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SCORE: A FORMAL DATA MODEL FOR HIERARCHICAL COMPLEX OBJECTS

Shi-Jie Jiang Nobuo Ohbo Kazunori Yamaguchi Hiroyuki Kitagawa Isao Suzuki
University of Tsukuba
Tennodai 1-1-1, Tsukuba, Ibaraki 305, Japan

Hierarchical complex object is a very significant concept in CAD applications. In this paper a formal modcl
called SCORE and its associated algebra named ARES for manipulating the hierarchial complex-objects arc
proposed. SCORE model is based on trees that are generated by CFG. As a result, the important mcchanisms
such as generalization, aggregation, and recursion can be specified in a common frame. ARES is composcd of
four operators which serve as a primitive set of operators for constructing application oriented opcrations for

hierarchical complex objects.
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1. Introduction

The significance of the concept of grammars for formal languages has long been
acknowledged in varied fields. Recently, database researchers have recognized its utility in
representing complex objects [Gonnet88, Gyssens89, Jiang90]. In this paper a formal model
called SCORE (short for Structured Complex Objects defined REcursively) and its associated
algebra named ARES for representing the hierarchical complex objects are proposed. This
model is based on trees that are generated by CFG (Context Free Grammar).

Semantic data models, such as ER [Chen76], FDM [Shipman81], SDM [Hammer81], Format
{Hull84] and IFO [Abiteboul87] provide a rich set of design tools for representing complex
interrelationships of data not present in the relational model, such as aggregation, general-
ization and set constructs. Logic based models, such as Datalog [Ullman88], LDM [Kuper84]
and LDL [Beeri87] aim at the limited expressiveness of data manipulation languages of the
relational model, i.e. they generalize the relational calculus to express recursively specified
queries. Finally, relational extensions of the standard relational model, such as RT/M
[Codd79] and the nested model [Makinouchi77, Kitagawa89], try to strike a balance between
generalizing the data modeling and the data manipulation parts of the relational model. All
these models share the property that they recognize the most fundamental characteristic of data
to be its hierarchical structure. However, it is not quite clear whether they can effectively model
all data applications which exhibit a hierarchical nature. Good examples are textbases
[Gonnet88] and CSG data [Jiang90] as shown in Figure 1, which in addition to having a
hierarchical structure, are constructed out of rules that follow a grammatical structure.

Tree structure is very popular as a data structuring technique in CAD applications. To
adequately support such applications, the data model must reflect this tree structure. In SCORE,
we define a hierarchical complex object as a tree using CFG. We present an algebra called
ARES which can extract and manipulate data at all levels of a tree without having to navigate
in the tree in order to access data that is stored at various levels in the tree.

mechanical-part

object

difference

difference @ primitive

object

object

cylinder

difference cylinder

primitive

primitive primitive primitive

cylinder cuboid

cuboid cylinder

Figure 1 The tree representation of a solid object
2. Basic Terminology

Formally, a tree can be defined recursively in the following manner. Here, N* is a set of lists
of elements in N. A projection rj to the i-th element is used to extract an element in the list.
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Definition 1 [Tree]

A tree T is an ordered pair (N, p: N -> N*), where N={n1,..., ng} is a finite set of data items
called nodes and p is a mapping from N to N* where the following condition should be
satisfied.

3InEN, Vn'€N, 3!nj, ng,..., npEN
ni0(p(n))=ny,
zi1(p(n1))=ng,

nim(p(nm))=n'.

Definition 2 [Labeled Tree]
A labeled tree L is a tree in which each of its nodes is associated with a label, that is, L=(N, P,
y: N -> Label) with a mapping y from N to Label which is a set of labels.

Hereon, a tree is a labeled tree unless otherwise specified. A node n of a tree T=(N, P, ¥ is
an internal node iff p(n)#(); otherwise it is called a leaf node. The set of internal node is

defined as internal(T)=(nin€N, p(n)*()}. Obviously, leaf(T)=N-internal(T). A tree T=(9,
p:0->¢*, y:¢->Label) is called an empty tree represented as E.

