63%) 529 (23%)
Minimum period 18.766 ns 17.878 ns 18.014 ns
Maximum frequency 53.288 MHz 55.935 MHz 55.512 MHz

not include a data queue system call, it can be seen that Register,
LUT and Slice are reduced by 32%, 29% and 25%, respectively,
compared to semflgdtq with adaptation, due to the elimination
of data queue resources. The resources of sem02 show that we
can further decrease Register, LUT and Slice by 15%, 8% and
8%, respectively, since it does not have the resources of event-
flag. Similarly, we can see the results that the resources of flg02
and dtq are reduced due to the reduction of unused system call
resources. Since Cooker employs only the necessary number of
resources, Register, LUT and Slice can be reduced by 24%, 31%
and 25%, respectively, compared to semflgdtq which uses more
semaphores, eventflags and data queues. The same trend can be
seen in the results for Pot. Finally, for String search and Bit count,
considerable reduction in the resources can be seen against sem-
flgdtq which requires more RTOS objects.

4.3 Execution Time and Size
Table 10 illustrates comparison of each system call execution

time among the cases of hardware RTOS (w/Hardware), adaptive
software-only RTOS (Software w/ Adaptive), and software-only
RTOS without adaptation (Software w/o Adaptive).

Since execution of system calls can involve task switching, the
table includes execution times in both cases with task switching
and without it. In the column of Task Switch, “No” indicates that
the system call is executed and completed without task switching.
Meanwhile, “Yes” corresponds to the situation where the system
call execution includes task switching.

The number of clock cycles taken for executing a system call
is counted and the execution time is obtained by converting the
number of clock cycles to the duration of the system call execu-
tion (µsec), considering the processor core’s running clock fre-
quency of 50 MHz.

The column of w/ Hardware shows the system call execution
time (µsec) of adaptive RTOS hardware with the ratio to Software

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

w/o Adaptive case. The column of Software w/ Adaptive shows
that the system call execution time (µsec) of adaptive software-
only RTOS. In this case, each RTOS system call is executed
on the processor without using RTOS hardware, and the ratio of
Software w/ Adaptive to Software w/o Adaptive is shown. The
column of Software w/o Adaptive illustrates the system call exe-
cution time (µsec) when RTOS kernel is not adapted to the appli-
cation program.

From Table 10, it can be seen that, on average, w/ Hardware
can reduce the execution time to 67.6% and 39.7% of the case of
Software w/o Adaptive for w/o Task Switch and w/ Task Switch,
respectively. For the case of Software w/ Adaptive, it is reduced
to 83.4% and 94.3%, respectively. In the case of sem02 wai sem
without task switching, the execution time of w/ Hardware is
longer than that of Software w/ Adaptive, the reason of which is
that the semaphore count is simply implemented in this operation
and there is no queue operation or priority search involved.

These results show that w/ Hardware makes the system call
execution time faster than Software w/ Adaptive. Especially, the
system call execution time with task switching is much reduced
due to the reduction of queue operation time with hardware. On
the other hand, for Software w/ Adaptive, while we can see the
effect of removing unnecessary codes caused by fixed attributes
and the way of calling, the rate of the reduction of the execution
time is lower in the case of w/ Task Switch since it does not ac-
celerate queue operations.

Table 10 RTOS Kernel Execution Time (µsec).

Program System Task w/ Software Software
Call Switch Hardware w/ w/o

Adaptive Adaptive
sem02 sig sem No 1.96 (66.2%) 2.42 (81.8%) 2.96

sig sem Yes 4.28 (46.5%) 8.54 (92.8%) 9.20
pol sem No 1.22 (67.0%) 1.28 (70.3%) 1.82
wai sem No 1.52 (77.6%) 1.28 (65.3%) 1.96
wai sem Yes 4.14 (37.5%) 10.36 (93.8%) 11.04

flg02 set flg No 2.14 (66.9%) 2.68 (83.8%) 3.20
set flg Yes 4.56 (37.8%) 10.88 (95.4%) 11.40
pol flg No 2.10 (78.4%) 2.16 (80.6%) 2.68
wai flg No 2.34 (78.0%) 2.48 (82.7%) 3.00
wai flg Yes 4.72 (36.3%) 12.48 (96.0%) 13.0

dtq fsnd dtq No 2.10 (56.1%) 3.24 (86.6%) 3.74
fsnd dtq Yes 4.36 (43.8%) 9.46 (95.0%) 9.96
psnd dtq No 2.10 (59.7%) 3.16 (89.8%) 3.52
psnd dtq Yes 4.34 (43.9%) 9.52 (96.4%) 9.88
rcv dtq No 2.14 (77.0%) 2.42 (87.1%) 2.78
rcv dtq Yes 4.14 (40.9%) 9.58 (94.7%) 10.12
prcv dtq No 2.14 (72.8%) 2.58 (87.8%) 2.94

