F—HR=2VZFH 91—5
(1992 11. 5)

[l (25173 WAKASHI 0X%# s & U5

H Jt—. FK £—, KEF BX, KA BX

T RFETHEEERLTFER

WAKASHI i3 THAERA] O—FBEVLXAVOY T YATF LT, CTOF I v —Bo8IEHE K
By L S HEBR T R BRETALOOEKY 2T 37 4 TRIRMT 5, WAKASHI
. AREXAEYVAREGHBEA T VIR LEHBEETAILICL T, BFWEHOFEVHninixdt
Bk — 7L oRAEERBL—-T42ERL T3, AFETHR., WAKASHIOEREIL DWW TR
N2, F, WAKASHIDO TV F A F 4 75— 7 R— A FMi+ 570, A7V 27 b+~
L—3 vRyFv—sO—2RFREL. SO IOHFHLWVWRYFT— 7125 5 WAKASHI
DEFFMIC OV THRRB,

Implementation and Performance Evaluation of

WAKASHI in ”Shusse-Uo”

Guangyi Bai, Ileiichi Teramoto, Hirofumi Amano, and Akifumi Makinouchi

Department of Computer Science and Communication Engineering
Kyushu University

WAINASHI is the most lean system in the "Shusse-Uo” project. It provides C programcers
with the most primitive facilities to efficiently handle distributed shared persistent data as
well as distributed shared volatile data. This paper describes implementation of WAINASHI
based on the virtual-memory-bhased approach. This approach enables to directly map files
onto a distributed shared memory. This paper also proposes an extended Object Operations
benclhimark so that it can be used to evaluate WAIKASHI with multimedia data operations.
The performance evaluation of WAIKXASHI using the benchmark test programs and its analvsis
are prescuted.

1 Introduction

In recent years, there are two trends in the database re-
search. One is to develop the systems which can support
advanced data-intensive applications such as CAD/CAM
or CIM (Computer-Integrated Manufacturing). These ad-
vanced data-intensive applications must deal with multi-
media data, distributed data, and distributed resources.
These requirements are reflected in researches on new gen-
eration database management systems [TCAD90]. Along
with this trend, many object-oriented persistent (or
database) programming languages which can deal with
complex data types are proosed and some of Lhem are de-
veloped. Examples of such systems include 02 [DUEX90],
Jasmine [AIMS90], ORION {KGBW90], Odin [HIRO91],
Mandurill [YNAF91], DASDBS [SPSG90], Onlos [SOLO92],
Objectivity/DB [OBJI90], ObjectStore [LLOW91], and
Earth {HSK92]. .

The other trend is to incorporate new computer envi-
ronments such as large physical memory, multiprocessors
and high-speed interconnection networks to database sys-
tems|ATICIS7]. Along with this trend, the new generation
database management systems must be able to store and
manipulate persistent data cfficiently and easily for ad-
vanced data-intensive applications in such new compuler
euvirommnents.

We are now working oun a project named "Shusse-
Uo”[MAARY0]. The project is to develop a system for
object-oriented and persistent (or database) programming
languages in the new computer environments. The system
is enhanced step by step by adding new functionalities.
WAIKASHI is the most lean system which provides C pro-
grammers with the most primitive facilities to deal with
distributed shared persistent data as well as distributed
shared volalile data.

WAKASHI trys Lo hide the tradilional distinction be-
tween persistent data and volatile data for C programmers,
and allows them to deal with distributed shared persistent
data and distributed shared volatile dala by the same oper-
ations. WAKASHI is based on the virtual-memory-based
approach, that is, mapping or binding files into the dis-
tributed shared virtual memory. This approach is expected
to be adaptable to advanced data-intensive applications,
which access distribuled shared persistent/volatile objects
in the new computing environments. WAKASHI can be
used as the storage management subsystem for DBMSs. It
is actually used for INADA, which is the next upper sub-
system of "Shusse-Uo”.

As described in paper [BAMA92], we implemented a
shared persistent heap of WAKASHI on one sile, and
presented ils performance evaluation using the Wiscon-
sin benchmark [BDT83] and the Objecl Operations ver-
sion 1 (001) benchmark [CASK92]. Iowever, the goal
of WAKASHI is lo provides distributed shared persis-
tent/volatile heaps for multimedia data applications run-
ning on the new compuling environments. So, in this pa-
per, we discuss implementation techniques of distributed

- shared. persistent/volatile heaps of WAKASHI, and de-

scribe an implementation using the Mach Operaling Sys-
tem.

We want Lo see if WAKASHI can serve as the distributed
shared persistent heaps with reasonable performance for
the multimedia DBMSs. Unfortunalely, there are not a
benchmark that allows us to adequately measure multime-
dia data application performance. Although the OO1 is
good for engineering database benchmark, it is not ade-
quate for measuring the performance of WAKASHI as a
distribuled shared storage manager for multimedia data
applications performance. It is because the OOL bench-
mark does not handle large bulk data (such as image).
The 001 benchmark has to be extended, so that it can
benchmark multimedia data applications. In this paper.
we will describe an idea about what multimedia data appli-
cations would be, and present the performance evaluation
of WAKASIII using the new benchmark.