Definition 3 [Subtree]

Given a tree T=(N, p, y). A subtree of T is a tree T'=(N', p": N' -> N'*, y":N' -> Label),
where NC'N, y'=yIN'". Here, yIN' is a function y with a domain restricted to N'. This subtree
is described by subtree(T, N').

Suppose that we are given a tree T. Then rt(T) denotes the root of T. The existence and
uniqueness of the root is guaranteed by the condition, if the tree T is not the empty tree, E. For a
node n of T, pt(n) denotes its parent. Namely, pt(n)=n' < wi(p(n"))=n. cdll(n) is the sequence
of the labels of all children of n. Formally, Vi(ri(edll(m))=y(xi(p(n)))).

For disjoint trees Tj=(Nj, pi, yi) (i=1,..., n), a tree T=(N, P, V) is constructed as follows.

N={nrJUN]1U..UNp, for nr¢Nj (i=1,..., n).
(rt(Ty),..., rt(Ty))  n=n, 1 n=np
p(n)= { w(n)={

ri(n) neN; , yi(n) n€EN;

This tree is denoted as <ny, I: Tq,..., Tp>.

If n1, ng,..., nk is a sequence of nodes in a tree such that nj is the parent of nj4+1 for i=1,...,
k-1, then this sequence is called a path from node nj to node nk with the length k-1. If there is a
path from node a to node b with length larger than zero, then a is called an ancestor of b, and b is
called a descendant of a. For example, in Figure 1, the ancestor of ni is ng, while its
descendants are n2, n3, and n4. In a tree, the root is the only node with no ancestor. A set of
descendents of the node a is specified by descendent(a), the parent of the node a is specified by
pt(a).

3. SCORE Model
We first give a few definitions for the SCORE model and then introduce the algebra ARES. The

terms schema and instance are borrowed from the relational model. In the SCORE model, the
former is associated to the grammar and the latter is associated to the tree.
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Definition 4 [Database Schema]
A database schema is a formal grammar g=(V, T, S, P) with V a finite set of attributes, T a

finite set of constants, S a set of axioms, SCV, and P a finite set of production rules of the form
A->s where A€V, se(VUT)*.

Another notation r=(A, s) is used interchangeablely with r=A->s. Namely, PCVx(VUT)*.
Quite different from the CFG for the language theory, we cannot replace production rules A->B,
B->C by A->C, because the derivation tree structure is of significance.

Definition 5 [instance]
Let g=(V, T, S, P) be a database schema. A D-tree D over g is called an instance of g iff

y(rt(D))E€S and for each internal node n there exists a production rule y(n)->cdll{n) in P, and
for each leaf node n there does not exist a production rule y(n)->s in P. Formally,

Vn E€internal(D) (y(n), cdll(n))€P, and Vn€Eleaf(D) y(n)¢n1(P).

Definition 6 [isomorphism]
Given two instances D1 and D2 of some g, we say Dj and Dg are isomorphic (denoted by

D1=D9), if there exists a bijection 8: D1 -> D2 satisfying the following condition:
Vne€D1(y1(n)=y2(6(n))A(p1(n)=(ny,..., nm)=>p2(6(n))=(6(n1),..., 6(nmN)).

g=(V,T, S, P)
V={mechanical-part, object, primitive, motion-op, set-op}
T=(rotate, scale, union, intersection, difference, cuboid, cylinder}
S=(mechanical-part)
P=({<mechanical-part>-><object>
<object>-><primitive>
<object>-><object><motion-op>
<object>-><object><set-op><object>
<primitive>->cuboid
<primitive>->cylinder
<motion-op>->rotate
<motion-op>->scale
<set-op>->union
<set-op>->intersection
<set-op>->difference)

Figure 2 Example of a database scheme

v <object>
R=((v, <object>)->(a, <object>)(n, <set-op>)P, <object>),
( a, <object>)->(y, <primitive>),
( v, <primitive>)->cuboid, o <object> T <set-op> B <object>
(m, <set-op>)->union,
( B, <object>)->(w, primitive),
( o, primitive)->cylinder} y<primitive> union @ <primitive>
cuboid cylinder

Figure 3 Example of pattern

<4>



Figure 2 shows an example of a database schema which describes the CSG data. The D-tree
shown in Figure 1 represents an instance over g.