Cooker iset flg Yes 5.56 (43.8%) 12.16 (95.9%) 12.68
wai flg Yes 4.74 (36.2%) 12.38 (94.6%) 13.08
fsnd dtq Yes 4.20 (44.1%) 9.02 (94.7%) 9.52
rcv dtq Yes 4.00 (39.6%) 9.56 (94.7%) 10.10

Pot set flg Yes 4.48 (36.7%) 11.68 (95.6%) 12.22
wai flg Yes 4.72 (36.3%) 12.32 (94.6%) 13.02
fsnd dtq Yes 4.22 (42.0%) 9.54 (95.0%) 10.04
rcv dtq Yes 4.02 (39.7%) 9.58 (94.7%) 10.12

String wai flg Yes 4.52 (36.7%) 11.60 (94.3%) 12.30
search fsnd dtq No 2.10 (58.7%) 3.08 (86.0%) 3.58

set flg No 2.12 (59.2%) 3.06 (85.5%) 3.58
set flg Yes 4.44 (39.9%) 10.44 (93.9%) 11.12
rcv dtq No 2.12 (81.5%) 2.24 (86.2%) 2.60

Bit fsnd dtq No 2.10 (56.1%) 3.08 (82.35%) 3.74
count rcv dtq No 2.12 (76.3%) 2.24 (80.58%) 2.78
Average w/o Task Switch 2.02 (67.6%) 2.49 (83.4%) 2.99

w/ Task Switch 4.44 (39.7%) 10.54 (94.3%) 11.17

In the literature [13], it is described that RTOS execution time
becomes 1.7 to 2.9 times faster in the case of w/o task switch
and 1.4 to 1.5 times faster in the case of w/ task switch than
software-only RTOS. The literature [20] shows that computing
time is improved by 31.637% (1.4627 times faster). While the
system call set in our evaluation is different from the existing
studies, the system call execution time becomes 2.5–1.5 times
faster on average as described below, of which results are compa-
rable to those of other studies. In addition, there is no adaptation
method to an application program in these studies. As shown
in Table 10, in the case of w/o task switch, the execution time
becomes 1.5 times (67.6%) faster (hardware RTOS) on average,
and 1.2 times (83.4%) faster (software-only RTOS w/ adaptive)
on average, and, in the case of w/ task switch, the execution time
becomes 2.5 times (39.7%) faster (hardware RTOS) on average,
and 1.1 times (94.3%) faster (software-only RTOS w/ adaptive)
on average. Since the adaptation method explained in this paper
never increases the execution time of system calls in any case, it
does not have a negative effect for real-time performance com-

Table 11 RTOS Kernel Size (bytes).

Program System w/ Software Software
Call Hardware w/ w/o

Adaptive Adaptive
sem02 sig sem 304 (59.4%) 400 (78.1%) 512

pol sem 176 (57.9%) 192 (63.2%) 304
wai sem 336 (48.8%) 512 (74.4%) 688
Kernel Soft 0 (0%) 1,680 (100%) 1,680
Others 9,104 (69.4%) 9,872 (88.9%) 11,104
Total 9,920 (69.4%) 12,656 (88.6%) 14,288

flg02 set flg 320 (44.4%) 608 (84.4%) 720
pol flg 336 (65.6%) 400 (78.1%) 512
wai flg 464 (44.6%) 928 (89.2%) 1,040
Kernel Soft 0 (0%) 1,392 (100%) 1,392
Others 10,912 (88.5%) 11,488 (93.1%) 12,336
Total 12,032 (75.2%) 14,816 (92.6%) 16,000

dtq fsnd dtq 320 (41.7%) 656 (85.4%) 768
prcv dtq 336 (42.9%) 704 (89.8%) 848
psnd dtq 320 (51.3%) 544 (87.2%) 624
rcv dtq 368 (54.8%) 592 (88.1%) 672
Kernel Soft 0 (0%) 1,280 (96.4%) 1,328
Others 9,584 (85.4%) 10,512 (93.7%) 11,216
Total 10,928 (71.0%) 14,288 (92.8%) 15,392