The remainder of this paper is organized as [ollows: In
seclion 2, we discuss the background of WAKASIII im-
plementation techniques and show how to implement dis-
tributed shared persistent/volatile heaps using the Mach
Operaling System. ln section 3, we discuss how to extend
the 001 benchmark so that il can capture the characteris-
lic of multimedia data applications and some performance
evaluation using the new benchmark test is shown. Section
4 discusses related works. In section 5, we discuss [uture
works and remaiuning problems to conclude the paper.

2 WAKASHI

WAIKASII is based on the clienl/server architecture. As
Figure 1 shows, WAKASIHI Server in site2 allows client] in
sitel, client2 in site2 and client3 in site3 to map (or remote)
a file {(or abstract memory object) into their own virtual
address spaces to creale distributed shared persistent (or
volatile) beap.

WAIKASHI Server gives clients uniform address spaces
for both persistent data and volatile data, and allows
clients to deal with distributed shared persistent data and
distributed shared volalile data by the same opcrations.
WAKASHI Server implements not only eflicient paging be-
tween files and physical memories to support guarantees

" persistence of data; but also efficient paging between phys-

ical memories on multiple sites Lo guarantee consistency of
data. Since WAKASHI Server offers transparency of file
1/O operalions and data distribulion, il is easy to wrile
application programs handling distributed shared persis-
teut/volatile dala.

" 2.1 Background of WAKASHI Implementation

Techniques
This scction identifies techniques and paradigis used
in WAKASHI for supporting distributed shaved persis-
tent/volatile heaps on multimedia data.

V.S V.S.2 V.S.3

D.S.V.H.

7

D.S.V.H.

—

WAKASHI
Server

T
D.S.P.H.: Distributed !
Shared Persistent Heap

D.S.V.H.: Distributed
Shared Volatile Heap

V.S.i: Virtual address
Space of client:

Figure 1: Distributed Shared Persistent/Volatile Heap of WAIKASHI

Most of the OODBMSs are based on the clicnts/server
architeclure. All site computers are connected via a high-
speed local area network (LAN) through which clients ac-
cess data kept in the server. The application program re-
trieve objects from the server on an "object-fault” basis,
when the objects is not present in the client’s local object
cache, the client must fetch the object from the server.

There have been two approaches for the persistent stor-
age management for this architecture: one is based on
buffer pool management, called bufler-pool-based approach
(in other words two-level store), and the other is based
on memory mapped file, called virlual-memory-based ap-
proach (or, single-level store).

Although many DBMSs such as 02, DASDBS, ORION-
1SX, and Earth are based on the bufler-pool-based ap-
proach, but the approach has several drawbacks [BAMA92]
[SHZW90]. In the approach, in-disk objects (i.e.,
records) and in-memory objects have different [ormats
and are placed in different buffers. In addition to
this "double bufler problem” [KGBW90], this approach
have other problems such as fragmented long data prob-
lem and addressability problem (i.e., "pointer swizzling”)
[MAKI9I[WHDIE92].

The virtual-memory-based approach is exp ccted Lo avoid
the above mentioned drawbacks. In the virtual-memory-
based approacl, the database itsell is mapped into Lhe vir-
tual address space, allowing persistent dala to be accessed
in the same manner as volatile data. This is in contrast to
the couventional buffer-pool-based store, where access to
persistent data is less direct by virtual memory address..

The idea of the virtual-memory-based approach is noth-
ing new. A decade ago, Stonebraker [STONS1] suggesled,
binding files into the virtual address space for DB3MSs. Ve
chose the virtual-memory-based approach for our imple-
mentalion hecause this approach is expected to avoid Lhe
above mentioned drawbacks of the buffer pool based ap-
proach and ils advantages are summarized as follows:

(1) Efficient access to persistent data. When a program
accesses data in the persistent heap area, the kernel of op-
crating system checks whether the page containing the data
referenced by its virtual address is cached or not, with hard-
ware support.

(2) Easy implementation of complex objecls and long
data items. Since the persistent heap arca is a part of
virtual address space, any component of complex object
ot any parl of long data can be refereed Lo directly by its
virtual address.

(3) Addressability of both persistent and volatile data.

User programs and data are loaded in the same virtual
address space, object identifiers become virtual memory
addresses. Any data in the space is addressable and can be
operated directly by the programs. It inakes easy to im-
plement encapsulation and pointer swizzling is very simple
and efficient.
. As [ar as we know, ObjectStore [LLOWIL] aud Cricket
[SHZW90} are based on the virtual-memory-hased ap-
proach. One ol the different feature of WAKASII is that
WAKASIHI supports distributed shared memory lo imple-
ments distributed shared persistent/volatile heap, Lhat is,
mapping files into distributed shared virtual memory.

The distributed shared memory model provides pro-

- cesses in a system with a shared address space. Application

programs can use this in the same way they use normal lo-
cal memory. That is. dala in the shared space is accessed
through Read and Write operations. The distributed
shared memory model is natural for distributed computa-
tions running on shared memory mulliprocessors. Many
rescarchers are working for constructing the distributed
shared virtual memory systems [FBYRS8] [NIVI9L]. In a
typical implementation of distributed shared virtual mem-
ory, a memory mapping rouline in each processor maps
the local memory onto the shared virtual adcdress space.
Memory pages are paged not only belween a local physical
meinory and the local paging arca on secondary storage,
but also between physical memories of different processors.