4. ARES: An Algebra for SCORE

The main motivation for the algebra is to provide a query language which can extract and
manipulate data at all levels of a tree without having to navigate in the tree in order to access
data that is stored at various levels in the tree. We present an algebra called ARES (short for
Algebra for REcursive complex objects in SCORE) which allows to formulate queries on both
schema and instance level. The operators in this algebra are all recursively defined so that
each operator can be applied to subtrees at all levels thus eliminating the need for a special
operator to serve as a "navigator". This is achieved by manipulating trees by means of pattern
matching.

4.1 Pattern Matching

Basically, a pattern R is a set of production rules. When a part T' of a given tree T over g=(V, T,
S, P) is the D-tree over (V, T, S, R), then we say the pattern R matches the tree T at rt(T"). Two
extensions on the pattern specification are required for the pattern to be effectively used for
specifying operations.

1. Suppose that the pattern is R={A->B, B->C}, then it is ambiguous whether B in A->B should
correspond to the same node with B in B->C. In order to make it clear, we prefix tags before
all attributes (even though some of them may be of trivial in some case).

2. It is sometimes necessary to represent an isomorphism among subtrees. To represent the
isomorphism between a subtree with its root corresponding to AB and that with the root
corresponding to ®B, we use the equivalence relation A~w. This relation Q is a subset of

TagxTag. Notice here that the nodes correspond to AB and wB are distinct.

A set of tags is named Tag and tags are represented by Greek letters c, B, Yy and so on.
TagLabel stands for TagxLabel. A tagged production P' over P is a subset of
TagLabelxTagLabel* which satisfies the following condition.

vr=(91',..., on)EP, (r2(91),..., 2(@n'NEP.

Some of the tags in the tagged production have no significance. However, we assume that
each label in the tagged production is given a tag for the sake of simplicity. Formally, we
define the pattern as follows:

Definition 7 [pattern]

Let g=(V, T, S, P) be a database schema. An ordered pair R=(P', Q) is called pattern over g if
the following conditions are satisfied.

Condition 1: Connected, Rooted and Loop-free

3Ir(€P), Vr'(€P), 3!y, 12,..., rn€P, mj1(r)=r1(r1), ni2(r1)=n1(r2), ..., Min4+1(rn)=n1(r")

Hereon, r is denoted as rt(R).

Condition 2; Tag Consistency

Vr, r'€P'(n1(ni(r)=n](mj(r)N=n2(mi(r))=n2(n;j(r"))).

Due to the tag consistency, we can define att(A)={ra(nj(r)) Ini(ni(r))=A, rEP'} to represent

the attribute tagged by A in r. Given a pattern and an instance of some database schema, we can
find out the occurrences of the pattern in the instance, namely, perform the pattern matching.
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Definition 8 [pattern matching]

Let g=(V, T, S, P) be a database schema and let D=(N, p, y) be an instance over g. Let R=(P',
Q) be a pattern over g. R matches the tree D at node n iff there is a mapping f: TagLabel->N
which satisfies the following conditions:

1. y(f((e,x)))=x,
2. (o, B)EQ = subtree(T, decedent(f((c, x)))) = subtree(T, decedent(f((B, x))))
3. o#f = f{(a, x))*f(B, x))

4. Vr'=(p1', ¢2',-.., on)EP' = p(fle1))=(f(92",..., pn")
5. firt(R))=n.

Since Q is an equivalence relation, for any tag a, (o, a)€Q holds. If a=p in the above
condition 2, then the condition is trivially satisfied. If a#B in the above condition 2, then the
condition 4 also holds and the subtrees which are isomorphic to each other should be disjoint.

Figure 3 describes a pattern over the schema shown in Figure 2 with the object and primitive
to be tagged by o, B and v, w, respectively. If we consider the tree in the Figure 1 as an instance
of the schema shown in Figure 2, the leftmost part of the tree matches this pattern.