Cooker iset flg 352 (43.1%) 624 (76.5%) 816
wai flg 464 (44.6%) 928 (89.2%) 1,040
fsnd dtq 320 (41.7%) 656 (85.4%) 768
rcv dtq 368 (54.8%) 592 (88.1%) 672
Kernel Soft 0 (0%) 1,824 (95.0%) 1,920
Others 10,592 (85.5%) 11,504 (92.9%) 12,384
Total 12,096 (68.7%) 16,128 (91.6%) 17,600

Pot set flg 320 (44.4%) 608 (84.4%) 720
wai flg 464 (44.6%) 928 (89.2%) 1,040
fsnd dtq 320 (41.7%) 656 (85.4%) 768
rcv dtq 368 (54.8%) 592 (88.1%) 672
Kernel Soft 0 (0%) 1,824 (95.0%) 1,920
Others 11,968 (88.1%) 12,768 (94.0%) 13,584
Total 13,072(72.5%) 16,784(93.1%) 18,032

String set flg 320 (44.4%) 576 (80.0%) 720
search wai flg 464 (44.6%) 896 (86.2%) 1,040

fsnd dtq 320 (41.7%) 656 (85.4%) 768
rcv dtq 368 (54.8%) 592 (88.1%) 672
Kernel Soft 0 (0%) 1,824 (95.0%) 1,920
Others 9,888 (87.8%) 10512 (93.3%) 11,264
Total 11,360 (69.3%) 15,056 (91.9%) 16,384

Bit fsnd dtq 320 (41.7%) 656 (85.4%) 768
count rcv dtq 368 (54.8%) 592 (88.1%) 672

Kernel Soft 0 (0%) 1,280 (96.4%) 1,328
Others 7,856 (87.1%) 8,464 (93.8%) 9,024
Total 8,544 (72.5%) 10,992 (93.2%) 11,792

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

pared to the software-only RTOS without adaptation.
Table 11 shows the RTOS kernel sizes (bytes) of a software

part of w/ Hardware, the software-only RTOS with adaptation
(Software w/ Adaptive), and the software-only RTOS without
adaptation (Software w/o Adaptative). For each program, the
sizes of representative system calls, utility functions used in sys-
tem calls (Kernel Soft), and other kernel parts (Others) are shown.
Kernel Soft includes functions for queue management. Others
consist of kernel initialization codes and other system calls. Per-
centages in parentheses indicate the rates to Software w/o Adap-
tive. For example, the sizes of the software part for sig sem in
sem02 is 59.4% of the size of Software w/o Adaptive.

Comparing with Software w/o Adaptive, we can see that the
total sizes of the software part is reduced to 75.2% (flg02) to
68.7% (Cooker) when RTOS Hardware is used, and it is reduced
to 93.2% (Bit count) to 88.6% (sem02) when software adaptation
is applied.

Kernel Soft size is 0 for w/ Hardware since the corresponding
operation is implemented in hardware. In the case of dtq Cooker,
Pot, String search, and Bit count, Kernel Soft size is not 100% in
Software w/ Adaptive, the reason of which is the test programs
use only TA TFIFO for the attribute of data queue while both of
TA TPRI and TA TFIFO are implemented in the original (Soft-
ware w/o Adaptive) Kernel Soft, so the code for the attribute of
TA TPRI is removed by adaptation. In w/ Hardware, the size of a
software part of each system call is reduced to 65.6% at worst and
to 41.7% at best. This large amount of reduction is achieved since
most code fragments except for task switching are eliminated by
adaption and Kernel Soft is fully reduced.

5. Conclusion

This paper presented a method of a development environment
for application-specific systems on RTOS on an FPGA. With
our environment, adaptive hardware RTOS for an application pro-
gram as well as adaptive software-only RTOS can be generated.
We explained our method for removing unnecessary code frag-
ments from a hardware RTOS and a software-only RTOS. We
implemented a hardware RTOS with a processor core of MIPS32
instruction-set architecture on an FPGA. The hardware RTOS cir-
cuit consists of an RTOS Hardware Wrapper and an RTOS Hard-
ware Core. The functions of a hardware RTOS can be accessed
with reading from or writing to a specific address.

We evaluated FPGA resources, RTOS kernel execution time
and the size of the software parts. With proposed method, we
showed that the FPGA resources and the RTOS kernel execution
time were reduced in each application. Especially, for w/ Hard-
ware, average system call execution time is reduced to 39.7%
compared with Software w/o Adaptive in the case of including a
task switch. From these experimental data, we conclude the pro-
posed method is effective for developing an application-specific
system with RTOS on an FPGA.