We implemented the distributed shared persistent heap
based on the distributed shared virlual memory. The key
idca is to replace the local paging area on secondary stor-
age by a user-specified file. In principle, parallel and dis-
tributed computations written for a shared memory mul-
tiprocessor can be executed on a distributed shared mem-
ory system without change, therefore, this approach can
be adaptable to the new computing environments, and can
be adaptable to parallel and distributed database applica-
tions.

As we have noted in the previous section, WAICASIHI
Server is characterized by distributed shared virtual-
memory-based storage management for distributed shared
persistent/volatile heap. The goal of WAKASHI is Lo
provide C programmers with distributed shared persis-
tent/volatile heaps on both the same site and different sites.
Special virtual memory management must be made for the
persistence and consistency of the distributed shared per-
sistent/volatile heaps.

We chose the Mach Operating System [ABBGS6] as
the basis of our implementation because Mach provides a
small number of basic abstractions and functions for exe-
cution control, inter-process communication, virtual mem-
ory management, and external memory management so
that applications on Mach can be adaptable to the new
computing environments such as mulliprocessor worksta-
tions interconnected by high-speed networks. In par-
ticular, the Mach abstraction of memory objects made
the implementation easier than it would have been under
most other opcrating systems [YOUNS9]. Mach’s support
for shared memory, message passing, and mulliprocessors
makes WAKASHI more eflicient and flexible.

Mach Operating System provides EMMI (External
Memory Management Interface) thatl allows user prograns
to define and manage the contents of memory object that
may be mapped into virlual address spaces. Exporting this
interface Lo the user programs simplifies the construction
of complex virtual memory applications, allowing them Lo
control sharing, consistency, and secondary storage of their
data without being embedded in the operating system ker-
nel.

A memory object is the abstraction of external memory
(i.e., file on secondary storage) Lo be mapped on a region
(in this case distributed shared persistent/volatile heap) of
virtual memory in the Mach Operating System. Physical
memory is used Lo cache the contents of memory object.
To maintain and manage the memory object, a task (i.c.,
process in the Unix terminology), called external pager (in
this case WAKASHI Server), is crealed. With the help
of the external pager, application programs can map the
memory object into their virtual address space and can
access the data associated with the memory objects using
virtual address.

2.2 .The WAKASHI Server

The WAIKASHI Server is implemented as an external
pager with the EMMI. The server uses memory objects
to represent abstractions of distributed shared persistent
heaps for client’s files, or abstractions of distribuled shared
volatile heaps. These memory objects are used for paging
between the physical memorys and files to support data
persistence, and used for paging belween physical menories
on different machine to support data cousistency.

The WAKASHI Server is composed of the server inler-
face and the memory objects. Clients use the server inter-
face to creale these memory objecls so that clieats can map
memory objects into their virtual address space to creale
distributed shared persistent (or volatile) heaps.

The server interface includes persistent heap_object-
—creale and volalilehcap_objectcreale by which a client
program request lhe server lo creale mecmory ob-
jects dynamically. persistent_heapobjeci_destroy and
volatile_heap-object _destroy are for a client program to

. request the server Lo destroy the memory objects dynami-

cally. .

In order for a client to map a file on secondary stor-
age into its own virlual address space {in other words, to
allocate a distributed shared persistent heap), the client
must request -the WAKASHI Server to create a memory
object for the distributed shared persistent heap. 1f the
memory object is alveady createct by olher client, then the
client gels a port representing Lhe object. In this case,
the memory object is shared on distributed environment.
Otherwise, the server creales a new memory objecl for the
distributed shared persistent heap. The client can uses the
port to call the vmmap (i.e., the mapping interfacé of the
Mach EMDMI) to map the mewmory object into its own vir-
tual address space Lo create a distributed shared persistent
heap.

When a client wants to deallocate the distributed shared
persistent heap, the client must request the WAKASHI
Server to destroy the memory object for the distributed
shared persistent heap. If the memory object is still re-
ferred to by other client, the deallocation asked by the
former client is performed (i.c., ils heap is deallocated),
but the memory object is not destroyed. A memory object
is destroyed when no client refers to it. Deslruction of a
memory object means deallocation of the associated port,
and destruction of Lhe associated Lhread.

In database applicalions. users somelimes creale new
data for initializing databases. In this case, users fivst
create an empty file and map il into a persistent heap.
Then, they insert new data in the area. AL this point, il is
not necessary to read data from the file to the pages into
which new data is to be inserted. A {unction is added that
allows client programs to coutrol Lhe page-in mechanism
so that unwanled page-ins do not occur. This function is
called non_pagein_faull. The function asks the WARKASHI
Server nol Lo execute the page-in funclion, even il a page-
fault occurs. Aunother one is called non_pageoul_flush,

which allows clients to ask the server not to page out the
pages the client designates when "flush” of the persistent
heap occurs.