When using the operators to manipulate trees, all the operators have the same process of
evaluation as follows:

Definition 9 [Evaluation]

Let D and R be an instance and pattern over some schema g respectively. i stands for a
tag. Let OplR, 61,..., on (D) be any operation Op defined below. The evaluation strategy of Op
over D is defined recursively as follows:

Step 1. If rt(D) is not a leaf, then apply the same operation Op[R, 61,..., on] on all child
subtrees D1i,..., Dy of rt(D). Formally,

<rt(D), y(rt(D)): Oploy,..., 6n)(D1),..., Oploi,..., on)(Dm)> rt(D)€internal(T)
D'_{
D otherwise

Step 2. If R matches D' at rt(D'), perform the specified operation on D', and return the
resultant tree. Otherwise return D'

The evaluation strategy of Op over g is defined in a similar manner.
4.2 Operators in ARES

We now formally define the four operators in ARES. In the definition, s, si (i=1,2,...) denote
arbitrary strings composed of attributes and constants.

Definition 10 [Substitution]
Let g=(V, T, S, P) be a database schema and A be an attribute (A does not have to be in V). Let
R be a pattern over g and A a tag in R. The substitution U{R, A, A] is defined as follows:

UIR, A, Alg)=g'=(V', T, S', P")
where V'=VU (A}, S'=SU(A) if att(A)€S, otherwise S'=S, P'=P"U (C->s1As2 |

C->s1att(A)sg2€P"), for P"=PU (A->s).

UIR, A, AID)=D' where if R matches the tree D at rt(D), then D'=(N, p, y') is defined as
follows for the mapping f.
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A if n=f((A, x))
y'(n)= {

If the match fails, then D'=D.

y(n) otherwise

Let's assume a database schema g=(V, T, S, P) with V=(A, B, C}, T=(a, b, ¢}, S={A) and
P={A->BC, B->A, B->b, C->a, C->c} and let D be the instance shown in Figure 4(a). Then the
substitution Ul{{a, A)->(A, B), (A, B)->(B, A)), A, D] yields the database schema g=(V, T, S, P)
with V'=(A, B, C, D), P'={A->DC, A->BC, D->A, B->A, D->b, B->b, C->a, C->¢} and the
instance D' as shown in Figure 4(b).

b a b a
(a) (b)

Figure 4 Example of substitution

We also need an operator that move data from one place to another. This operator named
move is defined as follows:

Definition 11 [Move]
Let g=(V, T, S, P) be a database schema. Let R be a pattern over g and two tags o and B occur
in the rule R. The move M[R, o, B] is defined as follows:
MIR, a, Bl(g)=g'=(V, T, S, P
where P'=PU (A->s1att(B)sg | A->s1att(o)sg€P),
MIR, o, BD)=D'=(N", p', y")
where N'=(N-descendent(f((a, att(a)))))UNyg, subtree(D', No)=(N', p", w")= subtree(D,
descendent(f((B, att(B))))),

p(n) n€N-descendent(f(a, att(o)))
p'(n)={(ny,..., rt(subtree(N’, No)),..., nm) n=pt(fc, att(a))),
p(n)=(ny,..., nj,..., ng),
nj=fa, att(a))
p''(n) otherwise
v'=yIN'

Next, we define two operators that allow the introduction of new node and the removal of
existing one.

Definition 12 [Deletion]
Let g=(V, T, S, P) be a database schema. Let R be a pattern over g and « a tag in R. The
deletion is defined as follows:
DIR, ol(g)=g'=(V, T, S, P
where P'=PU(B->s1s2 | B->s1att(o)sg€P).
DI[R, al(D)=D'=(N", p', y")
where N'=N-subtree(D, fla, att(x))),
V'=yIN'
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p(n) nzpt(fla, att(a)))
p'(n)={
(n1,..., Dj.1, Nj41se-s Am) n=pt(Ra, att(a))),
p(n)=(ny,..., Dj,..., Dy),

nj=fla, att(a))

Definition 13 [Insertion]
Let g=(V, T, S, P) be a database schema and A be an attribute that does not occur inV. Let R
be a pattern over g and a a tag in R. The insertion is defined as follows:
I[R, o, Al(g)=g'=(V', T, S, P)
where V'=VU (A}, P'=PU {att(a)->sA].
IR, o, AID)=D'=(N', p', ¥*)
where N'=NU (np) for no¢N,

p(n) nzf(a, att(a))
p'(n)=[
(nj,..., Ny, NA) n=f{a, att{a)), p(n)=(ny,..., Nm)
y(n) n€EN
y'(n)=
A n=nA

4.3 Data Manipulation

The four operators in ARES define the algebra of SCORE. Many conceivable operations upon
trees can be expressed in terms of these four operators, that is, there exist sequences of instance
dependent algebra operations that returns the same result at the instance level.