Although this paper focuses on RTOS which conforms to
µITRON 4.0 specification, the proposed techniques are expected
to be applied to other RTOSes. VxWorks, one of widely used
RTOSes, consists of system calls which include checks of possi-
ble errors and attribute options. For example, “msgQReceive()”

is a system call for message queues. This function checks several
errors (not initialized, ID error, timeout, etc. [29]) at runtime and
provides two options for waiting queues (FIFO and priority or-
ders), where one of these options is selected through the function
parameter [30]. It would be possible to achieve adaptation similar
to those described in this paper, by elaborately analyzing appli-
cation source codes and finding constant values in the parame-
ters. For an RTOS with the µITRON4.0 specification, the method
we presented in this paper can be applied to other RTOS imple-
mentations since error codes and the configuration file format are
defined in the µITRON4.0 specification and if the same direc-
tives are inserted in the RTOS source code, the adaptation tool
generates the adaptive RTOS. For the RTOS Hardware Wrapper,
whether a similar H/W wrapper would be developed depends on
a developer, but the concept we described in this paper can be
applied to other implementations. We expect our approach could
be a future direction for development of fine-grained configurable
RTOS in commercial use.

In future work, we plan to expand this method to an
application-specific multi core system with RTOS including pro-
cessor core adaptation [14].

References

[1] Akgul, B.S., Lee, J. and Mooney, V.J.: A System-on-a-Chip Lock
Cache with Task Preemption Support, Proc. International Confer-
ence on Compilers, Architecture and Synthesis for Embedded Systems
(CASES’01), pp.149–157 (2001).

[2] Andrews, D., Peck, W., Agron, J., Preston, K., Komp, E., Finley,
M. and Sass, R.: hthreads: A hardware/software co-designed mul-
tithreaded RTOS kernel, Proc. 2005 IEEE Conference on Emerging
Technologies and Factory Automation, pp.331–338 (2005).

[3] Anh, T.N.B. and Tan, S.-L.: Real-Time Operating Systems for Small
Microcontrollers, IEEE Micro, Vol.29, No.5, pp.30–45 (2009).

[4] Deifel, H.P., Göttlinger, M., Milius, S., Schröder, L., Dietrich, G. and
Lohmann, D.: Automatic Verification of Application-Tailored OSEK
Kernels, Proc. Formal Methods in Computer Aided Design, pp.196–
203 (2017).

[5] Dietrich, C. and Lohmann, D.: OSEK-V:Application-Specific RTOS
Instantiation in Hardware, Proc. 18th Annual ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Sys-
tems (LCTES), pp.111–120 (2017).

[6] Gomes, T., Pinto, S., Garcia, P. and Tavares, A.: RT-SHADOWS:
Real-Time System Hardware for Agnostic and Deterministic OSes
Within Softcore, Proc. IEEE 20th Conference on Emerging Technolo-
gies & Factory Automation (ETFA), pp.1–4 (2015).

[7] Gomes, T., Garcia, P., Pinto, S., Monteiro, J. and Tavares, A.: Bringing
Hardware Multithreading to the Real-Time Domain, IEEE Embedded
Systems Letters, Vol.8, No.1, pp.2–5 (2016).

[8] Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T.
and Brown, R.B.: MiBench: A free, commercially representative em-
bedded benchmark suite, Proc. 4th Annual IEEE International Work-
shop on Workload Characterization, WWC-4, pp.3–14 (2001).

[9] He, H., Trimble, J., Perianayagam, S., Debray, S. and Andrews, G.:
Code Compaction of an Operating System Kernel, Proc. Interna-
tional Symposium on Code Generation and Optimization, pp.283–298
(2007).

[10] Kuacharoen, P., Shalan, M.A. and Mooney III, V.J.: A Configurable
Hardware Scheduler for Real-Time Systems, Proc. International Con-
ference on Engineering of Reconfigurable Systems and Algorithms,
pp.96–101 (2003).

[11] Lange, A.B., Andersen, K.H., Schultz, U.P. and Sorensen, A.S.:
HartOS – a Hardware Implemented RTOS for Hard Real-Time Ap-
plications, Proc. 11th IFAC, IEEE International Conference on Pro-
grammable Devices and Embedded Systems, Vol.45, No.7, pp.207–
213 (2012).

[12] Maruyama, N., Ishihara, T. and Yasuura, H.: An RTOS in Hardware
for Energy Efficient Software-based TCP/IP Processing, Proc. IEEE
8th Symposium on Application Specific Processors (SASP), pp.58–63
(2010).