Client Request Handler

i

Persistent Heap
Manager

¢:::> Distributed Shared
Memory Manager

Figure 2: Memory Object's Structwre
of WAKASHI Server

As Figure 2 shows, the memory object of the distributed
shared persistent (or volatile) heap is composed of:

(1) Client Request Handler which is the memory object’s
interface to clients,

(2) Persistent Heap Manager which supports persistence
of data, '

(3) Distributed Shared Memory Manager which guaran-
tees consistency of data on different sites.

o Client Request Handler is the memory object’s in-
terface (i.e. the EMMI) to clients. The clients use
this interface Lo map distributed shared persistent (or
volatile) heap objects into their own virlual address
space to creale distributed shared persistent/volatile
heap. The interface also handles all page accesses
by the local or remole clienls and ask either Persis-
tent Heap Manager or Distribuled Shared Memory
Manager to guatantee data persistence and consis-
tency. Ior example, when a page in one persistent
heap is first accessed by a client, the Mach kernel uses
the interface and seuds a memory_ohject_datarequest
message Lo the memory object port corresponding
to the heap. The memory object retrieves the dala
page from mapped (ile or a copy ol other remote
client, and returns thal data uses the iuterface using
memoryobject-dataprovided message to the Mach
kernel.

Persistent [leap Manager implements input/outputl
of pages [rom/to a mapped file for the request from
Client Request Handler. Tor example, when the Mach
kernel sends a memory_object_datawriie message us-
ing Client Request Handler to the memory object, the
Persistent Heap Manager will outpul the data page to
the mapped file.

Distributed Shared Memory Manager uses a sim-
ple state machine to implement a single-writer or
multiple-reader coherency protocol to keeps data con-
sistency of distributed shared persistent/volatile heap,
much like in NetMemoryServer of Mach [FBYRSS].

The Mach kernel guarantees consistency among all map-
pings of a memory object on one site. Distribuled Shared
Memory Manager ensures consistency among difflerent sites
by permitting only one writable copy or any number of
read ouly copies of any given page. Distributed Shared
Memory Manager employs a stale machine to trace access
(i-e., read or write) and locations for each page of its mem-
ory objects. Messages from the Mach kernel trigger state
transitious. When a write request is issued while readers
are present, Distributed Shared Memory Manager sends a
memory-object_lockequest through Client Request Han-
dler to each reader to flush its copy of the page, and enters a
write stale until these lock requests complele. Similatly, to
process a read request when a wriler is present, Distributed

 Shared Memory Manager issues a request to clean and re-

move write accesses from the page aud enters a wail slale
until the data is returned. Lock complelion and data write
massages remove pages from wait skates, returning them
lo simple reader or writer stales, and allowing blocked re-
quests to be satisfied.

Distributed Shared Memory Manager uses a fairly sim-
ple page scheduling policy to ensure thal progress s made
when more than one request claims for a given page. The
underling processor scheduling and network delays limit
the rate at which pages can be reclaimed. These limita-
Lions effectively eliminate thrashing.

Distributed Shared Memory Manager also handles multi-
ple page sizes and different dala representations in order Lo
support sharing in heterogeneous distributed systems. Lo
supporl multiple page sizes, Distributed Shared Memory
Manager may provide data or make lock requests in larger
units than the kerunel’s page sizes. To support different
dala [oxmats, Distributed Shared Memory Manager allows
its clients Lo associate data types (e.g., integer or {loating
point) with its memory objects. When data is transferred
between machines, the server may use the network message
server Lo perform the appropriate dala translations or may
do those translalions itsell.

3 Performance Evaluation

Our previous work [BAMA92] presented the performance
evaluations of a local shared persistent heap of WAKASII
using the Wisconsin benchmark [BDT83] and the Object
Operations version 1 (QOL) benchmark [CASK92). lHow-
ever, Lhe work was partial because WAIKASIHI did not sup-
porl distributed enviromuent and the performance evalua-
lions did not contain multimedia data or large bulk data.
As mentioned catlier, the goal ol \WAKASIHII is to provide
distributed shared persistent/volatile heaps for multime-
dia data applications oun the new compuling environments.
we must see il the WAKASIH Sever can manage the dis-
tributed shared persistenl heaps willl reasonable pecfor-
mance for multimedia DBMSs.

In this section, we propose a simple benchmark test for
multimedia data application, aud present the performance
evalualion of WAKASIII using the benchmark.

3.1 Extending OO1 to Benchmark Multimedia
Database Systems

It is very difficult to measure multimedia DBMS perfor-
mance in a general way, since every multimedia dala ap-
plication has different requirements, and its way to process
multimedia data (i.e., image data) is very complex. How-
ever, the multimedia data applications are quite similar at
the mullimedia data access level. In the access level, mul-
timedia data are usually represented by complex objects
and long objects.

At object access level, the Object Operations version 1
(001) benchmark presents a standard for benchmarking
object-oriented database systems. The benchmark pro-
vides some basis for a comparative evaluation of engi-
neering applications such as Computer-Aided Sofltware En-
gineering and Computer-Aided Design. The benchmark
database is independent of the dala model provided by
DBMSs, and is regarded as an abstract definition of the
information to be stored, possibly as objects of single type
with list-valued fields. The benchmark measures response
time of targel syslem run by a single user. The tesl opera-
tion set includes inserting objects, looking up objects, and
navigalion.