As an example, we reconsider the addition of primitive node into the tree as shown in
Figure 6. The transformation can be accomplished by consecutively performing the following
sequence of operations written in ARES:

. I[{(a, A)->(B, B1)Xy, B2)(v, B3)}, a, V],

. M[{(c, A)->(B, B1)(y, B2)(v, B3)(®, V)}, 0, o,

. DI{(A, A)->(B, B1)(y, B2)(v, B3)®, A), (0, A)->(&, B1)(x, B2)(v, B3)e, V)}, €],
. Dl{(0, A)->(c, B1)(y, B2)(v, B3)(B, A)), al,

. DI((B, A)->(a, B2)(y, B3)w, A)}, al,

. DI{(B, A)->(c, B3)(y, A)}, al,

. Ul{(e, A)->(B, A)), o, R],

. I[{{(o, R)->(w, A)}, a, NI

=00 Utk W+

Figure 6 Example of node addition

Another example is the permutation of two subtrees from A as shown in the figure 7. This
operation in our algebra can be expressed by
1. I[{(e, A)->s1), a, B]
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2. M[{A->s11(a, C)s12(B, B)}, B, al

3. M[{A->s11(p, C)s12(w, D)s13C]), p, @]
4. M[{A->s11Ds12(0, D)s13(y, O}, o, v]
5. DI{A->s1(3, C)}, 8]

Here s, sjj€(VUT)* represent some finite strings.

Figure 7 Example of the permutation

5. Expressive Power

Gyssens and others proposed a hierarchical data model based on the context free grammar and
defined a set of operations to manipulate the hierarchical structures [Gyssens89]. However,
there is one crucial difference between the Gyssens' model and SCORE. The former, in an
attempt to support the concept of complex objects, imposes a keen restriction onto the definition of
complex object, that is, it forces a complex object to obey a conditional CFG grammar whose
rules must have different symbols in the right-hand. SCORE expresses objects using CFG
without any restriction, and results in a much more natural syntax and semantics for ex-
pressing the operations on a complex object. The following theorem guarantees that the algebra
of Gyssens' model can be expressed in the ARES. The proof of this theorem is given in
[Jiang90].

Theorem [expressive power]
ARES has the expressive power of Gyssens's algebra [Gyssens89].

Because the expressive power of the algebra in Gyssens' model has been shown to be the
same as the calculus in the model [Gyssens89], we have the following as a natural result.

Corollary
ARES has the expressive power of Gyssens's calculus.

6. Conclusion

In this paper a formal model called SCORE and its associated algebra named ARES are
proposed for the purpose of representing the hierarchical complex objects existing in CAD
applications. This model is based on trees that are generated by CFG. The operators in ARES
are all recursively defined so that each operator can be applied to subtrees at all levels thus
eliminating the need for a special operator to serve as a "navigator”. This is achieved by
manipulating trees by means of pattern matching.

ARES is characterized by tree transformation accompanied schema change. In general,
the schema returned by the algebra sequence defines a larger language than the schema
returned by the original. Sometimes, changing the database schema in arbitrary ways is risky
and not desirable. Our general approach to the problem of changing database schema adopts the
philosophy of restricting the evolution of the database schema to a controllable degree. This can
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be achieved by imposing the condition that the set of production rules in the database schema to
remain unchanged in all operations with an exception to the substitution operation. The
substitution is correspond to the rename operation in the relational model, and does not destruct
the structure of database. So if we restrict the other three operators in ARES to abide to the above
rule, the evolution of database schema can be easily controlled.
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