[13] Maruyama, N., Ishikawa, T., Honda, S., Takada, H. and Suzuki, K.:

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

ARM-based SoC with Loosely coupled type hardware RTOS for in-
dustrial network systems, Proc. 10th Annual Workshop on Operat-
ing Systems Platforms for Embedded Real-Time Applications, pp.9–16
(2014).

[14] Miyauchi, T. and Tanaka, K.: Configuration Technique for Adaptabil-
ity of Multicore Processors on FPGA, Proc. 27th Annual IEEE In-
ternational Conference on Application-specific Systems, Architectures
and Processors, 2 pages (2016)

[15] Miyauchi, T. and Tanaka, K.: Building a Framework for an
Application-Adaptive Processor System on FPGA-based SoC, Proc.
21st Workshop on Synthesis And System Integration of Mixed Infor-
mation Technologies, pp.359–364 (2018).

[16] Miyauchi, T. and Tanaka, K.: An Adaptive Approach for Implement-
ing RTOS in Hardware, Proc. Embedded Systems Symposium, pp.44–
50 (2018).

[17] Nakano, T., Utama, A., Itabashi, M., Shiomi, A. and Imai, M.: Hard-
ware Implementation of a Real-time Operating System, Proc. 12th
TRON Project International Symposium, pp.34–42, IEEE (1995).

[18] Nikaido, Y.: Development of Benchmark Program Suite for Evaluat-
ing Embedded Operating Systems [Project Paper] Master thesis, Japan
Advanced Institute of Science and Technology (2019).

[19] Nordstrom, S., Lindh, L., Johansson, L. and Skoglund, T.: Applica-
tion Specific Real-Time Microkernel in Hardware, Proc. IEEE-NPSS
Real Time Conference (RTC), pp.79–82 (2005).

[20] Ong, S.F., Lee, S.C., Ali, N.B.Z. and Hussin, F.A.B.: SEOS: Hard-
ware Implementation of Real-Time Operating System for Adaptabil-
ity, Proc. 2013 1st International Symposium on Computing and Net-
working, pp.612–616, IEEE (2013).

[21] Oosako, Y., Ishiura, N., Tomiyama, H. and Kanbara, H.: Synthesis of
Full Hardware Implementation of RTOS-Based Systems, Proc. 2018
International Symposium on Rapid System Prototyping, pp.1–7, IEEE
(2018).

[22] Tamura, K.: A Study on a development environment of general user
interface for embedded systems, Master thesis, Japan Advanced Insti-
tute of Science and Technology (2014).

[23] Tang, Y. and Bergmann, N.W.: A Hardware Scheduler Based on Task
Queues for FPGA-Based Embedded Real-Time Systems, IEEE Trans.
Computers, Vol.64, No.5, pp.1254–1267 (2015).

[24] Vetromille, M., Ost, L., Marcon, C.A.M., Reif, C. and Hessel, F.:
RTOS Scheduler Implementation in Hardware and Software for Real
Time Applications, Proc. 17th IEEE International Workshop on Rapid
System Prototyping (RSP’06), pp.163–168 (2006).

[25] µITRON4.0 Specification Ver.4.01.00, ITRON Committee, TRON
ASSOCIATION.

[26] MIPS R© Architecture For Programmers, Volume II-A: The MIPS32 R©
Instruction Set.

[27] OSEK group, OSEK/VDX Operating System Specification 2.2.3,
February 17th (2005).

[28] TOPPERS Kernel Test Suites, available from 〈https://www.toppers.jp/
testsuites.html〉.

[29] Wind River Systems, Inc.: VxWorks Kernel API Reference, Volume
2: Routines, 6.6 (2007).

[30] Wind River Systems, Inc.: VxWorks Application Programmer’s
Guide, 6.2 (2005).

Tetsuo Miyauchi received his M.S. de-
gree from Japan Advanced Institute of
Science and Technology in 2015. His re-
search interests are processor architecture,
reconfigurable systems, and real-time em-
bedded systems. He is a member of the
IPSJ.

Kiyofumi Tanaka received his B.S.,
M.S., and Ph.D. degrees from the Univer-
sity of Tokyo in 1995, 1997, and 2000,
respectively. His research interests are
computer architecture, operating systems,
and real-time embedded systems. He is a
member of the IEEE, ACM, IEICE, and
IPSJ.

c© 2020 Information Processing Society of Japan