However, it is clear that the OO1 henchmark does not
adequately measure multimedia database systems’ perfor-

“mance, because it employs a small size object type (i.e.,
part) only. Persistent long objects are very likely to be
involved in multimedia data applications and they may oc-
cupy a very large portion of persistenl storage. So weadd a
long object type to the 001 benchmark. The long objects
represents image datla which tend to be very long and are
very popufar in most multimedia applicalions.

3.1.1 Extending OO1 Benchmark Database

We add Image object type to the OOl benchmark
databasc, and define the database as consisting of two (ypes
of objects:

Part: {
id: INT,
type: STRING[10],
X,y: INT,
build: DATE,
to: LIST OF {p: Part,

type: STRING[10], length: INT}
from: LIST OF Part,
refer: Image}

Image: {
id: INT,
data: Bitmap}

Parts have unique ids [rom 1 through 20.000 and cach
part refers Lo three other (random selected) parts, just like
parts database of OO!L benchmark. But, in our database,
1% parts also refers to a (randon sclecled) image.

Image dala has also unique id's from 1 through 20 and
each image includes an id and a bitmap data. We as-
sume Lhat the database system to be measured allows data
fields with the scalar types of INT', STRINCG[N], DATE,
LIST, and Bitmap.

Generally, images represented by arrays ol values al the
most basic level. When we slore an image, we are storing
a 2D array of values whose each value represents the data
associted with a pixel in the image. TFor a bitmap, this
value is a binary digil. For a color image, the value may be
a collection of three numbers representing the intensities of
red, green, and blue components of the color at thal pixel.
For simplicity, we consider black-and-white bitmap images
ouly, and define Bitmap type that presents by [512, 512]
array of values.

We assume that the database itself resides on a server
machine in a network, and the database server ruuns on this
machine. We also assume that a client run on the server
machine to benchmark local data access, and a client run
on a client machine on the network to benchimark remote
data access.

3.1.2 Extending OO1 Benchmark Measures

We dropped the Insert Lest [rom the OO benchmark,
and add the Update one. We also allow multiuser access
to database from different sites.

The following three measured.

(1) Lookup. Just as the Q0L benchmark, 1000 random
part ids are generated and the corresponding parts [rom
the database are felched. When a part is lelched, for cach

- parl, a null procedure is called with the @ and y position

and the type of the part. If the part refers Lo an image dala
(i.e., pointer is not null), an image processing procedure is
also called.

(2) Traversel. This is quite similar to the traversal mea-
surement of the OOI benchmark. That is, it is to find all
parls connected directly or indivectly to a randomly se-
lected -part, up Lo 7 depth. whenever a part is felched, a
null procedure is called with the value of the & and y fields,
and the part Lype.

(3) Update. Generate 100 randow part ids and update
the @,y, and build fields ol the corresponding parts in the
dalabase. .

For the Lookup test above, a image processing procedure
is called to measure a long object access. This image pro-
cessing procedure sequentially scans the bitmap datain the
persistent storage. Though this seems too simple Lo simu-
lale image processing procedures, we think thal sequential
scanning is one ol the basic access patberns of image pro-
cessing.

Concurrent access is also important for DBMS Lo allow
multiuser access to the database. To see il the WAKASTH
Server manage the consistency of the persistent dala on the
distributed compuling environments, we must allow con-
current accesses by multiple users on different sites. There-
fore, for the Updalc operation, a clienl program is initiated

for update on the server machine and another client pro-
gram is initiated for lookup on the client machine. That
is, the database is concurrently accessed by a local writer
and a remote reader in the network.

3.2 Results of Experiments

We developed simple simulation programs in INADA
[AATM92]. INADA is one of the subsystems in "Shusse-
Uo”, and enhances C+4 with the facilities for inquir-
ing persistent C++4 objects. INADA uses the WAKASHI
Server to support persistent object, object Aconsist.ency,
pointer swizzling and fault objects into main memory. IN-
ADA supports objects, classes, inheritance, persistent stor-
age, and distributed sharing of objects.

We created a benchmark database in the server worksta-
tion. We did not use any index on Part objects or Image
objects, in our simulation. The database comprises ap-
proximately 5 Mbyles ol parts, 5 Mbyles of images, and 1
Mbytes for space overhead. As such, the size of database
is approximately 11 Mbytes.

For our benchmarck, we used the following system for the
server where the database resides:

OMRON LUNA-88K with 3 M88100CPU (25MHz)
and 32 Mbytes physical memory

OMRON SX-9100 disk controller
Mach 2.5 Operating System

The client machine, where we ran the remote bench-
mark programs, was a OMRON LUNA-8SK thal has 4
M88100CPU S‘.ZSl\"lhz) and 32 Mbytes plysical memory,
This system also ran Mach 2.5 Operaling System. Both
the client and the server machines were reserved exclusively
for benchmacking during the test runs.

50
Sec. Cold 47.40
40 +
-Warm
30
20 17.30
10
2.21 1.84
\ | m—
Local Benchmark | Remote benchmark

Figure 3: Results of Lookup Operation

Figure 3 shows Lhe execution time ol the Lookup mea-
surement (it includes 10 image processing). In the *Cold”
cases, all pages in the database file are paged-in once and
only once dwring the test. In-the "Warm" cases, lhe
database can be cached on the physical memory, and the
performance is very good. Figure 3 shows the most im-
portant result that WAINASHI can efliciently access the
persislent long objects. In "Warin” cases, the performance
15 as good as the oue for non-persistent long objects.

Figure 3 also shows a comparison between local database
accesses and remote database accesses. In "Cold” cases
and for remote dalabase accesses, the WAINASII Server
not only exccuted the input data from the mapped file on

the server machine. but also transfers the data to client
machine using Remote Procedure Call (RPC). However, in
"Warm” cases, only WAIKKASHI Server runs on the server

" machine and only ‘one client program runs oun the client

machine. Therefore. no paging occurs and remote access is
more efficient than local access.

Traversal measure involves fincgrained 3280 parts (with
possible duplicates) connected to a randomly selected part.
This means thal a single test causes 3280 pointer swiz-
zlings. To measure the overhead of pointer swizzling, we
simulated traversal measure in virtual memory and com-

* parison with pointer swizzling in ”Warm” cases. In virtual

memory, an object pointer is a virtual memory address,
and no pointer swizzling is necessary. :

20
Sec.

16

1ol 11:850

. 0.025

Swizzling

L 0.015

Unswizzling

Figure 4: Comparison between swizzling and unswizzling
by Traversal

Figure 4 shows the comparison result belween Uhe
unswizzled case and the swizzed case. The pointer swiz-
zling in INADA is to allocale virtual memory addresses
for pages containing persistent data one step ahead of the
traversal program’s actual usage of the pages. When the
Lraversal program firsl allempls lo access a page, a vir-
tual mewory page fault occurs. This fault is intercepted
by the underling WAKASII Server which then loads the
page into its preassigned location in memory. Therclore,
the poinler swizzling is thal the traversal program only see
regular vitlual memory pointers, allowing accesses to per-
sistent objects to occur al memory speeds. As FFigure 4
shows, pointer swizzling is very efficient in INADA.

Figure 4 also shows the “Cold™ cases of Traversal. In
this cases, some page in the database file are paged-in once
during the measure.

5
Sec. [_]Cold -Warm

4 .
3.330 3 3_31

5L i

2}

1 |-

0 0.010 . 0.01
Single-user Multi-users

Figure 5: Comparison between single-user and mulli-nsers
by Update

To measure the overhead of locking by concurrent ac-
cesses, we measured that update operation by single user
and multiple users, and compared these two measurements.
In the cases of single user test, a single clienl program [or
update runs on the server machine, and no concurrent ac-
cess occurs. In the cases of multiple users, in addition to
a client program for update runs on the server machine, a
lookup client program runs on the client machine during
the simulation. That is, the database concurrent access by
a local wriler and a remote reader.

Figure 5 compares these two cases. In the case of multi-
ple users, the persistent object coherence is supported by
Distributed Shared Memory Manager of WAICASHI. The
WAKASHI Server provides a low-level and efficient locking
mechanism. As Figure 5 shows, the multiple users can ac-
cess distributed shared persistent objects as efficiently as a
single user.

Although these benchmark tests mentioned above are
very simple, we can conclude from them thal the
WAKASHI Server allows

(1) Efficient access to large persistent data,

(2) Efficient pointer swizzling, and

(3) Efficient persistent data coherency.

We believe that the WAICASHI Server can be used for
the storage managemeut for multimedia OODBMSs or
other data intensive applications in the distributed com-
puting environments.

4 Related Work

The work .most closely related to ours is Cricket
[SHZW90]. Cricket is a dalabase storage system, which
uses (e memory management primitives of Mach Op-
erating System (i.c., EMMI) lo provide the abslraction
of shared, transactional, single-level (i.c., virtual-memory-
based) store. Cricket also provides Lransparent, two-
phase, page-level locking. WAKASHI is different form
i that WAKASHI based on distributed shared memory
approach to provide distributed shared persistent/volatile
heap. Cricket does not support the distributed shared
single-level store.

ObjectStore [LLOW9]] is another related work. Ob-
jectStore is an objeci-oriented database management sys-
tem whose object storage manager is based on the virtual-
memory-based approach. The ObjectStore server provides
the long term repository for persistent data. A major diller-
ence between WAKASHI and ObjectStore resides in plat-
form their implementation. ObjectStore’s databases are
stored in files and they are mapped into the virtual mem-
ory by using the Unix operaling system’s mapped-file sys-
tem (i.e., mmap() call). The main difference is thal Ob-
jectStore uses Lhe data-passing model to implements cache
conststency, since the mnmp%) call do nol supporls dis-
tributed shared memory mapped files.

Caelot. Distributed Transaction System [SPECST] uses
the EMMI of Mach to provide a persistent slore based

on the virtual-memory-based approach. ln conlrast to
WAKASHI, the Camelot’s persistent store is nol directly
accessed by clienl programs. Inslead, it is accessed only by
a "data server” that manage all the persistent data.

Napier88 [KIDEJO] also takes a similar approach and
also uses the Mach Operating System'’s external pager to
perform paging flor persistent data. This implementation
technique is very similar to ours. However, every data in
Napier88 is persistent, while both volatile and persistent
heaps are supported by WAKASHI so that the C++ ap-
plication prograws can equally operate on both distributed
shared persistent and volalile data.

5 Summary and Future Plans

WAIKASHI is constructed on the Mach Operaling Sys-
tem. Using WAKASHI the traditional distinclion belween
persistent data and volatile data is hider lor C program-
mers, so that users can deal with distributed shared per-
sistent data and distributed shared volatile data in a very
shinilar way.

one of important characleristics of WAICASHI is map-
ping or binding of files into the distributed shared vir-
tual memory. This approach is expected to be adapt-
able lo advanced data-intensive applications, to provide
high-performance access to distributed shared persistent
objects, and to be adaptable to new computing euviron-
ments such as large main memory, multiprocessors, and
high-speed network.

In order to prove that some these expeclations are true,
we also proposed new beuchmark tests for multimedia data
applicalions, and showed its result. The result suggests
that the WAICASHI Server is fairly good in its performance
and may be used by database systems or other data inten-
sive applications that handle multimedia data in the dis-
tributed environments.

WAKASHI is a centralized server Lo manage distributed
shaved persistent/volatile heaps. Such a centralized solu-
Lion has several drawbacks {FI3YR88], since the server may
become a bottleneck, proximity of a clienl Lo the server may
aflect its performance and the server host performs an un-

" fair amount of computation, possibly degrading other tasks

on that host. We are now developing the distributed ver-
sion of WAKASHI thal may avoid the above mentioned
drawbacks.

In addition we have three other works to be doue, as
follows.

Transaction support by a distributed shared persistent
lieap consists of intercounecled local caches and memories
observing some protocol. We must consider a combined
method [rom the following research areas: distributed
database management systeius due to Lransaction support:
operaling syslems due lo primitives vequired for meniory
interface and handling of associalion belween transactions
and processes.

The Mach kernel chooses pages Lo be replaced using an
approximate LRU (Least Recently Used) algorithm. How-
ever, some database operations have access pallerns that
may make the LRU inappropriate [STONSI&. By an ex-
tending the Mach EMMI, a user-level page replacement by
external pager may be implemented. For each persistent
heap area, we may provide specific non-LRU page replace-
ment strategy which better fits to the area.

[For any OODBMS to access objecls, il calls the meth-
ods associated with them. [or calling the methods, the
OO0DBMS necds dynamic linkage which allows compiled
funclions to be loaded in main memory. very time the
QODBMS needs to access an object, it dynamically loads
the binary file containing the access {unctions, il they are
not already loaded [AIMS90]. The virtual-memory-based
approach {or storage management allows users Lo map not
only a dala file, but also a program (method) file inlo its
own virtual address space. WARKASIT will allow users (o
map its objects into its own virtual address space, so that
data and methods will be uniformly managed.

RETFTERENS

[AATM92] 1. Amano, M. Arilsugi, I\. Teramolo, and A.
Makinouchi, "Designing C++ Primitives for the Per-
sistent Programming Language INADA™, Proc. 44th
IPSJ conf., 211-3, March 1992 {in Japanesc].

[ABBGS6] M. Acceta, R. Baron, W. Bolosky, D. Golub, R.
Rashid, A.Tevanian, and M. Young, "Mach: A New
Kernel Foundation for UNIX Development”, USENIX,
July 1986, pp.93-112.

[ABDDY0] M. Atkinson, I. Bancilhon, D. DeWitt, L. Dit-
trch, D. Maier, and S.Zdonik, ”The Object-Oriented
Database System Manifesto”, The Comumittee for Ad-
vanced DBMS Function, Memorandom No. UCB/ERL
M90/28, April 1990.

[AIMS90] M. Aoshima, Y. Izumida, A. Makinouchi, F.
Suzuki, and Y. Yamane, "The C-based Database Pro-
gramming Language Jasmine/C”, Proc. 16th Intel.
Cong. on VLDB, August 1990, pp.539-551.

[ATKI8T] Malcolm P.Atkinson, "Types and Persistence in
Database Programming Languages ”, ACM Comput-
ing Surveys, Vol.19, No.2, June 1987, pp.105-190.

[BAMA92] G. Bai and A. Makinouchi, "Implementation
and Evalualion of a New Approach to Storage Man-
agement for Persistent Data — Towards Virtual-Memory
Databases”, Proc. of the Second Far-East \Workshop
on Future Database Systems, Kyolo Japan, April 1992,
pp-211-220.

[BDTS3] Bitton, D., DeWitt,D.J., and Turbyfill,C.,» Bench-
marking Database Systems: A systematic Approach”,

1983 Proc. of VLDB Conference, Oct., 1983, pp.&-19.

[CASK 92] R. G. G. Cattell and J. Skeen, »Object Oper-
ations Benchimark”, ACM Transaclions on Database
Systems, Vol. 17, No. 1, March 1992, pp.1-31.

[DEUX90] O. Deux ct al. "The Story of 027, IEEE, Trans-
actions on Knowledge and Dala Engineering, Vol.2,
No.1, Mach 1990, pp.91-108.

[FBYRSS] A. Torin, J. Barrera, M. Young, and R. Rashid,
”Design, Implementation, and Performance Evalua-
tiou of a Distributed Shared Memory Server for MACII?,
CMU-CS-88-165, August 1988.

[HSK92] I. Hayala, N. Sato, and M. IKobe, "Design and
[mplementation of Core in OODBMS Earth”, Confl
Database Systems, July 1992, pp.59-68.

[KGBW90] W. Kim, J. F. Garza, N. Ballou, and D. Woelk,
? Acchitecture of the ORION Next-Generation Database
System”, IEEE, Transactions on Knowledge and Data
Engiueering, Vol.2, No.1, March 1990, pp.109-124.

[KIDE90] G. Kirby and A. Dearle, "An adaptive browser
for Napier88”, University of Standrews Research Re-
port CS/90/16, 1990.

[LLOW9L] C. Lamb, G. Landis, J. Orenstein, and D. Wein-
reb, "The ObjectSlore Database System”, Comuu-
nications of the ACM, Vol.34, No.10, October 1991,
pp-50-63.

[LIHU8Y] K. Li, and P. Hudak, "Memory Colerence in
Shared Virtual Memory Systems”, ACM Transaclions
on Computer Systems, Vol 7, No. 4, November 1989,
pp-321-259.

[MAARII] A. Makinouchi and M. Aritsugi, "The Object-
Oriented Persistent Programming Languages {or Mul-
timedia Databases”, Technical Report CSCE-91-C04,
March 1991.

[MAKI9L] A. Makinouchi, ”Architectures of the Object-
Oriented Database Management Systems”, Informa-
tion Processing, Vol. 32, No. 5, 1991, pp.514-522 [in
Japanese].

[MCAR90] D. McNamce, and K. Avmstrong, ”Extending
The Mach External Pager Interface To Accommodate
User-Level Page Replacenient Policies”, Mach Work-
shop, 1990, pp.17-29.

[NIVI91]) B. Nitzberg and V. Lo, "Distributed Shared Mem-
ory: A survey of Issues and Algorithms™, Compute,
Vol. , No. , August 1991, pp.52-60.

[OBJ190] Objectivity, Inc., Objectivity/DB, 1990.

[RICAR9] Richardson, E. J. and M. J. Carey, "Persistence
in the E Language: Issues and Implementation”, Soflware-
Practice and Experience, Vol.19, N0.12, December 1989,
pp.1115-1150.

[SPSGQO} II. J. Schek, 1. B Paul, M. 1I. Scholl, and G.

Weikum, "The DASDBS Project: Objectives, Experi-
ences, and I'uture Prospects”, IEEE, Transactions on
Knowledge and data IEngineering, Vol.2, No.1, March
1990, pp.25-43.

[SHZW90] Shekita, I3. and Zwilling, M., * Cricket: A Mapped,
Persistent Objecl Store”, Proc. the fourth Interna-
tional Workshop on Persistent Object Systems (1990).
Morgan Kaumann. pp.89-102.

[SOLO92] Soloviev, V., "An Overview of Three Commer-
cial Object-Oriented Database Management Systetns:
ONTOS, ObjectStore, and 02", SIGMOD RECORD.,
Vol.21, No.l (1992), pp.93-104.

[SPECS7] A. Z. Spector, "Distributed Transaction Pro-
cessing and The Camelot System ”, CMU-CS-87-100,
January 1987.

[STONS8I] M. Stoncbraker, ”Operating System Support for
Database management”, Communications of the ACM.
Vol.24, No.T July 1981, pp.412-418.

[TCADY90] The Committee for Advanced D3NS Funclion.
"Third-Generation Dalabase System Manilesto”, Mem-
orandom No. UCB/ERL M90/28, April 1990.

[VSK90] F. Vaughan, T. Schunke, and B. Koch, " A Persis-
tent Distributed Architecture Supported by the Mach
Operating System”, Mach Workshop 1990, pp.123-
140.

[WARO91] Y. Wang and L. A. Rowe, ”Cache Consistency
and Concurrency Control in a Client/Server DBMS
Architecture”, Proc. ACM-SIGMOD pp.367-376.

- [WIHDE92] S. J. White and D. J. Dewitt, ” A Performance

Study of Alternative Object Faulting and Pointer Swiz-
zling Strategies™, Proc. of the 18th VLDB Conlercnce.
Canada, 1992, pp.419-431.

[YNAF91] Y. Yamamoto, M. Namiko, M. Asami, K. FFu-
rukawa, and K. Sato, Masamichi Kato, aud Takeo
Maruyawa, "An Object-Orviented Database Syslem:
Mandrill — its Overview— ", Proc. of 43tk 11°S.J conl..
October 1991 [in Japanese].

[YOUN89] M. W. Young, "Exporting a User Interface to
Memory Management from a Communicalion-Oricnled
Operaling System™, CMU-CS-89-202, November 1989.

